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A new equilibrium characterization of the spin-glass—paramagnet transition is presented.
It is based on the size dependence of the sensitivity of the free energy to the boundary con-
ditions. Results of numerical studies of a three-dimensional Heisenberg spin-glass at 1’
=0 are consistent with an algebraic decay of this sensitivity and suggest a zero~-tempera-

ture phase transition.
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The theoretical characterization of the nature
of ordering in spin-glasses still remains a chal-
lenging problem. The presence of random and
conflicting exchange interactions in a spin-glass
leads to no discernible long-range spatial order-
ing of the spins. In a pioneering paper, Edwards
and Anderson (EA)' suggested that, even though
snapshots of the spin-glass and paramagnetic
states look identical, the spin-glass state, un-
like the paramagnet, is characterized by the
spins being frozen in time. The employment of
the EA order parameter® leads to instabilities® in
the phase diagram for the Sherrington-Kirkpat-
rick® model of a spin-glass. Suggestions for re-
moving this difficulty have been made by Parisi*
and more recently by Sompolinsky.® It remains
unclear, however, whether there is a well-de-
fined equilibrium phase transition between the
spin-glass and paramagnetic phases or whether
the freezing into a spin-glass state is a nonequi-
librium glass-transition-like phenomenon.®

In this Letter we describe a new equilibrium
characterization of spin-glasses. Our approach
is in the spirit of Thouless and co-workers’ ideas
on electron localization.” We propose that the
size dependence of the sensitivity of the free en-
ergy to the boundary conditions is a signature of
the nature of ordering. We present numerical re-
sults for a three-dimensional classical Heisen-
berg spin system with random nearest-neighbor
interactions and at zero temperature, Our re-
sults suggest a 7' =0 phase transition in this case.

Consider a system of N spins in a cylindrical
domain of length L and cross-sectional area A.
We denote the free energies of the system with
periodic and antiperiodic boundary conditions,
applied across the ends of the cylinder, by F,

and F ,p, respectively. We define

of = (F pp =Fp)/N, (1)

Y =B e, @)
and

7= (AF = (A1), (3)

where (...), denotes a configurational average
over the distribution of the exchange constants.
In the case of ferromagnets or antiferromagnets
the characteristic free-energy scale of the sen-
sitivity of the system to a change in the boundary
conditions is measured by the quantity y,,.

In spin-glasses the periodic boundary condi-
tions do not necessarily yield a lower free ener-
gy than the antiperiodic ones and y,, should aver-
age out to zero. This leaves y,, as the fundamen-
tal free-energy scale in the problem. We pro-
pose that in the equilibrium spin-glass phase, if
such a phase indeed exists, y, for large L and A
is an algebraic function of A and L: ‘

y,=0/ATL?, (4)

The parameter o and the exponents p and » are
quantities which in general depend on the spe-
cifics of the system, including the dimensionality
d and the temperature 7. The algebraic law, Eq.
(4), is in marked contrast to the behavior of the
system at temperatures greater than the spin-
glass freezing temperature, T, g Wwherey,, for
a large constant A, decays exponentially with L,
Thus o, given by

o=1lim L? lim Ay, , (5)
L~ A
is nonzero in the spin-glass phase and vanishes
above T sge The parameter ¢, which is the analog
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of the conductivity in the localization problem?®
and is a generalization of the helicity modulus
or superfluid density,’ is a quantitative measure
distinguishing between the spin-glass and para-
magnetic phases.

The spin-glass may be visualized as being
made up of many statistically similar blocks of
length L and area A. The strength of the coup-
ling between neighboring blocks is related to the
characteristic scale of the fofal free-energy
sensitivity to the boundary conditions, 6F, of a
single block. From Eq. (4), 6F is proportional
to A1"TLYTP~ 131717 7s - Following Anderson and
Pond,’ we may identify the lower critical dimen-
sionality (lcd) of the spin-glass with d,=(p —7)/
(1-7), since for d<d, the coupling energy de-
creases indefinitely with the scale. It should be
noted that the true ground states for two differ-
ent boundary conditions are not necessarily
adiabatically accessible to each other. This
would seem, however, to be only relevant for
studying nonequilibrium dynamical effects.

We have carried out numerical calculations of
7., in a simple model system at T=0. We con-
sider classical Heisenberg spins on a simple
cubic lattice (d =3) coupled by nearest-neighbor
exchange interactions. The distribution of ex-
change couplings was Gaussian characterized by
unit variance and zero mean value. In order to
determine the length dependence of y, we investi-
gated systems with A =12X 12 and L equal to 4,
6, and 8, Periodic boundary conditions are ap-
plied in the transverse directions (across the
ends of the 12x 12 planes). In the longitudinal
directions either periodic or antiperiodic bound-
ary conditions could be applied.

Following Walker and Walstedt,'! “ground
states” of our systems were determined by start-
ing from a random configuration of spins and
aligning them sequentially in the direction of
their instantaneous local fields. We define one
iteration as N such spin alignments. The num-
ber of different starting configurations was 30
for L=4 and 50 for L =6 and 8. About a quarter
of the systems were investigated for 20-50 addi-
tional initial configurations. We found that near-
ly complete equilibrium was achieved after about
800 iterations, at which stage the lowest-energy
state was picked as the true ground state. Usual-
ly, duplicates of the ground state were obtained.
The ground state was then fully equilibrated by
up to 1000 additional iterations. While it is, in
general, impossible to be sure that one has in-
deed found the true ground state, our analysis

leads us to believe that the total error made is
not significant. On the other hand, a meaningful
investigation of systems with L =12 could not be
carried out with only 50 initial configurations.
This is due to a rapid increase of the number of
“ground states” as a function of the size of the
system.

For each size, Af was determined for 23 dif-
ferent samples. Assuming that y,, =0, we calcu-
lated v,,. Figure 1 shows a plot of Iny (L) vs
InL.2 Our results are consistent with an alge-
braic decay [ Eq. (4)] with p =3. The straight
line shows this asymptotic law. Taking into ac-
count actual nonzero values of y,, (due to finite
sampling) or using (lAf | )c as the characteristic
free-energy scale leads to virtually the same
power law in L. Systematic deviations from the
asymptotic behavior are found for smaller-sized
systems. It is interesting to note that for the
spin-glass samples in which all of the exchange
constants have been replaced by their absolute
values (ferromagnetic), the asymptotic length
dependence for both y,, and v, is found even for
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FIG. 1. Plot of InY,, vs InL (circles) and vs Ind
(squares). The length dependence is for A=12X12,
whereas the area dependence is for L =4,

833



VOLUME 48, NUMBER 12

PHYSICAL REVIEW LETTERS

22 MARCH 1982

L =6.

With the data in Fig. 1 the possibility of an ex-
ponential decay cannot be ruled out completely.
Our preliminary data for L =12 samples give
¥»(12) ~v,,(8). It seems unlikely that detailed
studies, leading to identification of the true
ground states, would lower v, (12) sufficiently
to be consistent with an exponential law., Because
of the existence of finite barriers the EA order
parameter is 1 at 7=0 in our model system. It
would not be surprising, therefore, to have the
free-energy sensitivity to the boundary condi-
tions be an algebraic function of L. The main
requirement of such a dependence is that the ap-
plied boundary conditions couple to the spin-glass
ordering and our data suggest that this may in-
deed be the case.

In order to obtain the area dependence of v,
we have investigated systems with L=4 and A =4
x4, 6x6, 8x8, 10x10, and 12X12, For A =16,
36, and 64 we took into account 70 samples to
lower the statistical error related to the smaller
number of spins. For A =100 and 144 we con-
gsidered 23 samples each. Figure 1 shows a plot
of Iny, vs InA. The data are consistent with »
=1 in Eq. (4).

Our results, p =3 and » =3, lead to the charac-
teristic scale of the total free-energy difference
OF being proportional to AY2L™2~L"!, This sug-
gests the absence of the spin-glass phase at any
finite temperature. Further, the algebraic de-
pendence of 6F on L at 7=0 provides evidence
for a zero-temperature phase transition.

It is interesting to compare our findings with
those of Anderson and Pond. Using the Migdal-
Kadanoff approximation they obtained an effective
exchange coupling J.¢; proportional to AY2L"!
~ L° for a three-dimensional (3D) vector spin-
glass, implying that the system was at its lcd.
In fact it has been suggested by Anderson®® that
the properties of the spin-glass may be under-
stood in analogy with those of the 2D x -y model.
Note that J.¢; has the same area dependence as
6F, However, the Migdal-Kadanoff approxima-
tion, on scaling away the area dependence, be-
comes a 1D approximation and leads to an un-
frustrated ferromagnetlike length dependence.

Walstedt' has obtained the exchange stiffness
of a Ruderman-Kittel-Kasuya-Yosida (RKKY)
spin-glass by starting from a “ground state” and
relaxing the system to a local energy minimum
in the vicinity of the original “ground state” after
imposing a small twist in the boundary condi-
tions. Such a procedure does not explore all of

834

phase space and indicates an L™ length depen-
dence for the characteristic total free-energy dif-
ference in agreement with the prediction of Ander -
son and Pond'® (Walstedt did not investigate any
area dependence in his analysis).

In contrast to Walstedt’s analysis, we attempt
to find the true ground state for each boundary
condition. The existence of multiple “ground
states” in a spin-glass allows the system to ad-
just more easily to changes in the boundary condi-
tions leading to a stronger length dependence
than that obtained by Walstedt. In fact, for a
given boundary condition, the differences between
“ground-state’ energies per spin are comparable,
and in many instances smaller, than the energy
shift (y,,) produced by a change in the boundary
conditions.

With the numerical results on the 3D system,
it is not possible to obtain the lcd of the Heisen-
berg spin-glass since variation of the dimension-
ality could change the amount of frustration in
the system and result in a different exponent p.

Monte Carlo computations on an RKKY spin-
glass in d =3 by Walstedt and Walker'® yield no
cusp in the susceptibility in the absence of any
anisotropy. On the other hand, introduction of
a small amount of anisotropic interactions causes
the cusp to appear. This is presumably due to a
trapping of the system in the vicinity of a par-
ticular energy minimum over the time scale of
the simulation. It is an intriguing possibility that
it is this trapping that makes the system behave
as though it were at its lcd and causes the spin-
glass-like peak in the susceptibility.

We conclude by noting that the equilibrium
characterization introduced here, based on the
size dependence of the sensitivity of the free
energy to the boundary conditions, may be appli-
cable in other situations where there is no ob-
vious long-range order but an algebraic decay
of correlation is expected.
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ERRATA

ONSET OF DIFFUSION AND UNIVERSAL SCAL-
ING IN CHAOTIC SYSTEMS. T. Geisel and
J. Nierwetberg [ Phys. Rev. Lett. 48, 7 (1982)].

The arrow in Eq. (3¢) should be a double arrow
denoting logical implication.

MAGNETIC SPECTRA AND ELECTRON TRANS-
PORT OF CURRENT-CARRYING PLASMAS.
Cheng Chu [Phys. Rev. Lett. 48, 246 (1982)],

The right-hand side of Eq. (1) should read (5-8)
instead of (5-80).

TIME SCALE OF FISSION AT HIGH ANGULAR
MOMENTUM. A. Gavron, J. R. Beene, B. Chey-
nis, R, L. Ferguson, F, E. Obenshain, F. Plasil,
G. R. Young, G. A, Petitt, M, Jadskeldinen,

D. G. Sarantites, and C. F. Maguire [ Phys. Rev.
Lett. 47, 1255 (1981)].

Recently we have attempted to verify the fast-
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