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We present a phase diagram for fluid invasion of porous media as a function of pressure P and the
contact angle 8 of the invading fluid. Increasing P leads to percolation above a critical 6., and depinning
below 6.. Depinning is characterized by a diverging coherence length and the power-law distribution of
events typical of self-organized critical phenomena. At the transition from percolation to depinning
another correlation length diverges and an order parameter, 4n effective macroscopic surface tension, be-
comes nonzero. The fluid interface changes from self-similar to self-affine. Results are compared to ex-

periments.

PACS numbers: 47.55.Mh, 64.60.—i, 68.10.Cr, 68.10.Gw

Studies of fluid invasion, displacement of one fluid by
an immiscible fluid in a porous medium, have revealed a
wealth of interesting pattern-formation processes.'™ In
many cases, invasion at low flow rates is well described
by the invasion percolation model:> Segments of the in-
terface in each pore advance independently along the
path of least resistance, leading to a fractal invasion pat-
tern. However, recent work>~® indicates that this behav-
ior is not universal. In particular, as the invading fluid
becomes more wetting, cooperative invasion mechanisms
may lead to totally different growth processes and mor-
phology.

In this paper, we present the first theoretical study of
cooperative invasion. We show that the invaded pattern
is compact rather than fractal. The interface is self-

affine, and our calculated roughness exponent agrees well

with recent experiments.>* As suggested by other exper-
iments,® we find that the onset of continuous flow is
characteristic of a depinning transition like those in
charge-density-wave (CDW) conductors, flux lattices,
and other systems.” The range over which growth is
coherent diverges at the transition, and the distribution
of invaded areas has the “1/f” form characteristic of
self-organized critical phenomena.!® Finally, we show
evidence for an effective macroscopic surface tension T,
which acts at scales larger than the pore size. The ex-
istence of a macroscopic tension has been an important
open issue in theories of viscous fingering in porous
media. "®'"12 I is only nonzero when growth is coopera-
tive, and its magnitude behaves like an order parameter
describing the transition from fractal to compact growth.

Simple model two-dimensional (2D) porous media
were constructed by placing disks of random radii on a
square or triangular lattice with lattice constant a. The
system size was 1000a or more in each direction. Re-
sults below are for a triangular lattice with »/a uniform-
ly distributed between 0.05 and 0.49. They are represen-
tative of other systems studied.

At low velocities, invasion is dominated by capillary
effects: the surface tension y of the fluid interface, and

the wetting properties of the fluids. The latter are de-
scribed'? by the static contact angle 6 of the invading
fluid which varies from 180° to 0° as the fluid changes
from nonwetting to wetting. We model quasistatic in-
vasion as a stepwise process where each unstable section
of the interface moves to the next stable or nearly stable
configuration in turn. The algorithm is described in de-
tail in Ref. 7. A fixed pressure drop P is applied across
the interface, which consists of a sequence of circular
arcs connecting pairs of disks (Fig. 1). Stable arcs must
have radius y/P and intersect the disks at 6.

Three types of instability are identified: “burst”—no
arc with radius 7/P intersects both disks at 8, “touch”
—an arc connecting two disks intersects a third, and
“overlap”—arcs between successive pairs of disks inter-
sect. As 6 decreases, the dominant instability changes
from bursts to overlaps. Bursts and touches are local
mechanisms which can be included in percolation mod-

FIG. 1. Typical (8,P) phase diagram for quasistatic in-
vasion. Solid (dashed) lines indicate P, for percolation (depin-
ning). The solid circle indicates 6,. Resuits are symmetric for
P<>—P and 0+>180° — 6 which corresponds to reversing both
flow direction and fluids. Inset: Arcs between two successive
pairs of beads on an interface. The invading fluid is below the
interface and 0 and a are measured as indicated.
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els."? In contrast, overlap depends on the configuration
of adjacent arcs. As can be seen from Fig. 1, overlap be-
comes more likely as the bond angle o between succes-
sive disks decreases. Thus, overlaps smooth the interface
and lead to cooperative motion.

For each 0 we identify a critical pressure P, at which
interfaces first span an infinite system. A typical (6,P)
phase diagram is shown in Fig. 1. In the nonwetting lim-
it (large 6) each throat between pores is invaded in-
dependently, leading to fractal patterns as predicted by

the invasion percolation model."* The cooperative over--

lap mechanism becomes increasingly important as the in-

vading fluid becomes more wetting. The width w of

coherently invaded regions diverges’ as 6 decreases to a
critical angle 6,. We now show that growth for 6 < 6, is
characteristic of a depinning transition.

Figure 2 illustrates the dramatic difference in growth
morphology as P— P, for (a) 6=25° and (b) 6=90°,
which are below and above 6,==49°, respectively. The
lower interface in each case was stable at a pressure
about 1% below P.. P was increased slightly until a sin-
gle arc became unstable. The black region shows the
area A invaded as the fluid advanced to the next stable
interface. Above 6., the fluid follows the tortuous path
of least resistance typical of percolation. There are
many trapped regions where the invading fluid has sur-
rounded the displaced fluid. Below 8., a large segment
of the interface moves forward coherently, and there is
little trapping.

A measure of the degree of coherence is (A2), the

K
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FIG. 2. Area A invaded (black) when a single arc became
unstable at the indicated 6 and (P.—P)/P.~0.01. A is the
Cartesian width of the advancing interface segment [distance
between arrows in (a)].
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‘mean squared Cartesian width of the segments of the in-

terface which advance due to single instabilities (Fig. 2)
in a given pressure range. Below 6, a2 diverges at P,
(Fig. 3): The entire interface advances coherently. The
mean area invaded, {A4), also diverges. As expected for
compact growth, we find (A2 «c{4) e (P,—P) ¢ with
$=2.30+0.05. In contrast, A%"2=354 for all P at
0=90°—each segment of the interface advances almost
independently. (A4) diverges, but with an exponent
¢=1.75%0.10, which can be related to percolation ex-
ponents. Details of the finite-size scaling determinations
of these and other exponents, as well as scaling relations
between them, will be presented in a longer paper.
Recent work has recognized that many systems organ-
ize themselves into a critical state at the onset of flow.*!?
Examples include CDWs,? sandpiles,'® and the earth-
quake faults.'"* The characteristic signatures of self-
organized critical phenomena are a diverging coherence
length and a power-law distribution of events. Figure 3
illustrates the divergence of {(A2) as P— P, below 6,. At
P. we find power-law distributions p of A4 and A2. Over
nearly six decades in area, both distributions functions
are fitted by p(y) ecy 7%, with 7=1.125+0.025. Above
0., A has a power-law distribution with t=1.35 +0.10.
The onset of flow for 6 < 8. seems most analogous to
the depinning transitions in charge-density-wave conduc-
tors and related systems.® The ingredients which yield
depinning transitions in these systems are a random local
force 17 and an elastic coupling. Segments of the system
(interface) are pinned with different strengths by 1. In
the absence of an external force F (here P), many con-
figurations of the system are stable. As F increasés, re-
gions which are weakly pinned become unstable and ad-
vance. This increases the elastic force on neighboring re-
gions, which may in turn depin. As F increases to a
threshold value F,, the number of stable configurations
of the interface decreases to zero, and the cascades pro-

Ty T = F
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FIG. 3. Variation of (A2 with P for §=90° and 25°. Solid
lines are power-law fits with slopes 0 and 2.3 for #=90° and
25°, respectively.
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duced by each instability diverge.” For F > F, the entire
system advances.

In fluid invasion the porous medium provides the ran-
dom field. There is some experimental evidence for an
elastic coupling,>>%® but there has been no microscopic
explanation of its origin. The decrease with @ in the
pressure for instability through overlap (Fig. 1) provides
such an explanation. When one section of the interface
advances, the values of a on either side decrease. These
adjacent regions are thus more unstable, and a single in-
stability may cause a cascade. Viewed another way, re-
gions with net positive curvature x (invading fluid sur-
rounded) have fewer small-a bonds and thus become un-
stable at higher P. Regions of negative « (displaced
fluid surrounded) have more small-¢ bonds and become
unstable at lower P. If the change in pressure scales
linearly with «, the coefficient I" has units of surface ten-
sion. Like a normal surface tension, I' relates the curva-
ture of a region to the pressure at which it advances.
Unlike a microscopic surface tension, I' is not related to
the onset of backward flow which occurs through mecha-
nisms corresponding to nonwetting invasion at a much
different P.

We have verified the existence of I' numerically.
Many random initial interfaces were chosen. P was in-
creased gradually until Py, the pressure where the fluid
invaded the entire system. The radius of gyration Rg of
the last stable interface was used to determine the aver-
age curvature: k=+1/R¢ for growth outward from a
central ring, and x = — 1/R¢ for growth into a surround-
ed circle. In Fig. 4 we plot Py vs « for a large number of
starting rings at §=25°. As expected, local variations in
the medium produce different depinning thresholds.
However, the linear trend of P, with « is clearly seen. A
least-mean-squares fit yields I'=1.05y and all points lie
within lines given by 0.5y and 27.

0 20 40
6(deg)

FIG. 4. Plot of Py vs x for many initial interfaces at 6=25°.
The mean slope I’ =1.05y (solid line). Fluctuations are bound-
ed by dashed lines. Inset: Numerical values of I as a function
of 8 (crosses) and a power-law fit (solid line).
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The value of I" varies with 0 like an order parameter
describing the transition from percolation to depinning at
0. (Fig. 4, inset). Above 6., we find I'=0, and below,
'~ (6,—@)? with =0.6+0.2. Since I is zero above
0., there is no smoothing force. Thus the large-scale
structure at P, is self-similar. As shown in Ref. 7, the
fractal dimensions of the bulk and external perimeter are
consistent with normal percolation:' % and %, respec-
tively. Experimental studies of nonwetting invasion also
reveal self-similar fractal structure. ">

Below 6., the nonzero value of I' exerts a powerful
large-scale coherence and at P, the fluid interface is
self-affine.! To determine® the Hurst roughness ex-
ponent H we calculated the rms deviation 4(x) from a
straight line as a function of the projected line length x.
Figure 5 presents a plot of logioh(x) vs logjox obtained
by averaging results from stable interfaces in twelve
different systems at § =25°. The results lie on a straight
line over one and a half decades. The slope, H=0.81
+0.05, gives the roughness exponent [#(x) < x#]. The
major uncertainty comes from small overhangs on some
interfaces. Including such regions lowers the apparent
value of H at small x.

One implication of self-affine structure is that the in-
terface has a well-defined average orientation.! To
quantify this we calculated the surface normal correla-
tion function S at several values of 9. The limiting value
at large distances, S(e), is zero for 8> 6.. Below 6.,
S (o) behaves like an order parameter and is roughly
proportional to I".

Two recent experiments on wetting invasion have mea-
sured the roughness exponent of interfaces moving at
low velocities U. Rubio et al.® found H =0.73+0.03.
Horvath, Family and Vicsek* initially reported a much
higher value, ~0.9, but their more recent work gives
H ==0.81. These exponents agree remarkably well with
our simulation results, while most growth models give
H=0.5 in 2D. An exception is the Kardar, Parisi, and
Zhang model with power-law-correlated noise.'> It has
been unclear how such noise might arise. We suggest

Log;o(h(x))

1.0 15 2.0 25

Logm(X)

FIG. 5. Mean of logjoh(x) vs logiox for §=25° (squares)
and a power-law fit (line) with slope 0.81.
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that the power-law distribution of invaded areas at P,
naturally introduces an analogous effect. The observed
H would then be associated with the critical point and
only hold up to ~A. This is consistent with our simula-
tions. Viscous effects should also be important at
sufficiently large scales."® Flattening in the experimen-
tal plots of 2(x) vs x at large x and high U may reflect
this influence.?

If the invading fluid is less viscous, the dominance of
viscous effects at large scales results in viscous finger-
ing.5'" One theory for the fingerwidth ¢ assumes that an
effective macroscopic surface tension stabilizes the inter-
face.®!2 Linear stability analysis then predicts a maxi-
mally unstable wavelength proportional to Ca ~%°, where
Ca=pU/T is the capillary number and u the viscosity of
the more viscous fluid. In experiments on wetting in-
vasion, ¢ is proportional to this wavelength, but for non-
wetting invasion ¢ is always of the order of the pore size.
Our results provide a ready explanation for this dichoto-
my: '~y for wetting invasion and vanishes for nonwet-
ting invasion. Note that one also observes®!! spatial
variation in . This is consistent with the spread induced
in Fig. 4 by local fluctuations.

A full theory for the magnitude of ¢ must include oth-
er important effects. For example,!'? nonlinear effects
coarsen fingers, and noise leads to tip splitting that limits
¢. The velocity dependence of the capillary pressure Pcsp
may also play an important role. !

From the above discussion, it is clear that the transi-
tion from percolation to depinning at 6. shows many
similarities to equilibrium second-order phase transi-
tions. Disorder in the bead pack acts like thermal noise.
Overlaps provide a coupling between neighboring arcs on
the interface, causing them to act cooperatively. As @
decreases, the relative strength of the coupling increases
and a correlation length w diverges’ at 6.. Below 6., the
long-range orientational order implied by S(e)>0 is
analogous to long-range spin correlations in a ferromag-
net or the orientational order in an uncrumpled mem-
brane.'® It remains to be seen whether a formal map-
ping to such equilibrium transitions (like that between
the zero-state Potts model and percolation) exists.
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