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By using techniques borrowed from statistical physics and neural

networks, we determine the parameters, associated with a scoring

function, that are chosen optimally to ensure complete success in

threading tests in a training set of proteins. These parameters

provide a quantitative measure of the propensities of amino acids

to be buried or exposed and to be in a given secondary structure

and are a good starting point for solving both the threading and

design problems.

The principal objective of this paper is a demonstration of the
viability of a framework, based on ideas from statistical

physics and neural networks, for attacking the protein threading
problem. Our work points to the difficulty associated with a
commonly used statistical procedure for determining such pa-
rameters. We present the results of threading and design tests
and present a singular value decomposition (SVD) analysis of
the parameters that elucidate the interplay between degree of
burial and secondary structure propensities in the folding
problem.

The challenge of the protein folding problem (1–5) is to
deduce the native state structure and thence the functionality of
a protein from the knowledge of the sequence of amino acids.
The successful completion of the human genome project has
heightened interest in this problem. The information readily
available as input are the sequences and native structures of a few
thousand proteins (6). Given an entirely new sequence, one
needs to have a sound strategy for determining its native state
structure. A simpler problem, threading (7), relies on the belief
that the total number of distinct folds in nature is only a few
thousand (8) and attempts to match the new sequence with the
best among a selection of possible native state structures. (A
difficulty associated with threading is that, because of steric
constraints, one may not be able to mount a given sequence on
a piece of a native structure of a different sequence. See, for
example, ref. 9.) To assess the fit of a given sequence with a
putative native state structure, one might use a coarse grained
representation of the amino acids in a sequence and postulate a
scoring function with a simple functional form. Perhaps the
simplest such function is one that characterizes the propensities
of the various types of amino acids to be in different
environments:

S�s�, �� � � �
i

�
m

n�i , m���i , m�, [1]

where S is the score function, which is a measure of the match
of a sequence �s and target structure �� , n(i,m) is the number of
amino acids of type i in the environment m and �(i,m) is the score
associated with it (10). For a given amino acid i, each of the
�(i,m)s may be shifted by the same arbitrary constant so that,
without loss of generality, one may set �m�(i,m) � 0. The
advantages of such an environmental scoring function over
pairwise interactions between amino acids are its simplicity and
the far greater ease of incorporating gaps in both sequence and
in structure.

Our focus is on determining the score quantifying the match
of a sequence to a putative native state structure, for which the

most common approach utilizes statistical considerations (10–
13), based on counting the number of amino acids in a given
environment in the native state. Pioneering work by Bowie et al.
(10) has shown that a simple statistically based approach with an
environmental score leads to excellent results for the inverse
folding problem.

Our studies used a training set of 387 proteins (see Table 2,
which is published as supporting information on the PNAS web
site, www.pnas.org) from the PDBselect (6, 14) consisting of
sequences varying in length from 44 to 1,017, with low sequence
homology and covering many different three-dimensional-folds
according to the Structural Classification of Proteins (SCOP)
classification (15). Additional criteria used in selecting the
proteins in the training set were as follows: (i) the protein
structure was obtained through x-ray crystallography; (ii) the
structures were monomeric; and (iii) the determined structures
missed no more than two amino acids. The same criteria were
used to obtain a test set of 213 distinct proteins (Table 3, which
is published as supporting information on the PNAs web site),
with lengths ranging between 54 and 869. For each structure, we
used a simple environmental classification that consists of the
local secondary structure (�-helix, �-strand, or other) and the
exposed area evaluated as the ratio between the accessible area
of each amino acid, X, of its native sequence (having this
structure as its native state) and the corresponding area in a
Gly-X-Gly extended structure. The values of the exposed area
were divided into three categories of small, medium, and large
exposures corresponding to �10%, 10�50%, and �50%, re-
spectively. Thus, the scoring function consists of nine parameters
for each amino acid corresponding to each of the nine environ-
ments that it might be found in.

Materials and Methods

We begin by applying the ideas of Bowie et al. (10) to the
threading problem. The statistical score �s(i,m) associated with
amino acid i in an environment m is readily deduced by using the
expression

�s�i , m� � �ln	P�i, m��P�i�
, [2]

where P(i,m) is the probability of finding an amino acid of type
i in the environment of type m and P(i) is the probability of
finding an amino acid of type i in any environment. Both P(i,m)
and P(i) are determined from a knowledge of the sequences and
native state structures of the proteins in our training set. To
assess the quality of the extracted scores, we carried out thread-
ing tests on all but the largest protein in the training set itself.
Each protein sequence was mounted on its own native state
structure and on every fragment (of the correct length chosen
without insertions and deletions) of all of the larger proteins.
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The exposed area for the amino acid mounted on a fragment was
assumed to be the same as that in the whole protein from which
the fragment was extracted. As we shall see later, this may be a
poor approximation when the size of the fragment is much
smaller than the whole protein. In each case, Eq. 1 was used to
determine the scoring function. Although the technique is
simple, the results of gapless threading tests are only moderate;
the native state structure is correctly recognized for 69% of the
proteins. In a recent paper, Baud and Karlin (16) considered 418
proteins and determined the frequencies of occurrence of the
twenty amino acids in nine environments that were defined in a
way similar to ours. We have converted their frequencies into
statistical scores (which turn out to be similar to the statistical
scores derived from our training set) by using Eq. 2, and find 54
failures in our set of 213 proteins. This moderate performance
may be due to the fact that the form of the scoring function is
too simple. Support for this conclusion comes from earlier work
that has pointed out the difficulty of determining the optimal
interactions that stabilize the native state of even one protein
(crambin) with a more complex scoring function involving 210
pairwise interactions (17). An alternative possibility, that the
statistical approach is f lawed (18), would be of more serious
concern because such statistical schemes are commonly used in
the protein folding problem.

We turn to a demonstration that an alternative strategy based
on ideas originating in statistical physics and neural networks
provides a powerful framework for tackling the threading prob-
lem. Following the pioneering work of Friedrichs and Wolynes
(19) and especially Goldstein et al. (20), the basic idea is to
postulate the form of a scoring function and to choose its
parameters to ensure that the true native states of proteins with
known structures (learning set) correspond to better (lower)
scores than when the sequences are housed in competing decoy
conformations (17–28). An important advantage of this proce-
dure is that it can be used to verify whether the chosen form of
the scoring function is equal to the task or not. Indeed, one may
start with the simplest form of the scoring function and system-
atically expand the parameter space until the optimal interac-
tions are learned. The statistical procedure considers proteins
and their native state structures, whereas the learning procedure
has information on competing structures as well. Our scheme is
similar in spirit to that of previous work with the important
differences that we consider an environmental scoring function
instead of a pairwise contact potential and we optimize the
energy gap without any normalization.

The total number of inequalities (one obtains the inequalities
for each sequence in the training data set by considering as
decoys all pieces of the native state structures of longer proteins
in the training set) is over 13 million, making the problem
technically difficult. For a given protein, each decoy leads to a
linear inequality of the form

�
i � 1

20

�
m � 1

9

	n�i , m�D � n�i , m�
��i , m� � 0,

where n(i, m)D is the number of amino acids of type i found in
the environment m in the given decoy. The perceptron proce-
dure is a simple technique based on neural networks for simul-
taneously solving a set of such linear inequalities (29). We used
this procedure to optimally choose the 180 parameters to ensure
that the worst inequality (among the more than 13 millions) was
satisfied as well as possible and that threading tests on the
training set were 100% successful.

Results

We describe the results of several tests and a biological inter-
pretation of these parameters.

Learning Procedure Versus Statistical Approach. Fig. 1 shows a plot
of the parameters determined by using the statistical approach
vs. those deduced by the learning procedure. The poor corre-
lation is consistent with the qualitatively different performance
levels in threading. It underscores the fundamental difficulties of
the statistical approach and points to the advantage of learning
the optimized parameters in a systematically expanded param-
eter set.

Threading Tests. The couplings �387(i,m) obtained based on learn-
ing the native states of the 387 proteins in the training set were
subjected to threading on the test set containing 213 distinct
proteins (Table 3) and the decoys obtained from their native
state structures. In contrast to the performance of the statistical
parameters, for which one is unable to correctly recognize the
native states of 76 of the 213 proteins, the number of failures
when one uses the learned parameters is 23. The failed proteins
are modest in size and have sequence lengths ranging between
54 and 131. The ranks of the native states, defined as the number
of better performing decoys, of the failed proteins are plotted in
Fig. 2 as a function of the sequence length for both sets of
parameters (note the dramatically different scales of the y axis).
For the poorest performer, by using the perceptron-based
method, there are 102 decoys (of 37,617) that perform better
than the native state (protein 1abq of length 56) whereas the
corresponding number for the statistically derived parameters is
29,424 (of 31,436 decoys for protein 1vqb of length 86). We have
checked that around half of the failures are spurious for the case
of the learned parameters and arise because the exposed areas
for the winning decoy, which is a piece of the native state
structure of a longer protein, is quite different from that
determined for the whole protein. This effect of an inaccurate
assignment of the exposed area is strong only for small sized
proteins. The remaining failures (a total of 5%) are likely due to
the identification of genuine competitors to the native state or
because the winning decoy is not a viable structure for the
sequence under consideration (9).

We also tested the �387 parameters on all 600 proteins (Tables
2 and 3) and the decoys obtained by using all 600 native state

Fig. 1. Plot of the optimal � parameters vs. those determined by using a

statistical scheme, �s, using a training set of 387 proteins.
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structures. There were 57 failures whereas the statistically de-
rived parameters resulted in 209 failures. We used the per-
ceptron procedure (29) to learn the scoring parameters to ensure
that the native state of all of the proteins in the training and test
set were recognized with 100% success and the energies of all
decoys were pushed up as much as possible compared with the
native state energies. In the rest of the paper, we will use this
refined set of optimal parameters �(i,m) (Table 1) to carry out
our further studies. Note that the sum of the first nine entries of
each row in Table 1 is equal to zero and the sum of the squares
of all such 180 entries has been chosen to be 180.

The native state of crambin (1crn), which was not part of the
training set, is recognized in threading. This result is encouraging
because of earlier difficulties in learning pairwise parameters for
this protein (19). It should be noted, however, that a single amino
acid mutation of 1crn, the protein 1cbn, was present in the basic
learning set of 387 proteins.

As a further test, we selected 16 globin proteins from the PDB
(6) (http:��www.rcsb.org�pdb�), which were in the DEOXY
form, which were not mutated, and whose structures are resolved
well. Strikingly, 13 of the 16 proteins correctly picked their own
native state from among the millions of decoy conformations
obtained from the fragments of the 600 proteins in the training
and test sets described previously. For the 3 other cases, frag-
ments from the globin family were picked to be the best
structure. Indeed, the scores of the globin proteins on fragments
of other globin structures were generally lower than on frag-
ments of structures of unrelated proteins, underscoring the
quality of our scoring function.

Biological Interpretation of Learned Parameters. Let us begin with
a geometrical picture of �(i,m), considered to be 20 vectors of
nine components each. For a given amino acid i, the components
of the nine-dimensional vector, labeled by the index m, capture
the propensities of that amino acid to be in each of nine
environments. Each environment may be thought of as repre-
senting an axis in an orthogonal 9-dimensional space. SVD (28,
30) affords a simple prescription for dimensional reduction by

Fig. 2. Results of the threading tests for 213 proteins arranged according to

their length, N. Only the failed cases are shown. (Upper) A plot of the number

of decoys that performed better than the native state structure vs. N; (Lower)

A similar plot for the couplings that were determined statistically. Note the

disparity in the scales of the y axes.

Table 1. Environmental Scores

Amino acid

� � Other

SiSmall Med. Expo. Small Med. Expo. Small Med. Expo.

Cys (C) �1.29 0.07 1.81 �1.78 �0.83 3.63 �1.24 �0.85 0.49 �1.06

Phe (F) �0.90 �0.35 2.33 �1.77 �1.02 1.51 �0.26 �0.28 0.74 �0.73

Trp (W) 0.41 0.32 1.64 �1.18 �1.00 �1.02 0.57 0.50 0.91 �0.07

Ile (I) �0.50 �0.27 0.38 �0.25 �0.39 0.61 �1.05 0.56 0.92 �0.29

Val (V) 0.42 0.06 �0.12 �1.48 �0.64 0.89 �0.28 0.57 0.58 �0.31

Met (M) �0.26 �0.36 0.65 �0.52 0.71 1.26 �0.24 �0.77 �0.47 �0.30

Leu (L) �0.33 �0.16 0.09 �0.32 0.83 �0.76 �0.54 0.77 0.41 �0.10

Gly (G) 0.36 1.16 0.73 �0.05 0.16 0.14 �0.49 �0.95 �1.06 �0.48

Tyr (Y) 0.13 0.83 �0.06 �0.42 �1.18 �0.23 0.23 0.08 0.63 0.00

Ala (A) �0.40 �0.05 �0.13 0.27 0.50 �0.15 �0.23 0.35 �0.25 �0.06

His (H) 1.05 �0.60 �0.82 0.62 0.56 0.14 �0.29 �0.08 �0.57 �0.09

Asp (D) �0.29 �0.79 �0.90 1.31 0.93 1.32 0.59 �0.99 �1.17 �0.60

Ser (S) �0.31 �0.01 �0.98 0.48 0.78 �0.75 1.00 �0.32 �0.10 0.03

Thr (T) 0.80 0.49 �0.46 0.55 �0.50 �0.80 0.74 �0.34 �0.48 0.01

Asn (N) 0.67 �0.66 �0.66 1.34 0.60 �0.06 0.55 �0.48 �1.30 �0.39

Pro (P) 2.35 �0.28 �0.88 1.32 1.03 �0.30 �1.02 �0.62 �1.61 �0.65

Gln (Q) 1.74 �0.84 �1.24 0.94 �0.87 �1.07 1.32 0.01 0.01 �0.26

Glu (E) 0.83 �0.81 �1.28 1.67 �0.21 �0.67 1.60 0.04 �1.16 �0.53

Arg (R) 2.29 �0.80 �1.37 1.37 �1.16 �1.35 1.82 0.13 �0.94 �0.38

Lys (K) 1.20 �1.13 �1.77 4.32 �1.43 �1.91 2.38 �0.32 �1.35 �1.11

Table of �, the nine environmental scores for each amino acid. Large negative values indicate a strong preference for the particular environment whereas large

positive values indicate an aversion. The last column shows Si, which is a measure of the average contribution of each amino acid to the native state score and

provides an estimate of the expectation of the contribution of a given amino acid to the native state score.
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the optimal choice of a new set of orthogonal axes. In this new
reference frame, the original vectors span a lower-dimensional
space, and the axes may be conveniently rank-ordered in
importance.

The SVD theorem (30) states that the 20 � 9 (non-square)
matrix � can be written as

� � YVT, [3]

where Y is a 20 � 9 dimensional matrix and V is a 9 � 9
dimensional matrix. The superscript T denotes the transpose
matrix. The matrix Y is given by Y � U�, where � is a 20 � 9
dimensional matrix whose elements are all zero except for the
diagonal terms, �n,n, n � 1, . . . , 9. These diagonal terms are
equal to the square roots, �n, of the common eigenvalues of ��T

and �T�. The �n’s are called singular values and are assumed to
be rank ordered so that �1 is the largest. Here, they are as follows:
10.59, 5.02, 3.98, 3.42, 2.57, 2.09, 1.77, 0.95, and 0.0. The columns
of V, denoted by Vk, are the eigenvectors corresponding to the
rank ordered eigenvalues of the matrix �T�, and the columns of
the 20 � 20 matrix U, denoted as Uk, k � 1, . . . , 20, are
determined by the formula

Uk �
1

�k

�Vk

(when the singular values are non-zero; the other cases are
irrelevant for the reconstruction of the � parameters). The result
of the SVD transformation is that �(i,m) may now be represented
as a sum of contributions that diminish in an overall sense as one
considers smaller singular values. The nth contribution is given
by y(n)(i) v(n)

T (m), where the first factor depends on the amino acid
and the second on the environmental index. Thus v(n)

T are the new
orthogonal and normalized directions—or modes—in the space
of environments.

Fig. 3 shows the three most dominant contributions, corre-
sponding to the top three singular eigenvalues. Each contribu-
tion is displayed in two panels. The Upper panels show the mode
as a function of the nine environmental parameters. The Lower
panels show the corresponding amplitudes y(n) plotted so that y(n)

increases monotonically.
The first mode is dominant for 13 aa: C, F, I, V, H, S, T, N,

P, Q, E, R, and K. The second mode is the leader for W, M,
Y, and D, and the third for L and A. The remaining amino acid,
G, is dominated by the fifth mode. The first mode provides the
overall dominant behavior and strongly distinguishes between
the buried and exposed environments in a monotonic way
regardless of the secondary structure; one may arrange the
amino acids into buried and exposed groups depending on
whether y(1) is large and positive or large and negative. One
may further subdivide the two basic groups of buried (B) and
exposed (E) amino acid into subgroups: B1, B2, B3, E1, and E2.
The division is illustrated in Fig. 3 and corresponds to occur-
rences of more rapid variations in y(1) as one moves from one
amino acid to the next. The key point is that the amino acids
in B1 have a strong tendency to be buried and the charged
amino acid K in E2 has a strong tendency to be exposed, and
most of the amino acids are more sensitive to the degree of
burial than to other considerations. This tendency for burial is
usually associated with hydrophobicity in the protein folding
problem (31–33). The hydrophobic amino acids F, I, V, L, and
A do belong to group B, but this group also contains polar
amino acids. Cysteine, C, shows the strongest propensity to be
buried. It should be noted that a pair of C’s may form a strong
contact by establishing a disulfide bridge. Of the 896 C–C
contacts generated in our study of 600 proteins, 402 had both
C’s buried whereas only in four cases were both of the C’s
exposed (independent of the secondary structure). This ten-

dency alone yields a high statistical score for C being buried.
(Note that 37% of the structural sites of the 600 proteins are
classified as buried, 40% as medium, and 33% as exposed.) The
learned score is even further accentuated because most of the
decoys correspond to C being not buried and stability of the
native state with respect to decoys is enhanced by such an
adjustment.

The remaining modes break the symmetry between the sec-
ondary structures. The second mode is neutral to � and favors
(disfavors) � (loop) when the coefficient y(2) is negative. It shows
a strong preference for amino acids, such as W, with a large
negative y(2) to be in a �-strand with a large exposed area and for
amino acids, such as D, with a large positive y(2) to be in loops
with a large exposed area. The third mode introduces a prefer-
ence for C, F, K, etc. to be in �-strands with medium exposure
and for L, P, and A, etc. to stay either in exposed �-strands or
in buried loops and avoid exposed helices.

Protein Design. We turn now to an extension of our studies to
protein design or the inverse folding problem. In analogy with
equilibrium statistical mechanics, the probability that a sequence
s� is housed in a structure �� is given by (34–37)

P�� �s�� �
e � S�s�, �� ��T

�
�

e � S�s�, ���T
'

e � S�s�, �� ��T

e � F�s���T , [4]

where T, here, is a fictitious temperature, the score S has been
assumed to play a role analogous to the energy, and F, the free
score, plays the role of the free energy. The key point is that,
in the limit of T30 and when �� is the native state structure of
s�, P31. In this limit, therefore, the ‘‘free score,’’ which is a

Fig. 3. The top three contributions to �(i,m) as emerging from the SVD

analysis. The numbers in the ovals indicate the mode number. The letters at

the top left of each segment of two panels indicate amino acids (in the single

letter code) for which this particular mode is dominant. The Upper panels in

each segment show the modes—the values of v(n)
T for the nine values of the

environmental variable m. For each kind of secondary structure, the environ-

ments are listed in order from the small to large exposure. The Lower panels

show the amino acid-dependent weights y(n) with which the displayed mode

contributes to the score in a given environment.
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function of the sequence alone, approaches the score of the
sequence in its native state. The last column of Table 1 shows
the average contribution to the native state scores, Si, from
each type of amino acid in the various environments. It is
defined by

Si �
1

Ni
�

k � 1

Ni

��i , m�k��,

where the sum is over the Ni occurrences of amino acid i in the
native state of all 600 proteins in the training and test sets. The
zero ‘‘temperature’’ free score of a sequence may then be readily
deduced without any knowledge of the structure, by adding up
these contributions for the amino acids in the sequence. Fig. 4
shows a plot of the native state score vs. the sequence free score
for all 600 proteins. The latter, which has no structure dependent
information, provides a reasonable approximation to the actual
native state score. We have verified that both are linearly
proportional to the protein length and that, for the longer
proteins, the native state score is somewhat higher than the free

score because of the increasing tendency toward frustration as
the sequence length increases. For design purposes, the free
score provides a measure of the score one is entitled to expect
in a typical native state structure, and the lower the score in the
target native state structure with reference to the free score, the
better is the design.

Stability of Cold Shock Proteins. We used the learned parameters
to provide a molecular interpretation of the different thermal
stabilities of a pair of cold shock proteins (38), one of which is
mesophilic Bacillus subtilis (Bs-CspB: 1csp) and the other ther-
mophilic Bacillus caldolyticus (Bc-Csp: 1c9o). The former has a
score of �34.80 in the native state, whereas the latter is more
stable, with a score of �41.64. More strikingly, the free scores
are �28.64 and �27.97, respectively, underscoring the much
better design of the thermophilic protein. We also used the
conformation space of all decoys to estimate the ‘‘heat capacity’’
of the two proteins as a function of temperature. The heat
capacity, which is a measure of the fluctuations in the score
(viewed as an energy), shows a peak as a function of the
temperature in both cases. The peak temperature, which is a
measure of the folding transition temperature of a protein for
1c9o is higher than that of 1csp, and reflects the better thermal
stability of 1c9o in accord with the experimentally observed
behavior (38).

Conclusion

In summary, we have shown that a straightforward learning
scheme leads to the determination of excellent environmental
parameters that can be used in simple threading tests. Our results
point to the danger of using statistical procedures for estimating
these values. The learned parameters capture information on the
environments in the competing structures in addition to that in
the native state structures and allows for a stabilization of the
native state with respect to decoy structures. Our procedure
validates the notion that, in the simplest cases we have studied
here, a simple environmental scoring function is sufficient for
capturing the essential features of protein threading. Our
method has the distinct advantage of ease of expanding the
parameter space and opens up the possibility of using the scoring
parameters determined here as a starting point for learning the
penalty parameters characterizing insertion and deletion.
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