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ABSTRACT Scaling of folding times in Go mod-
els of proteins and of decoy structures with the
Lennard–Jones potentials in the native contacts
reveal power law trends when studied under opti-
mal folding conditions. The power law exponent
depends on the type of native geometry. Its value
indicates lack of kinetic optimality in the model
proteins. In proteins, mechanical and thermodynamic
stabilities are correlated. Proteins 2001;44:20–25.
© 2001 Wiley-Liss, Inc.
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INTRODUCTION

Proteins are extraordinary heteropolymers. They fold to
their native states much faster than would be predicted by
a blind combinatorics,1 since a folding funnel in the energy
landscape is formed.2–4 Proteins are believed to have high
designabilities,5 to be stable against mutations,6,7 and to
have the highest densities of states.8 Furthermore, the
a-helix secondary motifs have been shown theoretically to
be the fastest folders among chains of the same number, N,
of amino acids9 and to be the result of the geometric
optimization of compact chains with maximum wiggle
room.10 Experimental results11–13 (see commentary by
Chan14) also point to the accelerating role of the helices.
Biological evolution may have optimized functionality of
proteins, but can proteins be optimal kinetically?

We consider folding times, tfold, in Go models15–17 of
proteins and decoy structures and show that although
proteins fold to their native structures quickly, they are
not optimal folders. This conclusion ties in well with
protein engineering experiments,18,19 which show that
mutations in wild-type proteins may lead to significant
increases in folding rates and thus show no kinetic optimal-
ity of sequences. Our theoretical argument is based on
relating universality classes in the scaling of tfold to classes
of native geometries. This confirms a decisive role of native
geometry in determining properties of proteins.20 The
scaling trends that we observe are robust when studied at
the temperature of the fastest folding, Tmin, but become
obscure when studied at other temperatures.

Another issue examined concerns the notion of protein
stability. One definition of stability is thermodynamic—it
assesses the role of non-native phase space valleys relative
to the native valley by determining the probability of
staying in the native basin. It is characterized by the
folding temperature, Tf, at which this probability crosses
1
2
.21 Another is mechanical: at what temperature will the

native conformation melt as a result of vibrations? The

mechanical definition does not refer to non-native valleys.
The two notions should correlate with each other if the
native valley dominates in the energy landscape. We show
that this is indeed what happens in model proteins.

MODEL AND METHOD

We first consider the problem of universality classes in
the scaling of folding properties. There have been various
predictions about the nature of scaling of tfold. A number of
theories suggest a power law dependence of barrier heights
on N, and thus an exponential law for tfold.22–24 Thirum-
alai25 has argued, however, in favor of a power law for tfold,

tfold , Nl (1)

where l is estimated to be between 3.8 and 4.2 for simple
two-state folders. A heuristic model26 leads to l 5 3.
Numerical studies of tfold in various lattice models27–29

have supported the power law behavior and indicated
dependence of l on specifics of the model, dimensionality
and temperature, T. For designed sequences in three
dimensions, l has been found to be within the Thirumalai
range,27 whereas for Go models it has been found to be on
the order of 3.27,29 In these studies, tfold is defined as the
first passage time.

In the present study, we extend the scaling studies to
off-lattice Go models,15 and consider chains of beads
separated by d0 < 3.8 Å—a typical length of the peptide
bond. The Go Hamiltonian is defined through a native
conformation of a sequence, as it assigns relevant interac-
tion energies only to the native contacts. Despite this
simplification, the Go models may behave more realisti-
cally than do atomistic models.30

It should be noted that the Go models are so minimal
that they disregard an explicit amino acidic definition of a
protein and variability of the volume taken by individual
side-chains. Natural proteins appear to fold by locking its
segments together in an unfrustrated way. Adding attrac-
tion to the non-native contacts in the bead-spring model
might appear to make the model more realistic but, in fact,
leads to spurious entanglements during folding. In this
sense, the Go model repairs some of its shortcomings by a
mutual cancellation of its ills and focuses on the effects
related to the native structure. This focus is justified by
experimental indications that the native structure itself is
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central to folding.31,13 By contrast, the target-oriented
aspects of such theoretical modeling are hard to justify on
a fundamental level.32 The nature of the Go model permits
study of the role of the native structure in kinetics, but it
does not allow one to address the role of the sequential
order. Determining sequence-based, as opposed to struc-
ture-based, classes of kinetic universality would be much
more interesting but, clearly, also much more challenging.

We employ Lennard–Jones (LJ) potentials

Vij 5 4eFSsij

rij
D12

2 Ssij

rij
D6G

for the native contact interactions between monomers i
and j, in a distance of rij apart. The non-native interactions
are described by repulsive soft core potentials that provide
excluded volume and prevent entanglements. Our ap-
proach was presented in detail earlier16,17 with an analy-
sis of several secondary structures and three model pro-
teins. Such models were also studied in references 33 and
34. The distances between successive beads are controlled
by an anharmonic potential. The length parameters sij are
selected so that the minimum of Vij corresponds to the
geometry found in the target structure and the contacts
are said to be formed when i and j are not consecutive
along the chain and rij is less than dnat, where dnat is 7.5 Å.

There are other variants of the off-lattice Go models:
Zhou and Karplus35 and Dokholyan et al.36 have consid-
ered models with a square well potential. Clementi et al.37

have studied the 12–10 power law potentials. It is not clear
which effective potential is the best, and our choice is LJ.

The dynamics of the system are described by the Lange-
vin equation mr̈ 5 2gṙ 1 Fc 1 G where r is a position of a
monomer, m is its mass, and Fc is the force derived from
the Hamiltonian. g is a friction coefficient and G is the
random force, such that ^G(0)G(t)& 5 2gkBTd(t), where kB

is the Boltzmann constant, t is time, and d(t) is the Dirac
delta function. Both the friction and the random force
represent the effects of the solvent and they control T. The
equations are solved using the fifth-order predictor–
corrector scheme.

In the following, T is measured in the units of e/kB, and t
is measured in units of the oscillatory period t. At low
values of friction, t is equal to (ma2/e)1/2, where a is a van
der Waals radius of the amino acid residues. The value of a
is chosen as 5 Å, which is roughly equal to ^sij& in our model
proteins. The simulations are done with g 5 2mt21, a
standard choice in studies of liquids. Higher values of g
have been argued to be more realistic.38 We have shown16

that tfold is linear in g and that Tmin depends on g weakly.
The native conformation is defined through the locations

of the a-carbons. We have considered 21 single-domain
Protein Data Bank (PDB) structures,39 with N ranging
between 29 and 98. Nine of these structures belong to a set
of proteins considered by Plaxco et al.12 or are their close
homologies. These are the SH3 domain of 1efn (57), 2ptl
(63), 2ci2 (83–18 5 65; 18 are not resolved); 1csp (67), 1ubq
(76), 1hdn (85), 2abd (86), 1ten (90), and 1aps (98), where
the numbers in parentheses indicate the corresponding
values of N. The additional 12 structures are: 1cti (29),

1cmr (31), 1ce4 (35), 1bba (36), 1erc (40), 1crn (46), 7rxn
(52), 5pti (58), 1tap (60), 1aho (64), 1ptx (64), and 1erg (70).
These conformations were picked from the low-N end of
the size distribution to permit a reliable characterization.
Our studies of these structures indicate well defined
overall trends in tfold, which are only weakly affected by an
inclusion of steric constraints.38 Our results are given here
only for models without such constraints.

The results obtained for the PDB structures are compared
with five classes of decoy conformations that differ in the way
they fill space and in their packing arrangements. These
classes form statistical ensembles in which a given value of N
has multiple realizations. Four classes are defined in terms of
shapes that homopolymers arrive at under various cooling
procedures. The nonconsecutive beads in the homopolymers
interact through the LJ potential with sij 5 5 Å, which
corresponds to a typical van der Waals radius of amino acids.
We discuss the following classes (Fig. 1):

HC: conformations obtained through slow homopolymer
cooling. The procedure involves generating an open
conformation, assigning identical strengths to all
interbead interactions, and then slowly annealing.
The resulting compact conformation serves as a
native structure in the Go-like Hamiltonian.

Fig. 1. Examples of native conformations used in these studies. The
folding data were generated based on 11 realizations of each class of
structures for each value of N, except for the case of HA, when five
realizations were sufficient.
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HQ: similar to HC, but with a rapid quenching instead of
annealing. The procedure results in noncompact
native structures, which have many local contacts,
however, as measured along the chain, and are thus
more closely related to a-helices than to random
heteropolymers.

HA: similar to HC, but the a-helices of various lengths (of
order 15) are first built into the initial states consis-
tent with the LJ couplings and then preserved
through the annealing process by assigning ten
times stronger couplings to the helical secondary
structures.

HB: similar to HA, but the helical segments are replaced
by b-sheet conformations. The lengths of the
b-strands are fixed at eight monomers.

CL: compact native conformations generated on a grid as
a self-avoiding random walk within a compact box of
lattice constant equal to the length of a peptide bond
and then stabilized by appropriate Lennard–Jones
interactions.

The folding properties are studied as a function of T and
then presented here for T 5 Tmin and Tf, at which
probability, P0, of being in the native basin is 1

2
. P0 is

determined based on 10–15 long molecular dynamics
trajectories at equilibrium. The results are illustrated in
Figure 2 for two model proteins, 1ubq and 1ce4.

The median folding times depend on T in a U-shaped
fashion and, generally, the bigger the N, the narrower the
U. The dependence of tfold for the Go models of 1ubq and
1ce4 is shown at the bottom of Figure 2. The system is
assumed to be in its native state if all of its native contacts
are established. A native contact between monomers i and
j is said to be established if rij is shorter than 1.5 sij.

RESULTS AND DISCUSSION
Kinetic Universality Classes

Figure 3 shows the validity of the power law, eq. 1, for
tfold when determined under the most favorable kinetic
conditions, at Tmin. The exponent l sensitively depends on
the geometric class of the native structures (Table I). The
case of HB is special, as a crossover between two effective
values of l is observed (the b-strand lengths of 8 impose a
condition on N, above which a characteristic b-sheet
behavior can begin to be seen). The values of l range
between 1.7 and 3.2. The smallest l corresponds to the HA
and the largest to the HQ and long HB conformations. HC
is intermediate. Note that l for HA is smaller than 2, the
value suggested by de Gennes40 in his analysis of the time
scale for the coil-to-globule transition of a homopolymer.

The data points for PDB at Tmin are somewhat scat-
tered—there is no averaging over an ensemble, but a

Fig. 2. Equilibrium and kinetic properties of the Lennard–Jones–Go
model of two proteins, 1ce4 (———) and 1ubq (---), as a function of
temperature. Top, probability of staying in the native state. Bottom,
median folding time as determined based on 200 trajectories at each
temperature. Fig. 3. Power law dependence of the median folding times at Tmin on

N for the indicated classes of geometry of the native conformations. h,
proteins analyzed by Plaxco et al.12; ■, other proteins. For CL, the times
are multiplied by 10.
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well-defined trend is visible. The exponent l is about 2.5 6
0.2, indicating that these structures are not optimal
kinetically. HA, short HB, and HC of the same N fold
faster. PDB appears to be comparable to the grid conforma-
tions CL (there is only a weak dependence on the dimen-
sionality in the off-lattice models, when the grid structures
are generated on the square lattice, l becomes equal to
2.1 6 0.2).

The existence of a trend in the scaling of tfold for the PDB
structures appears to be at odds with the analysis of
experimental data compiled by Plaxco et al.12 and replot-
ted here in Figure 4, which indicated lack of any correla-
tions with N. A flavor of this is seen in Figure 3, which
shows that one sequence (1aps) has a tfold which is distant
from the trend. This sequence appears to be frustrated

geometrically, and it has a very small experimental folding
rate12—perhaps it is just a poor folder. However, the
experimental data indicate a significantly larger scatter of
values than is seen in Figure 3.

There are three explanations for the discrepancy we
have considered. First, the range of the values of N
considered12 is smaller than studied in the present report,
which in itself emphasizes fluctuations. However, in data
published later13 the range of N was extended to about
150, and the correlations of kinetics with N remained
weak; thus, the limited range of the values of N is not a
likely explanation of the discrepancy. Second, it is only
simplified models, such as the Go models, that show trends
in the kinetics of folding, whereas any additional complexi-
ties present in real systems may perturb such trends
beyond detection. This possibility could be studied in the
future by considering scaling in more complicated classes
of models. In particular, the role of the localization index of
the interactions should be elucidated within the context of
scaling. Third, the trends are obscured by the fact that the
experimental data are usually obtained at a fixed tempera-
ture, typically, but not necessarily, at room temperature.
Thus, the data collection involved no kinetic optimization
which would require selecting the best T for each protein
individually.

The role of this third possibility is illustrated at the top
of Figure 4, which shows the scaling of tfold at Tf. The
scatter is seen to be significantly larger than at Tmin. It is
not as large as in the experimental data, but it should be
noted, again, that our Go systems are just very simple
models of systems that are rather complicated. Another
way to assess the relevance of the optimal selection of T is
shown in Figure 5, which reanalyzes the data presented in

TABLE I. Values of Exponent l for the Classes of
Conformations Studied

Structure l

HC 2.2 6 0.1
HA 1.7 6 0.1
HB 0.9 6 0.1, 3.2 6 0.1
HQ 2.7 6 0.2
CL 2.6 6 0.2
PDB 2.5 6 0.2

Fig. 4. Top, values of tfold for the Protein Data Bank (PDB) structures
as determined at Tf. E, proteins studied by Plaxco et al.12 The line shows
the scaling trend found at Tmin. Bottom, inverse of experimental folding
rates as compiled by Plaxco et al.12

Fig. 5. Folding times of the theoretical Go model versus folding times
observed experimentally in proteins studied by Plaxco et al.12 ■, T 5 Tmin;
h, T 5 Tf, respectively.
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Figures 3 and 4, so that theoretically determined tfold is
plotted against the experimentally measured folding time,
texp. The small number of available points makes it
difficult to predict the best trend with accuracy. However,
it is clear that the points determined at Tmin exhibit
significantly less scatter than those calculated at Tf. This
finding gives further support to the idea that the lack of
optimization in the temperature may mask existence of
any underlying trends.

Our findings on scaling of characteristic T can be
summarized as follows. For HC, HA, and CL, Tmin grows
with N, whereas Tf is almost constant and is somewhat
lower than Tmin. The difference between Tmin and Tf grows
most slowly for HA. For PDB, Tmin does not seem to have a
trend, within the range of N studied, and the values of Tmin

are usually just above the corresponding values of Tf. This
indicates a borderline behavior between excellent and poor
folding characteristics, if the condition for the latter is Tf

! Tmin.21,41 This borderline behavior might characterize
classes of proteins, especially of those that have a short
lifetime in a living cell, but this result may depend on the
choice of the potentials.

Stability Against Vibrations

We now discuss stability of the native state in proteins.
The mechanical stability can be probed through the pho-
nonic spectra as reported previously.16 This is accom-
plished by determining the frequency gap, v1 in the low
end of the frequency spectrum. Another test is provided by
studying root-mean-square displacements around the na-
tive state and employing the Lindemann criterion for
melting. We introduce the parameter

dL~T! 5
1
n O

i.j

@NAT# Î^rij
2& 2 ^rij&

2

rij,NAT
(2)

which is a variant of the parameter used by Takano et al.42

The summation is over pairs of monomers (n of them),
which form native contacts; their displacement is com-
pared with the native distances. The temperature, TL, at
which dL crosses the Lindemann value of 0.1 is a measure
of mechanical stability. Figure 6 shows that both v1 and TL

show a correlation with Tf, which suggests the predomi-
nance of the native valley in the energy landscape. Note
that TL is higher than Tf, which indicates that the
probability “leaks out” of the native state when the vibra-
tions in the native valley are small. Thus, for good folders,
the notions of thermodynamic and mechanical stabilities
qualitatively coincide.

CONCLUSIONS

Our main results on scaling can be summarized as
follows. There are kinetic universality classes among
well-folding sequences. These classes depend on the type of
geometry involved in the native state. Well-defined scaling
trends can be established if folding is studied under
optimal conditions. Otherwise, they are hard to see, espe-
cially if the range of system sizes is narrow. The shapes of
actual proteins in their native states are such that the

folding times scale with an exponent that is higher than
certain artificial classes of structures. This suggests the
lack of kinetic optimality of proteins.

Our results have been obtained within the Go model,
which focuses on the role of the native state geometry. This
level of simplified description incorporates a long list of
approximations that somehow appear to compensate mutu-
ally. In effect, the Go systems are reasonable models of
good folders and the simplifications involved are precisely
of the kind that allow for a statistical analysis necessary to
establish scaling properties. Working with sequences de-
scribed in a more sophisticated manner would add to the
reality of description. However, it would also necessitate
dealing with statistical ensembles of sequences defined by
more parameters than just the size and shape; that would
currently be prohibitive numerically. Our results should
then be viewed as establishing inroads into understanding
of the role of size in folding kinetics.
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