Marek Cieplak

Institute of Physics, Polish Academy of Science

Research Interests and Selected Publications

  1. Biological Physics
    1. Kinetics of protein folding in lattice models
    2. Kinetics of protein folding in molecular dynamics studies
    3. Stretching of proteins
    4. Genetic micro-arrays
    5. Structure prediction and related subjects
    6. Other
  2. Condensed Matter Physics
    1. Spin waves, dynamical structure factor of magnetic chains, solitons
    2. Disordered systems - mostly magnetic
      1. Granular superconductors, percolation, fractals
      2. Spin glasses and other frustrated systems
      3. Mesoscopic spin glasses
      4. Random field and random anisotropy systems
      5. Optimal paths and strong disorder
    3. Porous media
    4. River networks
    5. Atomic friction
    6. Hydrodynamic cellular automata
    7. Molecular dynamics studies of gases (Knudsen flows) and liquids

I. Biological Physics

1. Kinetics of protein folding in lattice models

Design of rapidly folding protein-like heteropolymer chains and their cell dynamics - a lattice model study, S. Vishveshwara, I. Shrivastava, M. Cieplak, and J. R. Banavar, Indian Institute of Science Journal 77, 339 (1997)
Master equation approach to protein folding and kinetic traps, M. Cieplak, M. Henkel, J. Karbowski, and J. R. Banavar, Phys. Rev. Lett. 80, 3654 (1998)pdflink
Folding in two-dimensional off-lattice models of proteins, M. S. Li and M. Cieplak, Phys. Rev. E 59, 970-976 (1999)pdflink
Coarse grained description of the protein folding, M. Cieplak and Trinh Xuan Hoang, Phys. Rev. E 58, 3589 (1998)pdflink
Protein folding and models of dynamics on the lattice, Trinh Xuan Hoang and M. Cieplak, J. Chem. Phys. 109, 9192 (1998)pdflink
Master equation approach to protein folding, M. Cieplak, M. Henkel, and J. R. Banavar, J. Cond. Mat. 2, 369 (1999)pdf
Scaling of folding properties in simple models of proteins, M. Cieplak, T. X. Hoang, and M. S. Li, Phys. Rev. Lett. 83, 1684pdflink
Energy landscapes, supergraphs, and "folding funnels" in spin systems, P. Garstecki, T. X. Hoang, and M. Cieplak, Phys. Rev. E 60, 3219 (1999)pdflink
Simple models of proteins with repulsive non-native contacts, M. S. Li and M. Cieplak, Europ. Phys. Journal. B 14, 787-792 (2000)
Spin analogs of proteins: scaling of "folding" properties, T. X. Hoang, N. Sushko, M. S. Li, and M. Cieplak, J. Phys. A 33, 3977-3987 (2000)pdf
Lattice tube model of proteins, J. R. Banavar, M. Cieplak, and A. Maritan, Phys. Rev. Lett. 93, 238101 (2004)pdflink

2. Kinetics of protein folding in molecular dynamics studies

Molecular dynamics of folding of secondary structures in Go-like models of proteins, T. X. Hoang and M. Cieplak, J. Chem. Phys. 112, 6851-6862 (2000)pdflink
Sequencing of folding events in Go-like proteins, T. X. Hoang and M. Cieplak, J. Chem. Phys. 113, 8319-8328 (2000)pdflink
Scaling of folding properties in Go models of proteins, M. Cieplak and T. X. Hoang, J. Biol. Phys. 26, 273-294 (2000)pdf
Dynamical chaos and power spectra in toy models of heteropolymers and proteins, M. S. Li, M. Cieplak, and N. Sushko, Phys. Rev. E 62, 4025-4031 (2000)pdflink
Kinetic non-optimality and vibrational stability of proteins, M. Cieplak and T. X. Hoang, Proteins: Structure, Function and Genetics 44, 20-25 (2001)pdflink
The range of the contact interactions and the kinetics of the Go models of proteins, M. Cieplak and T. X. Hoang, Int. J. Mol. Phys. C 13, 1231-1242 (2002) - 2003pdf
Universality classes in folding times of proteins, M. Cieplak and Trinh Xuan Hoang, Biophys. J. 84, 475-488 (2003)pdflink
Folding of proteins in Go models with angular interactions, M. Cieplak and T. X. Hoang, Physica A 330, 195-205 (2003)pdflink
Cooperativity and contact order in protein folding, M. Cieplak, Phys. Rev. E 69, 031907 (2004)pdflink
Chirality and protein folding, J. I. Kwiecinska and M. Cieplak, J. Phys. Cond. Mat. 17, S1565-S1580 (2005)pdf

3. Stretching of proteins

Thermal folding and mechanical unfolding pathways of protein secondary structures, M. Cieplak, T. X. Hoang, and M. O. Robbins, Proteins: Function, Structure, and Genetics 49, 104-113 (2002)pdflink
Folding and stretching in a Go-like model of titin, M. Cieplak, T. X. Hoang, and M. O. Robbins, Proteins: Function, Structure, and Genetics 49, 114-124 (2002)pdflink
Stretching of proteins in the entropic limit, M. Cieplak, T. X. Hoang, and M. O. Robbins, Phys. Rev. E 69, 011912 (2004)pdflink
Thermal effects in stretching of Go-like models of titin and secondary structures, M. Cieplak, T. X. Hoang, and M. O. Robbins, Proteins: Struct. Funct. Bio. 56, 285-297 (2004)pdflink
Stretching of homopolymers and contact order, M. Cieplak, T. X. Hoang, and M. O. Robbins, Phys. Rev. E 70, 011917 (2004)pdflink
Mechanical properties of the domains of titin in a Go-like model, M. Cieplak, A. Pastore, and T. X. Hoang, J. Chem. Phys. 122, 054906 (2005)pdflink
Mechanical stretching of proteins: calmodulin and titin, M. Cieplak, Physica A 352/1, 28-42 (2005)pdflink
Mechanical unfolding of ubiquitin molecules, M. Cieplak and P. E. Marszalek, J. Chem. Phys. (in press)pdf

4. Genetic micro-arrays

Fundamental patterns underlying gene expression profiles: simplicity from complexity, N. S. Holter, M. Mitra, A. Maritan, M. Cieplak, J. R. Banavar, and N. V. Fedoroff, Proc. Natl. Acad. Sci. USA 97, 8409-8414 (2000)pdf
Dynamic modeling of gene expression data, N. S. Holter, A. Maritan, M. Cieplak, N. V. Fedoroff, and J. R. Banavar, Proc. Natl. Acad. Sci. USA 98, 1693-1698 (2001)pdf

5. Structure prediction and related subjects

Protein threading by learning, I. Chang, M. Cieplak, R. I. Dima, A. Maritan, and J. R. Banavar, Proc. Natl. Acad. Sci., 14351-14355 (2001)pdflink
Prediction of protein secondary structures from conformational biases, T. X. Hoang, M. Cieplak, J. R. Banavar, and A. Maritan, Proteins: Function, Structure, and Genetics 48, 558-565 (2002)pdflink
Assembly of protein tertiary structures from secondary structures by simulated annealing with optimized potentials, T. X. Hoang, F. Seno, J. R. Banavar, M. Cieplak, and A. Maritan, Proteins: Function, Structure, and Genetics 52, 155-165 (2003)pdflink

6. Other

Delineation of the native basin in continuum models of proteins, M. S. Li and M. Cieplak, J. Phys. A 32, 5577-5584 (1999)
Amino acid classes and the protein folding problem, M. Cieplak, N. S. Holter, A. Maritan, and J. R. Banavar, J. Chem. Phys. 114, 1420-1423 (2001)pdflink
M. Cieplak and A. Sienkiewicz, Proteins, article (in Polish) for the Physics Encyclopedia, Polish Scientific Publishing House 2003pdflink
What one can learn from experiments about the elusive transition state?, I. Chang, M. Cieplak, J. R. Banavar, and A. Maritan, Protein Science 13, 2446-2457 (2004)pdf
Geometry of proteins: hydrogen bonding, sterics and marginally compact tubes, J. R. Banavar, M. Cieplak, A. Flammini, T. X. Hoang, R. D. Kamien, T. Lezon, D. Marenduzzo, A. Maritan, F. Seno, Y. Snir, A. Trovato, q-bio.BM/0505052
Thermal unfolding of proteins, M. Cieplak and J. I. Sulkowska, J. Chem. Phys. (in press)pdf

II. Condensed Matter Physics

1. Spin waves, dynamical structure factor of magnetic chains, solitions

Two Bose fluid picture of a Heisenberg ferromagnet, M. Cieplak and L. A. Turski, Z. Phys. B 23, 355 (1976)
Spin-wave theory of the paramagnetic phase boundary in transversally anisotropic antiferromagnets, M. Cieplak, Phys. Rev. B 15, 5310 (1977)link
Spin waves in systems with weak exchange fields, M. Cieplak and F. Keffer, Phys. Rev. B 18, 1253 (1978)link
Localized model for systems with double- exchange coupling, M. Cieplak, Phys. Rev. B 18, 3470 (1978)pdflink
Solitons in quantum Heisenberg chain, M. Cieplak and L. A. Turski, J. Phys. C 13, 5741 (1980)
Magnetic solitons and elastic shock waves in classical compressible Heisenberg chain, M. Cieplak and L. A. Turski, J. Phys. C 13, L777 (1980)
Dynamical correlations in one-dimensional easy plane magnets, M. Cieplak and A. Sjolander, J. Phys. C 14, 4861 (1981)

2. Disordered systems - mostly magnetic

a. Granular superconductors, percolation, fractals

Density of electronic states in granular metals, M. Cieplak, J. Phys. F 14, 609 (1984)
Renormalization group analysis on fractals: Ising spin glass and the Schrodinger equation, J. R. Banavar and M. Cieplak, Phys. Rev. B 28, 3813 (1983)link
Critical phenomena in fluid invasion: transitions in growth morphology, M. Cieplak and M. O. Robbins, in Surface Disordering: Growth, Roughening and Phase Transitions, eds. R. Julien, J. Kertesz, P. Meakin, and D. E. Wolf (Les Houches workshop), Nova Sci. Publ., New York, 1992, p. 185
Growth in systems in quenched disorder, M. O. Robbins, M. Cieplak, H. Ji, B. Koiller, and N. Martys, in Proceedings of the NATO School on Growth Patterns in Physical Science and Biology, Granada, Spain, 1991, ed. L. Sander and P. Meakin (Plenum Press, New York, 1992)
Fractal domains in Ising spin glasses, M. Cieplak and M. S. Li, Fractals 2, 481 (1994)
Domain walls in the transverse field Ising spin glasses, M. S. Li and M. Cieplak, Fractals 4, 401 (1996)
Optimal paths and growth processes, M. Cieplak, A. Maritan, J. R. Banavar, Physica A 266, 291 (1999)pdflink

b. Spin glasses and other frustrated systems

Nature of ordering in spin glasses, J. R. Banavar and M. Cieplak, Phys. Rev. Lett. 48, 832 (1982)pdflink
Influence of boundary conditions on random unfrustrated magnetic systems, J. R. Banavar, M. Cieplak, and M. Z. Cieplak, Phys. Rev. B 26, 2482 (1982)link
Scaling stiffness of spin glasses, J. R. Banavar and M. Cieplak, J. Phys. C 16, L755 (1983)
Lower critical dimensionality of Heisenberg spin glasses, M. Cieplak and J. R. Banavar, Phys. Rev. B 29, 469 (1984)link
Dynamics of frustrated spin clusters, J. R. Banavar, M. Cieplak, and M. Muthukumar, J. Phys. C 18, L157 (1985)
Dynamical susceptibility of frustrated spin clusters, M. Cieplak and J. Lusakowski, J. Phys. C 19, 5253 (1986)
Metastable states in disordered ferromagnets, M. Cieplak and T. R. Gawron, J. Phys. A 20, 5657 (1987)
Dynamic spin susceptibility of semimagnetic semiconductors, M. Cieplak, M. Z. Cieplak, and J. Lusakowski, Phys. Rev. B 36, 620 (1987)link
Hidden valley structure of Ising spin glasses, M. Cieplak and J. Jaeckle, Zeit. Phys. B 66, 325 (1987)
Dynamic specific heat of spin glasses - studies of a 6-spin cluster, M. Cieplak and G. Szamel, Phys. Rev. B 37, 1790 (1988)link
Nature of ordering in Potts spin glasses, J. R. Banavar and M. Cieplak, Phys. Rev. B 40, 4613 (1989)link
Scaling of stiffness in Ising spin glasses, M. Cieplak and J. R. Banavar, J. Phys. A 23, 4385 (1990)
Ordering characterized by a strange attractor, B. Sundaram, M. Cieplak, and J. R. Banavar, Phys. Rev. A (Rapid Comm.) 41, 5713 (1990)link
Scaling of energy barriers in Ising spin glasses, T. R. Gawron, M. Cieplak, and J. R. Banavar, J. Phys. A 24, L127 (1991)
Gauge invariance and the vortex glass, M. Cieplak, J. R. Banavar, and A. Khurana, J. Phys. A 24, L145 (1991)
Frustration, scaling, and local gauge invariance, M. Cieplak, J. R. Banavar, M. S. Li, and A. Khurana, Phys. Rev. B 45, 786 (1992)link
Universality and chaos in XY spin glasses, M. Cieplak, M. S. Li, and J. R. Banavar, Phys. Rev. B 47, 5022 (1993)link
Chaos in gauge glasses in the critical region, M. S. Li and M. Cieplak, Physica A, 197, 507 (1993)link
Scaling properties of quantum spin glasses, M. S. Li and M. Cieplak, Physica A 207, 463 (1994)link

c. Mesoscopic spin glasses

Universal conductance fluctuations in spin glasses, M. Cieplak, B. R. Bulka, and T. Dietl, Phys. Rev. B 44, 12337 (1991)pdflink
Magnetoconductance fluctuations in mesoscopic spin glasses, M. Cieplak, B. R. Bulka, and T. Dietl, Phys. Rev. B 51, 8939 (1995)pdflink

d. Random field and random anisotropy systems

Ordering and phase transitions in random-field Ising systems, A. Maritan, M. R. Swift, M. Cieplak, M. H. W. Chan, M. W. Cole, and J. R. Banavar, Phys. Rev. Lett. 67, 1821 (1991)pdflink
Random-anisotropy Blume-Emery-Griffiths model, A. Maritan, M. Cieplak, M. R. Swift, F. Toigo, and J. R. Banavar, Phys. Rev. Lett. 69, 221 (1992)pdflink
Phase diagrams for random field Ising systems, M. R. Swift, A. Maritan, M. Cieplak, and J. R. Banavar, J. Phys. A 27, 1525 (1994)
Dipole interactions with random anisotropy: a local mean field study, M. Zaluska-Kotur and M. Cieplak, Europhys. Lett. 23, 85 (1993).
Glassy properties of dilute dipolar Ising systems, M. Zaluska-Kotur and M. Cieplak, J. M. M. M. 136, 127 (1994)
Nematic-isotropic transition in porous media, A. Maritan, M. Cieplak, T. Bellini, and J. R. Banavar, Phys. Rev. Lett. 72, 4113 (1994)pdflink
Scaling of the random field Ising model at zero temperature, M. R. Swift, A. J. Bray, A. Maritan, M. Cieplak, and J. R. Banavar, Europh. Lett. 38, 273 (1997)
Effects of pore walls and randomness in phase transitions in porous media, M. Cieplak, A. Maritan, F. Toigo, M. H. W. Chan, and J. R. Banavar, Phys. Rev. E 66, 056124 (2002)pdflink

e. Optimal paths and strong disorder

Optimal paths and domain walls in the strong disorder limit, M. Cieplak, A. Maritan, and J. R. Banavar, Phys. Rev. Lett. 72, 2320 (1994)pdflink
Optimal paths and universality, M. Cieplak, A. Maritan, M. Swift, A. Bhattacharya, A. L. Stella, and J. R. Banavar, J. Phys. A 28, 5693 (1995)
Domain walls in the quantum transverse Ising model, M. Henkel, A. B. Harris, and M. Cieplak, Phys. Rev. B 52, 4371 (1995)link
Invasion percolation and Eden Growth: Geometry and Universality, M. Cieplak, A. Maritan, and J. R. Banavar, Phys. Rev. Lett. 76, 3754 (1996)pdflink
Optimal paths and growth processes, M. Cieplak, A. Maritan, J. R. Banavar, Physica A 266, 291 (1999)pdflink

3. Porous media

Surface conduction and length scales in porous media, J. R. Banavar, M. Cieplak, and D. L. Johnson, Phys. Rev. B (Rapid Comm.) 37, 7975 (1988)link
Dynamical phase transition in fluid flows in porous media, M. Cieplak and M. O. Robbins, Phys. Rev. Lett. 60, 2042 (1988)pdflink
Critical phenomena in fluid invasion of porous media, N. Martys, M. Cieplak, and M. O. Robbins, Phys. Rev. Lett. 66, 1058 (1991); reprinted in Dynamics of Fractal Surfaces, ed. F. Family and T. Vicsek, World Scientific, Singapore 1991, p. 419pdflink
Scaling relations for interface motion through disordered media: Application to two-dimensional fluid invasion, N. Martys, M. O. Robbins, and M. Cieplak, Phys. Rev. B 44, 12294 (1991)pdflink
Effects of pore walls and randomness in phase transitions in porous media, M. Cieplak, A. Maritan, F. Toigo, M. H. W. Chan, and J. R. Banavar, Phys. Rev. E 66, 056124 (2002)pdflink

4. River networks

Universality classes of optimal channel networks, A. Maritan, F. Calaioris, A. Flammini, M. Cieplak, and J. R. Banavar, Science, 272, 984 (1996)pdf link
Models of fractal river basins, M. Cieplak, A. Giacometti, A. Maritan, A. Rinaldo, I. Rodrigues-Iturbe, and J. R. Banavar, J. Stat. Phys. 1 (1998)pdf

5. Atomic friction

Molecular origins of friction: The force on adsorbed layers, M. Cieplak, E. Smith, and M. O. Robbins, Science 265, 1209 (1994)pdflink
The friction on adsorbed monolayers, E. Smith, M. O. Robbins, and M. Cieplak, Phys. Rev. B 54, 8252 (1996)pdflink

6. Hydrodynamic cellular automata

Cellular automata studies of mixing in chaotic systems, M. Cieplak, U. D'Ortona, D. Salin, R. B. Rybka, and J. R. Banavar, Comp. Mat. Sci. 1, 87 (1992)
Cellular automata studies of circular Couette Flows: chaotic mixing, R. B. Rybka, M. Cieplak, U. D'Ortona, D. Salin, and J. R. Banavar, Phys. Rev. E 48, 757 (1993)link
Two-color Boltzmann cellular automata: surface tension and wetting, U. d'Ortona, D. Salin, M. Cieplak, R. B. Rybka, and J. R. Banavar, Phys. Rev. E 51, 3718 (1995)pdflink
Rupture and coalescence in two-dimensional cellular automata fluids, M. Cieplak, Phys. Rev. E 51, 4353 (1995)pdflink

7. Molecular dynamics studies of gases (Knudsen flows) and liquids

Applications of statistical mechanics in subcontinuum fluid dynamics, M. Cieplak, J. Koplik, and J. R. Banavar, Physica A 274, 281-293 (1999)pdflink
Molecular dynamics of flows in the Knudsen regime, M. Cieplak, J. Koplik, and J. R. Banavar, Physica A 287, 153-160 (2000)pdflink
Boundary conditions at a fluid - solid interface, M. Cieplak, J. Koplik, and J. R. Banavar, Phys. Rev. Lett. 86, 803-806 (2001)pdflink
Motion of grains, droplets and bubbles in fluid-filled nano-pores, Phys. Rev. E 64, 021601 (2001)pdflink
Molecular dynamics simulations of crystallization of hard spheres, I. Volkov, M. Cieplak, J. Koplik, and J. R. Banavar, Phys. Rev. E 66, 061401 (2002)pdflink