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The master equation for 12-monomer lattice heteropolymers is solved numerically and the time
evolution of the occupancy of the native state is determined. At low temperatures, the median folding
time follows the Arrhenius law and is governed by the longest relaxation time. For good folders
significant kinetic traps appear in the folding funnel, whereas for bad folders the traps also occur in
non-native energy valleys. [S0031-9007(98)05877-3]
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The key problem in protein folding is one of dynam
ics. Tremendous progress has been made in understa
ing equilibrium properties of simplified lattice models [1].
Such studies have demonstrated the requirement of th
modynamic stability [1,2], stability against mutations [3]
and a linkage between rapid folding and stability of th
native state (NAT) [2]. Monte Carlo studies of folding
have been helpful in elucidating the folding funnel [4,5
and meaningful relationships with experiment are bein
established [6]. So far, the approaches to studies of t
folding dynamics have been restricted to Monte Car
simulations that start from a few randomly chosen in
tial conformations [7] and the enumeration of transitio
rates between classes of conformations which have t
same number of contacts and are a given number of
netic steps away from the NAT [8]. The approximation
involved in these approaches remain necessarily untest

In this Letter, we present an exact method to study th
dynamics of short model proteins based on the mas
equation [9]. To illustrate the method, we present resu
for sequences made of 12 monomers and placed on
square lattice. We focus on two sequences,A and B,
which have good and bad folding properties, respective
We find that the dynamics ofA and B are superficially
similar: for both, the median folding time,tfold, and the
longest relaxation time,t1, diverge at lowT according to
an Arrhenius law. However, what distinguishes the tw
cases is the location of the folding transition temperatur
Tf , with respect to the temperature,Tmin, at which folding
to the native state proceeds the fastest.Tf is defined
as the temperature at which the equilibrium value of th
probability to occupy the NAT,P0, crosses1

2 and is a
measure of thermodynamic stability. For bad folder
Tf is well below Tmin and thus a substantial occupation
probability for the NAT is found only in a temperature
range in which the dynamics are glassy.

A deeper understanding of the differences betweenA
and B is obtained by the identification of kinetic traps
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through an analysis of the eigenvectors correspondin
to the longest relaxation time. The most potent kineti
trap for sequenceA is within the folding funnel and is
a few steps away from the NAT. The energy needed
exit the trap determines the barrier,dE, in the Arrhenius
law, tfold , expsdEyTd. For the bad folder, the relevant
trap forms its own energy valley and exiting it requires
full unfolding. There are many ways to unfold and the
effectivedE is entropy influenced—the bottleneck arise
from a search process.

Method.—Consider a lattice polymer which can exist
in N conformations (N ­ 15 037 for 12-monomer
sequences). LetPa ­ Pastd be the probability of finding
the sequence in conformationa at time t. The master
equation is

≠Pa

≠t
­

X
bfia

fwsb ! adPb 2 wsa ! bdPag , (1)

where wab ­ wsb ! ad is the transition rate from
conformationb to conformationa. We bring this into
a matrix form by letting$P ­ sP1, . . . , PN d and

hab ­ 2wab # 0 if a fi b, haa ­
X

bfia

wba .

(2)

The master equation then takes the form of an imaginar
time Schrödinger equation≠t

$P ­ 2Ĥ $P, where thehab

are the matrix elements of̂H. While this reformulation is
standard [10], it has regained interest recently becauseĤ
can often be related to integrable quantum systems [11]

It is well known [10] that the conditions (2) are neces
sary and sufficient for a matrixsĤdab ­ hab to give rise
to a stochastic Markov process. In particular, it follows
that if initially 0 # Pa # 1 for all conformations, this
will hold true at all subsequent times. Time-dependen
averages for any observableX are found from

kXl std ­ ksjX̂e2Ĥt jPinl , (3)
© 1998 The American Physical Society
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whereX̂ is the matrix representation ofX, ksj ­ s1, . . . , 1d
is the left steady state of̂H with ksjĤ ­ 0 and jPinl ­P

a Pas0d jal is the initial state. The spectrum of relaxa
tion timesta ­ 1yReEa $ 0 follows directly from the
eigenvaluesEa of Ĥ.

An important special case arises if the right steady sta
jsl ­

P
a P

eq
a jal is related to a HamiltonianH through

P
eq
a , e2Ha yT . This happens provided the detailed ba

ance condition

wabP
eq
b ­ wbaPeq

a (4)

is satisfied and thenP
eq
a is indeed a steady-state solution

of the master equation. Equation (4) is satisfied b
wab ­ fab expf2sHa 2 Hbdy2T g provided fab ­

fba . Here, we choosewab ­ w
s1d
ab 1 w

s2d
ab, where

w
ssd
ab ­

1
t0

Rs

∑
1 1 exp

µ
Ha 2 Hb

T

∂∏21

(5)

with R1 1 R2 ­ 1. Here, s refers to the single- and
double-monomer moves andt0 is a microscopic time
scale. It is understood thatw

ssd
ab ­ 0 if there is no move

of type s linking b with a. This choice guarantees tha
transition rates are finite and bounded for all temperatur
In analogy to Ref. [2], we focus onR1 ­ 0.2 and take
the single- and two-monomer (crankshaft) moves as
Ref. [8].

Because of the detailed balance condition, the eigenv
uesEa are not calculated by diagonalizinĝH directly, but
by diagonalizing an auxiliary matrix̂K with elements

kab ­
yb

ya

hab ­ kba , (6)

where ya ­ e2Hays2Td. The right eigenvectorsjEal
of Ĥ are found from the eigenstateŝKjFal ­ Ea jFal
via jEal ­ yajFal, but must still be normalized for a
probabilistic interpretation. It follows that the eigenvalue
Ea are real and positive and that the eigenstates spa
complete basis [10]. The eigenvector corresponding
Ea ­ 0, i.e., to the infinite relaxation time, determine
the equilibrium occupancies of the conformations. Th
longest finite relaxation timet1 ­ 1yE1 is found from
the smallest nonzero eigenvalueE1.

The practical calculation of the eigenvaluesEa and of
the lowest two eigenvectors of̂H is done through the
standard symmetric Lanczos algorithm without reortho
onalization. Since memory requirements are the essen
limit of the method, it is important that besides the matri
elements, only two more vectors have to be kept in mem
ory [12]. To find the eigenvectors, we follow the sugges
tion of Dagotto [13] to run the Lanczos algorithmtwice.
In the first pass, we find the eigenvalues and the sim
larity transformation which diagonalizes the intermedia
tridiagonal matrix constructed from̂K . In the second
pass, this information is used to accumulate the eigenv
tors from the intermediate vectors which in this way nee
not be kept in memory. The number of Lanczos itera
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tions needed to achieve good convergence varied betwe
200 and 2500, depending on the temperature and also t
sequence considered (for sequenceA, the convergence is
more rapid than forB). The time-dependence state vector
$Pstd at timet ­ nt0 can be obtained by applyingn times
the recursion$Pfsn 1 1dt0g ­ s1 1 Ĥd $Psnt0d to $Pin.

Results.—The energies of a sequence are determine
by the HamiltonianH ­

P
ij BijDij , where the contact

interaction,Bij, is assigned to monomersi and j which
are geometrical nearest neighbors on the lattice but are n
neighbors along the sequence—the condition symbolize
by Dij. For 12 monomers, there are 25 contact energie
which we pick as Gaussian numbers of unit dispersio
and with a mean value around21 to provide an overall
attraction [14]. SequenceB has couplings identical in
strength to those inA but the assignment to monomers is
permuted [14].

The ground state of sequenceA is maximally compact
and fills the 3 3 4 lattice. The probability, that it is
occupied at timet, P0std depends on the initial condition.
Figure 1 shows the evolution ofP0std from three different
initial states. The solid line corresponds to an initia
state in which all conformations have equal probability
of 1yN of being occupied. The dashed line is for the
situation in which the system is initially in the NAT.
Finally, the dotted line corresponds to the initial state
being the kinetic “trap” conformation [15] which is the
strongest obstacle in reaching equilibrium.

The trap is determined by studying the eigenvecto
corresponding to the longest relaxation time and b

FIG. 1. Probability of occupation of the native state,P0std,
of sequenceA, for three values of the temperatures, indicated
on the right. P0s`d agrees with the equilibrium value. For
sequenceB, the values ofP0s`d are significantly lower than that
for sequenceA—for example, atT ­ 0.6, P0s`d ­ 0.0752.
The squares correspond to Monte Carlo results, based
200 random starting conformations.
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identifying the local energy minima which have th
largest weights at lowT . The largest weight is associated
with the NAT whereas the second largest corresponds
the most relevant trap. In the limit ofT ! 0, weights
associated with all other states become insignificant.

Figure 1 shows that the equilibrium value ofP0 is
reached in essentially the same time, independent of
initial state because the long time dynamics is determin
by just one mode with a relaxation timet1. The time,
t1y2, needed to reach, say, half of the equilibrium valu
does depend on the initial state—it is significantly long
for the trap state.

The inset in Fig. 2 shows the NAT and trap conforma
tions. The latter is 2.5404 energy units above the NA
The overall least costly path (energetically) between t
trap and the NAT involves at least ten steps and requi
an increase of 4.5323 above the trap energy. The m
costly step in this trajectory requires an energy of 2.88
to move monomer 12 away from monomers 5 and 7.

Figure 2 summarizes results obtained from the mas
equation, when the initial state is of uniform occupanc
and compares them to the median folding time obtain
through Monte Carlo simulations which satisfy detaile
balance conditions along the lines described in Ref. [8

FIG. 2. Inset: The NAT and trap conformations and the
energies for sequenceA. The enlarged circle shows the firs
monomer. Main: Dynamical data for the folding. The soli
line marked bytfold gives the median folding time derived
from 1000 Monte Carlo trajectories. The solid linet1 is the
longest relaxation time. The dotted lineteq is the time to
reach equilibrium from the initial state of uniform occpancy
The broken linet1y2 with the black circles gives the time to
reach 1

2 P0 from this initial state. The open circles indicate
the same but the trap is taken as initial state. The dotted l
tA is a fit of the Monte Carlo data to the Arrhenius law with
dE ­ 2.76. The arrow at the top indicates the value of th
folding temperature.
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The low temperature behavior oftfold follows the Arrhe-
nius law, anddE is close to the energy needed to exit
the kinetic trap. In this region,tfold is proportional tot1.
This longest relaxation time essentially coincides witht1y2
when the kinetic trap is the initial state.

The Arrhenius behavior sets in fairly close toTmin

wheretfold displays a minimum. On the high temperature
side of Tmin, the characteristic times related to the
approach to equilibrium no longer have any relationshi
to tfold and the values ofP0 are small (0.064 atT ­ 1.2).
The physical situation changes now: reaching the NAT
now is controlled by fluctuations in equilibrium and is
governed by the statistics of rare events.

Figure 3 summarizes the dynamical data for sequenc
B for which Tf is substantially belowTmin and signifies
bad folding properties. The NAT forB is not maximally
compact and is doubly degenerate as shown in the inset
Fig. 3. The two states differ merely by placement of one
monomer and, when studying folding, are considered as a
effective single state. The overall shape of the temperatu
dependence oftfold is similar to that for sequenceA and the
low T Arrhenius law is also obeyed. The kinetic trap state
also shown in Fig. 3, is very close in shape to the NAT an
it differs from the NAT only by one contact. This state,
however, is very remote kinetically: all trajectories which
lead from the trap to the NAT must go through an unfolded
state and take at least 31 steps with the biggest single st
energy increase of 2.7478. This trap is not in the folding
funnel of the NAT—the energy landscape is thus very
rugged. ThedE of the Arrhenius law is close to 3.55 and
is expected to have a substantial entropy contribution
nonzero temperatures due to many possible choices of t
trajectories.

FIG. 3. Same as Fig. 2, but for sequenceB. For the curve
tA, dE ­ 3.55. There are two NAT conformations with the
same energy.
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The method presented in this Letter offers ways
studying kinetic traps systematically. In particular, exis
ing truncation techniques for the diagonalization of larg
matrices might be fruitfully employed in extending th
method to longer protein chains.

We thank D. Cichocka and O. Collet for discussion
This work was supported by KBN (Grant No. 2P03B
025-13), Polonium, CNRS-UMR 7556, The Fulbrigh
Foundation (J. K.), NASA, The Center for Academi
Computing, and the Applied Research Laboratory at Pe
State.

[1] P. G. Wolynes, J. N. Onuchic, and D. Thirumalai, Sc
ence267, 1619 (1995); K. A. Dill, S. Bromberg, S. Yue,
K. Fiebig, K. M. Yee, D. P. Thomas, and H. S. Chan, Pro
tein Sci.4, 561 (1995); C. J. Camacho and D. Thirumala
Proc. Natl. Acad. Sci. U.S.A.90, 6369 (1993); H. S. Chan
and K. A. Dill, Phys. Today46, No. 2, 24 (1993).

[2] A. Sali, E. Shakhnovich, and M. Karplus, Nature (London
369, 248 (1994).

[3] H. Li, R. Helling, C. Tang, and N. Wingreen, Science
273, 666 (1996); M. Vendruscolo, A. Maritan, and J. R
Banavar, Phys. Rev. Lett.78, 3967 (1997).

[4] P. E. Leopold, M. Montal, and J. N. Onuchic, Proc. Nat
Acad. Sci. U.S.A.89, 8721 (1992).

[5] M. Cieplak, S. Vishveshwara, and J. R. Banavar, Phy
Rev. Lett.77, 3681 (1996); M. Cieplak and J. R. Banavar
Folding Des.2, 235 (1997).

[6] J. N. Onuchic, P. G. Wolynes, and Z. Luthey-Schulten
Proc. Natl. Acad. Sci. U.S.A.92, 3626 (1995); J. D. Bryn-
of
t-
e

e

s.
-
t
c
nn

i-

-
i,

)

.

l.

s.
,

,

gelson, J. N. Onuchic, N. D. Socci, and P. G. Wolynes
Proteins: Struct. Funct. Genet.21, 167 (1995).

[7] See, e.g., N. D. Socci and J. N. Onuchic, J. Chem. Phy
101, 1519 (1994).

[8] H. S. Chan and K. A. Dill, J. Chem. Phys.99, 2116 (1993);
J. Chem. Phys.100, 9238 (1994).

[9] This approach has been motivated by similar studies
frustrated Ising spin clusters in J. R. Banavar, M. Cieplak
and M. Muthukumar, J. Phys. C18, L157 (1993).

[10] N. G. van Kampen,Stochastic Processes in Physics
and Chemistry (North-Holland, Amsterdam, 1981);
J. Schnakenberg, Rev. Mod. Phys.48, 571 (1976).

[11] F. C. Alcaraz, M. Droz, M. Henkel, and V. Rittenberg,
Ann. Phys. (N.Y.)230, 250 (1994).

[12] M. Henkel, Conformal Invariance and Critical Phenom-
ena(Springer, Heidelberg, 1998), Chap. 9.

[13] E. Dagotto, Rev. Mod. Phys.66, 763 (1994).
[14] The couplingsBi,j areB1,4 ­ 20.6308, B1,6 ­ 22.0474,

B1,8 ­ 20.7504, B1,10 ­ 21.3210, B1,12 ­ 20.5289,
B2,5 ­ 22.3830, B2,7 ­ 21.4923, B2,9 ­ 201592,
B2,11 ­ 21.2074, B3,6 ­ 21.1705, B3,8 ­ 0.1223,
B3,10 ­ 20.8999, B3,12 ­ 20.4610, B4,7 ­ 20.4581,
B4,9 ­ 21.9629, B4,11 ­ 21.5981, B5,8 ­ 21.5677,
B5,10 ­ 20.8795, B5,12 ­ 20.9902, B6,9 ­ 0.2053,
B6,11 ­ 21.2078, B7,10 ­ 20.3809, B7,12 ­ 21.8921,
B8,11 ­ 21.6500, and B9,12 ­ 20.0989 for sequenceA.
For sequenceB, seven of the couplings are rearranged
contact (1,10) is interchanged with (5,10); (2,5) with
(2,9); (3,8) with (6,11); (4,7) is assigned to (6,9); (7,12
to (4,7); and (4,7) to (6,9).

[15] L. A. Mirny, V. Abkevich, and E. I. Shakhnovich, Folding
Des.20, 103 (1996).
3657


