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We study folding in 16-monomer heteropolymers on the square lattice. For a given sequence,
thermodynamic properties and stability of the native state are unique. However, the kinetics of
folding depends on the model of dynamics adopted for the time evolution of the system. We
consider three such models: Rouse-like dynamics with either single monomer moves or with single
and double monomer moves, and the ‘‘slithering snake’’ dynamics. Usually, the snake dynamics has
poorer folding properties compared to the Rouse-like dynamics, but examples of opposite behavior
can also be found. This behavior relates to which conformations act as local energy minima when
their stability is checked against the moves of a particular dynamics. A characteristic temperature
related to the combined probability, PL , to stay in the non-native minima during folding coincides
with the temperature of the fastest folding. Studies of PL yield an easy numerical way to determine
conditions of the optimal folding. © 1998 American Institute of Physics.
@S0021-9606~98!50343-1#

Proteins that are found in nature fold rapidly to their
native states when physiological conditions are restored.1,2

Random sequences of amino acids, on the other hand, may
take forever to fold3 or they may have a noncompact ground
state. Lattice models have provided insights into the key
problems of folding kinetics like the transition through the
compactification stage4 and existence and characterization of
the folding funnel.5–8 For the lattice models, the dynamics
needs to be declared and there are various ways to define the
single step moves for a given Hamiltonian. The time evolu-
tion is then implemented by performing a Monte Carlo pro-
cess or by using the Master equation.7 One usually adopts the
Rouse-like dynamics9,10 in which there are two kinds of mo-
tions: single- and double-monomer moves. The single-
monomer move consists of end-flip and corner moves while
the double-monomer move consists of the crankshaft-like ro-
tation. Typically, one declares a certain proportion in which
the two kinds of motions are attempted. For instance, one
attempts single-monomer moves with probability 0.2 and the
double-monomer moves with probability 0.8.9 Chan and
Dill4 have also studied an expanded set of moves in which a
rotation of large segments of the polymer was also allowed.

The thermodynamic stability of a lattice heteropolymer
in its native state depends only on the energy spectrum, i.e.,
on the Hamiltonian, but not on the dynamics itself. The ther-
modynamic stability may be characterized by the folding
temperature, T f , defined by the value of temperature, T , at
which the equilibrium probability to fold, P0, is 1

2. The ki-
netic propensity to fold may be characterized by Tmin—the
temperature at which the folding process is the fastest, or by
the glass transition temperature, Tg , below which the kinet-
ics becomes so slow that folding is kinetically unlikely.11

The definition of Tg relies on the cutoff value of the charac-
teristic folding time, whereas Tmin is defined uniquely and it
seems preferable to use the latter. Below Tmin , an onset of
the glassy effects takes place and the value of Tmin depends
on the dynamics. Here, we demonstrate that this dependence

is significant. In particular, we show that a sequence may not
even fold if the dynamics is not chosen adequately. Further-
more, we demonstrate that Tmin is related to the combined
probability, PL , for the sequence to be in non-native local
energy minima before finding the native state. Specifically,
we show that Tmin coincides with the temperature at which
PL crosses 1

2. Notice that whether a given conformation is a
local energy minimum or not depends on the set of the dy-
namics moves used because existence of stability against
these moves is what defines a minimum.

We study several heteropolymers on the square lattice
and we consider three models of the dynamics: ~1! standard
Rouse-like dynamics ~RD! with the single and double moves
applied with the proportions mentioned above, ~2! single-
monomer dynamics ~RD1!, and ~3! the ‘‘slithering snake’’
dynamics introduced by Wall and Mandel ~WMD—for
Wall–Mandel dynamics!.12 The latter model imitates snake-
like displacement that characterizes motion of polymers in
dense solutions and has been introduced as a numerical
implementation of the reptation model proposed by De
Gennes.13 It is also related to diffusion of a mobile chain
through an ordered array of immobile obstacles. Briefly, the
dynamics involves choosing randomly one end of the chain
and then attempting to advance it to a new neighboring lat-
tice site with the remaining chain following along the previ-
ous contour. On the square lattice, both head and tail can
attempt to move to three new destinations each. The motion
is not allowed if the end site would be occupied by the chain
after the whole slithering displacement was accomplished.
An example of the snake move is represented in Fig. 1~a!.
This kind of the dynamics is known14 to lead to the well
defined t1/4 law for the mean square displacement of the
central bead, and then to a Rouse-like t1/2 law, before the
asymptotic diffusive behavior is reached. Here, t denotes
time. Our motivation to consider the snake dynamics is
mostly formal—we would like to discuss a dynamics which
is clearly distinct from RD. It is conceivable, however, that
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there may exist sufficiently dense environments in which
reptation may turn out to represent the protein motion better.

Another issue is that of ergodicity. As pointed out by
e.g., Chan and Dill,4 the move set of Rouse-like dynamics is
not ergodic for 16-mer chains on the square lattice. We can
see this by considering the conformation shown on the left of
Fig. 1~b!. This conformation can never be reached by the RD
moves but it can by the WMD moves. The conformation on
the right of Fig. 1~b! shows a behavior which is just the
opposite. For longer chains, nonergodicity may become sig-
nificant.

We consider three 16-monomer sequences on the square
lattice. Two of them, R and DSKS’, have couplings gener-
ated with the Gaussian probability distribution and their val-
ues are listed in Ref. 6. Sequence R is constructed by the
rank-ordering technique that assigns the most strongly attrac-
tive couplings to the native contacts in a target structure.6

This sequence has been found to be a good folder under the
RD.8 Sequence DSKS’, first studied by Dinner et al.,15 is a
bad folder within the same dynamics. We demonstrate that,
under WMD, both sequences become bad folders. We then
consider an HP-sequence,4 which we shall encode as HP2,
since it has two 2 polar and 14 hydrophobic beads, for which
WMD provides better folding than RD. This sequence has
the structure H-H-H-H-P-H-H-H-H-H-H-P-H-H-H-H and the
corresponding native state is shown in Fig. 2~a!.

In lattice models, an energy of a sequence in a confor-
mation is given by

E5(
i, j

B i , jD~ i2 j !, ~1!

where D(i2 j) denotes presence of a contact between mono-
mers i and j , i.e., D(i2 j) is 1 if indices i and j belong to
beads that are nearest neighbors on a lattice but are not
neighbors along the sequence. Otherwise, D(i2 j) is set
equal to 0. B i , j are the corresponding contact energies. Basi-
cally, in Gaussian model, B i , j’s have Gaussian values with a
mean shifted by negative numbers to provide compactness in
the ground state. In the HP model2 there are only three types
of contacts and their energies are 21,0,0 for the H-H, H-P
and P-P pairs, respectively. The values of T f are obtained by
an exact enumeration of all conformations and are equal to
1.15, 0.195, and 0.164 for sequences R, DSKS’, and HP2,
respectively.

Our Monte Carlo simulations have been done in a way
that satisfies the detailed balance conditions7 and were de-
vised along the lines described in Ref. 4. For polymers, sat-
isfying these conditions is nontrivial because each conforma-
tion has its own number, A , of allowed moves that the
conformation can make. Thus the propensities to make a
move in a time unit vary from conformation to conformation
and the effective ‘‘activities’’ of the conformations need to
be matched. This can be accomplished by first determining
the maximum value of A , Amax . For the 16-monomer chain
on the square lattice, Amax is equal to 18, if the dynamics
corresponds to RD or RD1, and 6 in the case of WMD. We
associate a single time unit with the conformations in which
A5Amax . This means that each allowed move is being at-
tempted always with probability 1/Amax . For a conformation
with A allowed moves, probability to attempt any move is
then A/Amax and probability not to do any attempt is 1
2A/Amax . The attempted moves are then accepted or re-
jected as in the standard Metropolis procedure. This descrip-
tion holds for RD1 and WMD. In the case of RD, probability
to do a single-monomer move is additionally reduced by the
factor of 0.2 and to do an allowed double-monomer
move—by 0.8. The time used in Figs. 3–5 is equal to the

FIG. 1. ~a! Example of the snake move in WMD: starting from the confor-
mation at the bottom the chain can make a motion either to two adjacent
conformations on the top-left and the top-right of the figure. The end bead of
the chain finds a new position on the lattice and all the other beads ‘‘slither’’
forward along the previous contour by one lattice constant. Note that the
conformation at the bottom is also the native conformation of sequence R.
~b! Nonergodicity effects in 16-mer chain: the conformation on the left is
not accessible from any other conformation for the move set present in RD,
the same thing happens in WMD to the conformation on the right.

FIG. 2. Native conformations of selected HP sequences with 2 polar beads.
The filled and open circles denote hydrophobic ~H! and polar ~P! amino
acids, respectively. ~a! corresponds to sequence HP2.
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total number of the Monte Carlo attempts divided by Amax .
This scheme not only establishes the detailed balance
conditions7 but it also uses less CPU compared to a process
in which moves are attempted with disregard to whether they
are allowed or not.

We have carried out Monte Carlo simulations to deter-
mine the temperature dependence of the median folding
time, t fold , for the three sequences and using the three mod-
els of the dynamics. Figures 3 and 4 show the results for R
and DSKS’ and Fig. 5 is for HP2. For each temperature the
median folding time is determined based on 200 independent
runs starting at random conformations ~the cutoff is set at
value which is significantly above the lowest folding time!.
The data points shown are averaged over 5 to 10 simulations,
each corresponding to 200 trajectories. The figures show that
t fold depends on the dynamics in a sensitive way but the

temperature dependence of t fold generally has a U-shape with
a pronounced minimum ~the minimum becomes rather broad
only for DSKS’ with the RD1!. Sequence R is a good folder
within RD1 and especially RD but it becomes a bad folder
under WMD: Tmin is significantly above T f . DSKS’ and
HP2, on the other hand, are both bad folders for all of the
types of dynamics considered here. However, it is interesting
to point out that for HP2 the WMD dynamics yields a Tmin

which is comparable to that generated by RD and RD1 and
the folding times themselves are significantly reduced under
WMD. This situation, however, is uncommon: in most cases
that we studied, including other HP sequences, except for
those shown in Figs. 2~a!–2~d!, WMD tends to make the
folding poorer. This is because a snake-like move usually
breaks many contacts. Sequence HP2 is also uncommon in
another respect: it folds better under RD1 than under RD
which suggests that for this sequence the crankshaft moves
are much less favorable than the single moves.

The geometry of the native conformation is also an im-
portant factor. Generally, an HP sequence folds better under
WMD than under RD if it has very few polar monomers, but
this is not always the case. Figure 2 shows the native states
for several HP sequences with two monomers of the P-type.
The first four of them are fast under WMD but the last one
@Fig. 2~e!# is very slow. We have checked that moving out of
the native state of Fig. 2~e! by WMD involves a large energy
barrier.

It is commonly accepted that folding is a motion that
takes place in a rugged energy landscape,2 which involves
crossing many energy barriers. The barriers arise due to the
presence of local energy minima ~LM! in the system. The
role of the minima can be assessed by determining PL—the
probability to encounter LMs on the way to folding. This
probability is defined as the fraction of time spent in the LMs
relative to the full folding time. This quantity depends on the
dynamics explicitly: not only through the definition of what
conformation constitutes a minimum, which could be ana-
lyzed by studying the energy spectrum, but also through
the fact that the associated weights are not necessarily

FIG. 3. Median folding time versus temperature for sequence R for the three
kinds of the dynamics: RD, RD1, and WMD. The inset shows the tempera-
ture dependence of PL . The arrow associated with T f indicates the folding
temperature. The other arrows indicate temperatures at which PL crosses 0.5
for each type of the dynamics. Note that they are very close to Tmin .

FIG. 4. Same as Fig. 3 but for sequence DSKS’.

FIG. 5. Same as Fig. 3 but for sequence HP2.
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Boltzmannian. The local minima themselves play a crucial
role in some schemes to coarse grain the description of the
folding process.8

There are two kinds of conformations that are LMs: V-
shaped, if the energy of the conformation is lower than the
energies of all conformations that are immediately accessible
from it, and U-shaped, if one cannot reach states which are
lower in energy but some of the allowed moves leave the
energy unchanged. For the 16-mer model, there are 802075
possible conformations and only a small fraction, f , of these
makes minima. With the RD dynamics, there are 9103 LMs
for sequence R out of which 2024 are U-shaped. Each of the
U-shaped minima consists of several states thus the total
number of states involved in the U-shaped minima is 4893.
The total number of states which are minima of whatever
kind is then 11972 which makes about f 51.5% of the phase
space. The corresponding numbers for the other sequences
and other types of the dynamics are shown in Table I.
Checking whether a conformation found on a Monte Carlo
trajectory is a local energy minimum or not enhances the
CPU by about 50%. An incorporation of the detailed balance
conditions already involves an enumeration of the possible
moves but checking for the minima requires an additional
determination of the resulting energies. Furthermore, check-
ing whether the minimum is U-shaped requires probing pos-
sible trajectories within a cutoff number of steps.

For the WMD dynamics, the minima cut out an order of
magnitude larger portion of the phase space which alters the
energy landscape dramatically. Notice also that when a chain
makes a snake move the set of new contacts usually has no
overlap with the preceding set of contacts. In the Rouse-like
dynamics, on the other hand, the conformations that imme-
diately connect to the native state have sets of contacts which
are overlapping to a large extent.

The small fraction of the phase space that corresponds to
LMs freezes the kinetics out at T50. Thus at T50 we get
PL51, whereas at high temperatures PL is of order f—as
shown in Fig. 6 for sequence R and DSKS’. There is then a
crossover temperature TL at which PL crosses 1

2. Notice that
there is no such crossover behavior for the quantity PL

eq

which corresponds to PL with the weights calculated at
equilibrium—through the partition function. The reason is
that at T50 it is only the native state that has the occupation
of 1. Instead, PL

eq has a maximum, which in the case of the
sequence R, under RD coincides with Tmin . In other cases,
like for DSKS’ as shown in Fig. 6, the peak in PL

eq is sub-
stantially displaced away from Tmin towards lower tempera-
tures.

The plots of PL vs T are shown in the insets of Figs. 3,
4, and 5. The data points shown are averaged over 50 trajec-
tories. The striking observation is that TL appears to coincide
with Tmin for any sequence and for any model of the dynam-
ics that we studied. In other words, folding turns out to be
the most favorable at a temperature when half of its time the
sequence spends in the local minima during folding. Thus TL

is a measure of temperature below which kinetic trapping in
the minima becomes substantial. TL then conveys the same
physics as contained in Tmin . We have observed that TL is
much easier to calculate than Tmin because PL , at any T ,
converges to a well determined value quite fast: it becomes
reliable already after several runs—as demonstrated in Fig.
6. For good folders, the temperature at which PL

eq has a maxi-
mum is expected to be somewhere around T f because the
maximum signifies an onset of a substantial equilibrium oc-
cupation of the native state and the folding funnel dominates
the energy landscape. For bad folders, on the other hand, we
find that there is essentially no relationship between the tem-
perature of the maximum and T f because the non-native
minima are blocking formation of the native funnel and the
position of the maximum is dominated by the nature of the
dynamics. The relationship between TL and Tmin is well de-
fined both for bad and good folders because the definitions of
the two temperatures are anchored to the dynamics.

In summary, we have shown that the kinetics of folding
strongly depends on the details of the dynamics. We have
also provided a simplified method to determine the tempera-
ture of the fastest folding. The method is based on monitor-
ing the combined occupation of the non-native local energy
minima. We have also indicated that, for good folders, the
folding temperature can be estimated by studying equilib-
rium occupation of the minima. Thus the essential character-
istics of well folding sequences can be obtained by focusing

TABLE I. Total number of conformations that are LMs for each of the
sequences for the three kinds of dynamics. The numbers in the brackets
correspond to conformations which are in the U-shaped LMs. In case of
WMD there are no U-shaped LMs.

Sequence RD RD1 WMD

R 11 972 ~4 893! 16 425 ~8 253! 149 443
DSKS’ 12 373 ~5 202! 15 851 ~7 846! 150 835

HP2 12 606 ~5 024! 19 142 ~10 093! 103 363

FIG. 6. Plots of P0, PL , and PL
eq vs temperature for sequence R ~top! and

DSKS’ ~bottom! under RD. P0 and PL
eq are obtained through the exact

enumeration of states. The data points for PL that are marked by the open
circles are averaged over 5 MC trajectories whereas those marked by black
circles—over 50 trajectories.
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on the energy minima instead of on the native state itself.
This may offer approximate ways to study longer sequences.
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14 U. Ebert, A. Baumgärtner, and L. Schafer, Phys. Rev. Lett. 78, 1592

~1997!.
15 A. Dinner, A. Sali, M. Karplus, and E. Shakhnovich, J. Chem. Phys. 101,

1444 ~1994!.

9196 J. Chem. Phys., Vol. 109, No. 20, 22 November 1998 T. X. Hoang and M. Cieplak


