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Master Equation Approach to Protein Folding and Kinetic Traps
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The master equation for 12-monomer lattice heteropolymers is solved numerically and the time
evolution of the occupancy of the native state is determined. At low temperatures, the median folding
time follows the Arrhenius law and is governed by the longest relaxation time. For good folders
significant kinetic traps appear in the folding funnel, whereas for bad folders the traps also occur in
non-native energy valleys. [S0031-9007(98)05877-3]

PACS numbers: 87.15.By, 87.10.+e

The key problem in protein folding is one of dynam- through an analysis of the eigenvectors corresponding
ics. Tremendous progress has been made in understartd-the longest relaxation time. The most potent kinetic
ing equilibrium properties of simplified lattice models [1]. trap for sequencel is within the folding funnel and is
Such studies have demonstrated the requirement of thea-few steps away from the NAT. The energy needed to
modynamic stability [1,2], stability against mutations [3], exit the trap determines the barri&E, in the Arrhenius
and a linkage between rapid folding and stability of thelaw, t;,1q ~ exp(6E/T). For the bad folder, the relevant
native state (NAT) [2]. Monte Carlo studies of folding trap forms its own energy valley and exiting it requires
have been helpful in elucidating the folding funnel [4,5] full unfolding. There are many ways to unfold and the
and meaningful relationships with experiment are beingffective §E is entropy influenced—the bottleneck arises
established [6]. So far, the approaches to studies of thigom a search process.
folding dynamics have been restricted to Monte Carlo Method—Consider a lattice polymer which can exist
simulations that start from a few randomly chosen ini-in 2N° conformations fN' = 15037 for 12-monomer
tial conformations [7] and the enumeration of transitionsequences). L&t, = P,(¢) be the probability of finding
rates between classes of conformations which have ththe sequence in conformatiam at time . The master
same number of contacts and are a given number of kiequation is
netic steps away from the NAT [8]. The approximations  5p_
involved in these approaches remain necessarily untested. ——~ = D> w(B— a)Pg — wla — B)P.], (1)

In this Letter, we present an exact method to study the pFa
dynamics of short model proteins based on the masteghere wap = w(B — a) is the transition rate from
equation [9]. To illustrate the method, we present resultgonformation to conformationa. We bring this into
for sequences made of 12 monomers and placed on Amatrix form by letting? = (Py, ..., P») and
square lattice. We focus on two sequencésand B,
which have good and bad folding properties, respectively. h,g = —wap =0 if @ # B, haa = Z Wga -

We find that the dynamics of and B are superficially B#a )
similar: for both, the median folding time;,4, and the

longest relaxation timez,, diverge at lowI" according to  The master equation then takes the form of an imaginary-
an Arrhenius law. However, what distinguishes the tWotime Schrédinger equation,? = — P, where the, s

cases is the location of the folding transition temperatures e the matrix elements é&. While this reformulation is
T, with respect to the temperatufByi,, at which folding  giandard [10], it has regained interest recently bec#uise
to the native state proceeds the fastegy is defined .4, often be related to integrable quantum systems [11].
as the temperature at which the equmbrlurp value of the |t is well known [10] that the conditions (2) are neces-
probability to occupy the NAT Py, crosses; and is @  sary and sufficient for a matriél),s = hap to give rise
measure of thermodynamic stability. For bad foldersio a stochastic Markov process. In particular, it follows
Ty is well below Tyyin and thus a substantial occupation that if initially 0 < P, < 1 for all conformations, this

probability for the NAT is found only in a temperature wil| hold true at all subsequent times. Time-dependent

range in which the dynamics are glassy. averages for any observabteare found from
A deeper understanding of the differences betwgaen .
and B is obtained by the identification of kinetic traps X) (1) = (s|Xe B\ Py, 3)
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whereX is the matrix representation &f (s| = (1,...,1)  tions needed to achieve good convergence varied between
is the left steady state d¥ with (s|# = 0 and|P;,) = 200 and 2500, depending on the temperature and also the
>+ Po(0) |a) is the initial state. The spectrum of relaxa- sequence considered (for sequeAgehe convergence is
tion timest, = 1/ReE, = 0 follows directly from the  more rapid than foB). The time-dependence state vector

eigenvaluest,, of A. P(1) at timer = n7, can be obtained by applyingtimes
An important special case arises if the right steady statghe recursiorP[(n + 1)7o] = (1 + H)P(n7o) to P;y.
ls) = 2 Pa'|a) is related to a Hamiltoniad through Results—The energies of a sequence are determined
Pal ~ ¢~ H/T_ This happens provided the detailed bal-by the HamiltonianH = >.; BijAij, where the contact
ance condition interaction, B;;, is assigned to monomersand j which
waﬁqu — W P 4 ae geometrical nearest neighbors on the lattice but are not

neighbors along the sequence—the condition symbolized
is satisfied and the®.’ is indeed a steady-state solution by A,;. For 12 monomers, there are 25 contact energies
of the master equation. Equation (4) is satisfied bywhich we pick as Gaussian numbers of unit dispersion
Wapg = fap XA —(H, — Hp)/2T] provided f,z = and with a mean value aroundl to provide an overall

fpa. Here, we choose,s = W% + Wf[);, where attraction [14]. Sequenc& has couplings identical in
strength to those il but the assignment to monomers is

ORI [1 N exp(j{a - 5’-[,;)}‘1 5) permuted [14].

@B T The ground state of sequendeis maximally compact

) ) and fills the3 X 4 lattice. The probability, that it is

with Ry + R, = 1. Here, o refers to the single- and ccypied at time, Py(r) depends on the initial condition.

double-monomer moves a?g) IS @ microscopic imé  Figyre 1 shows the evolution & (¢) from three different
scale. Itis understood that,s = 0 if there is no move initial states. The solid line corresponds to an initial
of type o linking 8 with «. This choice guarantees that state in which all conformations have equal probability
transition rates are finite and bounded for all temperaturesf 1/N of being occupied. The dashed line is for the

In analogy to Ref. [2], we focus oR; = 0.2 and take sijtuation in which the system is initially in the NAT.
the single- and two-monomer (crankshaft) moves as iFinally, the dotted line corresponds to the initial state

Ref. [8]. being the kinetic “trap” conformation [15] which is the
Because of the detailed balance condition, the eigenvaktrongest obstacle in reaching equilibrium.
uesk, are not calculated by diagonalizittg directly, but The trap is determined by studying the eigenvector
by diagonalizing an auxiliary matrik with elements corresponding to the longest relaxation time and by
_ s —
kap =~ hap = kga (6) ‘o

where v, = ¢~ #/CT) The right eigenvectordE,)
of A are found from the eigenstatds|F,) = E,|F,)
via |E,) = vo|F,), but must still be normalized for a
probabilistic interpretation. It follows that the eigenvalues
E, are real and positive and that the eigenstates span ¢
complete basis [10]. The eigenvector corresponding to .~
E, = 0, i.e., to the infinite relaxation time, determines ~—, 05
the equilibrium occupancies of the conformations. The p,
longest finite relaxation time; = 1/E, is found from
the smallest nonzero eigenvalfg.

The practical calculation of the eigenvaluBs and of
the lowest two eigenvectors dff is done through the
standard symmetric Lanczos algorithm without reorthog-
onalization. Since memory requirements are the essential
limit of the method, it is important that besides the matrix 0.0
elements, only two more vectors have to be kept in mem-
ory [12]. To find the eigenvectors, we follow the sugges- ln(t)
tion of Dagotto [13] to run the Lanczos algorithtwice
In the first pass, we find the eigenvalues and the simiFIG. 1. Probability of occupation of the native stai(r),
larity transformation which diagonalizes the intermediateof sequence, for three values of the temperatures, indicated
tridiagonal matrix constructed fronk. In the second ©n the right. Py(=) agrees with the equilibrium value. For

L. o - sequences, the values ofPy(») are significantly lower than that

pass, this qurmatlon is used to accumulfate the eIgenVets " sequenced—for example, atl = 0.6, Po(e) = 0.0752.
tors from the intermediate vectors which in this way needrhe squares correspond to Monte Carlo results, based on
not be kept in memory. The number of Lanczos itera-200 random starting conformations.
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identifying the local energy minima which have the The low temperature behavior af,4 follows the Arrhe-
largest weights at loW. The largest weight is associated nius law, andéE is close to the energy needed to exit
with the NAT whereas the second largest corresponds tthe kinetic trap. In this regiony, 4 is proportional tor;.
the most relevant trap. In the limit &f — 0, weights  This longest relaxation time essentially coincides wjth
associated with all other states become insignificant. when the kinetic trap is the initial state.

Figure 1 shows that the equilibrium value & is The Arrhenius behavior sets in fairly close @,
reached in essentially the same time, independent of theheret;, 4 displays a minimum. On the high temperature
initial state because the long time dynamics is determinedide of T.,, the characteristic times related to the
by just one mode with a relaxation timg. The time, approach to equilibrium no longer have any relationship
t12, needed to reach, say, half of the equilibrium valueto #,4 and the values oP, are small (0.064 &f = 1.2).
does depend on the initial state—it is significantly longerThe physical situation changes now: reaching the NAT
for the trap state. now is controlled by fluctuations in equilibrium and is

The inset in Fig. 2 shows the NAT and trap conforma-governed by the statistics of rare events.
tions. The latter is 2.5404 energy units above the NAT. Figure 3 summarizes the dynamical data for sequence
The overall least costly path (energetically) between the for which T, is substantially below,;, and signifies
trap and the NAT involves at least ten steps and requiresad folding properties. The NAT faB is not maximally
an increase of 4.5323 above the trap energy. The mosbmpact and is doubly degenerate as shown in the inset in
costly step in this trajectory requires an energy of 2.8823Fig. 3. The two states differ merely by placement of one
to move monomer 12 away from monomers 5 and 7. monomer and, when studying folding, are considered as an

Figure 2 summarizes results obtained from the mastesffective single state. The overall shape of the temperature
equation, when the initial state is of uniform occupancydependence af,q4 is Similar to that for sequenceand the
and compares them to the median folding time obtainedbw T Arrhenius law is also obeyed. The kinetic trap state,
through Monte Carlo simulations which satisfy detailedalso shown in Fig. 3, is very close in shape to the NAT and
balance conditions along the lines described in Ref. [8]it differs from the NAT only by one contact. This state,
however, is very remote kinetically: all trajectories which
lead from the trap to the NAT must go through an unfolded
state and take at least 31 steps with the biggest single step
~LT energy increase of 2.7478. This trap is not in the folding

f funnel of the NAT—the energy landscape is thus very
- rugged. ThedE of the Arrhenius law is close to 3.55 and
¢ is expected to have a substantial entropy contribution at
: .——l ._._[ nonzero temperatures due to many possible choices of the
12 - t -11.5031 -8.9627 trajectories.

16
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FIG. 2. Inset: The NAT and trap conformations and their \LTf
energies for sequencé The enlarged circle shows the first
monomer. Main: Dynamical data for the folding. The solid
line marked by#q gives the median folding time derived
from 1000 Monte Carlo trajectories. The solid ling is the
longest relaxation time. The dotted ling, is the time to
reach equilibrium from the initial state of uniform occpancy. 0
The broken linet;, with the black circles gives the time to

reach %Po from this initial state. The open circles indicate T

the same but the trap is taken as initial state. The dotted line

ta is a fit of the Monte Carlo data to the Arrhenius law with FIG. 3. Same as Fig. 2, but for sequerge For the curve
SE = 2.76. The arrow at the top indicates the value of thets, §E = 3.55. There are two NAT conformations with the
folding temperature. same energy.
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