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Results of numerical studies of conductance of a two-dimensional tight-binding system with random
potentials and coupled to a three-dimensional Ising spin glass are presented. Numerical values of the
conductance dispersion, in an ensemble of the potentials, support results of diagrammatic calculations
for universality classes relevant for this system. Conductance of a sample is studied as a function of
“time” for various Monte Carlo trajectories of the spin glass. The dispersion of the conductance noise
decreases on cooling of the spin system without a noticeable anomaly at T,. Power spectra of the noise
are power laws in frequency with the exponent of —0.5 (at least in the vicinity of T,) and the amplitude
of a spectrum decreases monotonically with 7. The fluctuations in the noise are only statistically related
to the number of spin flips involved. The dispersion of the fluctuations at a given temperature depends
on initial spin configurations. Locations of spins that effect conductance must also depend on the spin
configuration. History-dependent effects are present both above and below T,. Conductance noise in
ferromagnets is compared to that occurring in spin glasses.

I. INTRODUCTION

Advances in materials technology have recently en-
abled fascinating studies of electronic mesoscopic sys-
tems.? In these systems the length over which the elec-
trons can scatter inelastically may exceed the system size
and allow for observation of quantum-interference effects
of the electronic de Broglie waves.>* This happens typi-
cally in micrometer-sized systems which are studied in
the millikelvin temperature range. One manifestation of
the quantum-interference laws is the emergence of the
Aharonov-Bohm effect in mesoscopic metal rings.
Another is the reproducible noiselike sensitivity of con-
ductivity changes in values of parameters that define the
system such as magnetic field, Fermi energy, and
configuration of impurities. This sensitivity, as measured
by the variance of the response, appears to be universal
and is known under the name of universal conductance
fluctuations.

Altshuler and Spivak® as well as Feng et al. have sug-
gested that the quantum-interference effects would be put
to use as a probe of spin dynamics in those mesoscopic
systems which contain localized lattice spin degrees of
freedom. Studying spin glasses would be of a particular
interest since the dynamics of these systems is complex
and poorly understood. Feng et al.® have proposed that
since the conductance of the system is sensitive to the
configurations of spins in the system, the chaotic nature
of spin reorganizations would result in measurable
changes of conductance on varying the temperature and
as a function of time.

4

Effects of quantum interference in spin glasses have re-
cently been studied experimentally. Israeloff et al.” have
detected low-frequency resistance noise in thin films of
the metallic Cu;_,Mn,(0.045 <x <0.195) and compared
it to the 1/f noise in the magnetization, which was mea-
sured by the imaginary part of the dynamic susceptibility.
The power spectrum of the resistance noise was found to
increase on cooling down through the spin-glass freezing
temperature ard then to exhibit a tendency toward satu-
ration.

In a recent paper, Vegvar, Levy, and Fulton® have re-
ported observation of universal conductance fluctuations
induced by varying the magnetic field in small (mesoscop-
ic) samples of Cu;_,Mn,. The pattern in the fluctua-
tions has been found to be sensitive to the thermal history
of the system. A sensitivity of the resistance to the
thermal history as well as temperature and frequency
dependences of the noise in small samples of Cug o;Mng g9
have also been studied by Israeloff, Alers, and Weiss-
man.’ The experimental results have been analyzed in
view of predictions of various models of glassy dynamics.

Similar studies have been recently undertaken by Gra-
becki et al.l° The system considered is the semiconduct-
ing p-type Hg, 0Cdg oMng oy Te bicrystal. Its low-
temperature conductance is due to a two-dimensional
electron gas adjacent to the grain-boundary plane.!!
Conduction fluctuations were measured as function of
magnetic field (up to 9 T) and down to T=30 mK. An
ac susceptibility cusp (at 20 Hz) is found to develop
around T=100 mK. At such low concentration and
temperatures, the spin-glass-like ordering could be due to
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the dipole-dipole interactions.!? There is, however, a pos-
sibility that as' in the dilute dipolar-coupled
LiHoy 045Y os5F 4, studied by Reich, Rosenbaum, and Ae-
pli,’* the cusp is merely a nonequilibrium effect. The
studies of Israeloff ez al.”® of Cu;_,Mn, have focused on
the power spectra of the noise, whereas investigations of
Hgj 50Cdg 19Mng o;Te were primarily concerned with
properties of the resistance fluctuations generated by
varying the magnetic field.

In this paper we report results of numerical studies of
conductivity in a two-dimensional (2D) small tight-
binding system with random potentials, which is coupled
to a three-dimensional Edwards-Anderson spin Ising spin
glass. The electrons are constrained to move in a central
plane that cuts through the spin-glass system. This
geometry is motivated by the structure of the bicrystal
system considered by Grabecki et al.!® The lattice spins
were chosen to be of the Ising type for two reasons.
First, theoretical studies should start with a simplest
model possible and then become dressed with complica-
tions. Second, various sources of anisotropy induce
crossover to Ising spin-glass behavior with a phase transi-
tion in three-dimensional systems.!*!> It should be not-
ed, however, that the dynamics of a continuous-
symmetry spin system may differ from the purely relaxa-
tional dynamics of Ising systems. Our model may
enhance the effects of spin freezing if what is observed in
the experiments is merely an apparent freezing.

In Sec. II we describe our model in detail and define its
parameters. In Sec. III we derive a Kubo-formalism-
based expression for the conductivity that we used. Con-
ductance and conductivity coincide for two-dimensional
systems, and so we use these terms interchangeably. In
Sec. IV we discuss the influence of electron scattering by
a system of frozen spins upon the universal conductance
fluctuations. In particular, we demonstrate good agree-
ment between results of our numerical simulations and
predictions of diagrammatic calculations. In Sec. V we
describe our Monte Carlo algorithm and give an estimate
of the numerically accessible time domain. We then
present results on the conductance noise associated with
the spin-disorder scattering. We find that the amplitude
of noise decreases on cooling and that the power spectra
are essentially monotonic in temperature. They are de-
scribed by the f ~%3 law, which is a 2D analog of the 1/f
noise.

In Sec. VI we attempt to understand the conductance
fluctuations in terms of the lattice spin flips and point to
difficulties in making simple interpretations. We con-
clude that uses of conductance fluctuations as a reliable
probe of the spin dynamics may prove not to be easy. It
is possible that only laws based on large statistics contain
precise information about the spin-glass dynamics.

II. DESCRIPTION OF THE SYSTEM
The Hamiltonian of the system is given by
H=H,+H, ,+H,, , (1)

where H, describes . electrons hopping on a two-
dimensional square lattice, H, describes the three-
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dimensional spin-glass system, and H,, corresponds to
the interaction between the two subsystems. One can ex-
press H, as

H,= 3 ¥Uu,a)v,, + 3 ¥rny,
lLa 1

—g.1pB 3 Vo™, , @
1
where
Wi=tefi,el),
(3)
Cr+
Y=l |
represent creation and annihilation operators for elec-
trons at site / and spin states + or —. The summation is

over all sites of the square lattice.
The matrix U is given by

u 0

Ulla)= |, u

, @

where u is the hopping matrix element. The hopping is
confined to the nearest-neighbor sites, and the vector
a=(ay,a,) connects two such sites. For the square lat-
tice, a,,a,==1 in units of the lattice constant. The ma-
trix Vis defined by

gl) O

ViD=1 106 &

, &)

where (1) is the potential at site I. The last term in Eq.
(2) corresponds to the Zeeman spin splitting in a magnet-
ic field B; g, is the electronic g factor, and uy is the Bohr
magneton. The effects of magnetic field on the electronic
states will not be considered in this paper.

We assume the following geometry for the electronic
subsystem. Atomic sites lie on the square lattice. The
central L, XL, section is disordered. In the section po-
tentials £(/) are random. We chose them to be uniformly
distributed between —w/2 and w/2, with w=2u.
Infinite perfect leads are attached in the x direction, to
the left- and right-hand sides of the section. In the leads,
£(1)=0. The form of boundary conditions on the other
sides is not essential, and we chose the periodic boundary
conditions. @ We typically study systems with
L,=L,=L=20. According to Stone,'S the universal
conductance fluctuations actually show an L dependence,
which saturates for L close to and exceeding 20, hence
the choice of our system size.

Consider now the lattice spin system. The magnetic
sites typically occupy only a fraction of the atomic sites.
As a simple model of this situation, we take the Ising
spins to occupy sites of the L, X L X L, cubic lattice. A
central plane in this lattice coincides with the plane on
which the tight-binding system is defined, but the spin
lattice forms a superlattice on the disordered L, XL, sec-
tion. We took L, to be 9 so that when looking along each
principal direction every other site of the disordered sec-
tion houses a lattice spin.

The spin Hamiltonian is given by
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H=-— (2) JijS:S;—8&upB XS » (6)
L i

where S;=x1 and J;; takes values distributed with the
Gaussian probabilities with O mean and dispersion equal
to Jp. The spin-glass freezing temperature of this system
is known to be of order J,.!* In the Zeeman term, g; is
the lattice spin g factor.

The coupling between the two subsystems is given by

H, =—Jos E \IILU'Sme ’ (7
m

where m runs through those sites of the disordered seg-
ment which contain a lattice spin. o =(0*,0%,0%) and ¢*
are the Pauli matrices. In the present work we consider
only Ising spins, and so only the o term enters Eq. (7).
We took J,,=w /10 (J, is typically of order 0.5 eV).
Note that H, . modifies the effective site potentials ran-
domly and in a way which differentiates between the up
and down electronic states. The electronic part
H,=H,+H, can be separated into two parts: one cor-
responding to electrons with spin up and one to spin
down. Each flip of a lattice spin makes an imprint on the
landscape of the potentials by changing H, and thus
|

exp[(E —Ep)/kpT]

_ 2me? 2 ™
a#,v(EF)—%——a#avu f_wdE

{exp[(E—Eg)/kpT]+1}
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affects the electronic wave functions. Time evolution in
the spin system produces a noise in the conductivity
which will be an object of our studies. We neglect any
influences that electrons might have on the spin system.

III. DETERMINATION OF CONDUCTIVITY

In order to calculate the conductivity, we follow Elliot,
Krumhansl, and Leath!” and make use of the Kubo for-
malism. The formula is based on the linear-response
theory, which relates conductivity to a current-current
correlation function, where the current is defined by

j= 3 jul)=(iea,/H) 3 [¥]U,,)¥,,, —H.c.],
1 1

®

and a, is a vector toward a neighbor in the pth direction.
We define the Green’s function as

G(E)=(E—~H,—H,,)", 9)

the matrix elements of which will be noted by G (I,n,E ).
Note that G(I,n,E)=¢( (‘IIII‘I’I,) Yg is a 2X2 matrix.
The static conductivity is then given by'®

5 S[ImG(,n,E)ImG(n+a,l+a,kE)
ILn

+ImG(l+a,,n+a,E)ImG(n,/,E)
—ImG(I,n-f—au,E)ImG(n,l-!—av,E)
—ImG(l+a,n,E)ImG(n+a,l,E)], (10)

where Q=L_ XL, is a volume of the electronic sublattice. This equation can be simplified by considering the limit of
T —0 and by making use of the current conservation in each plane perpendicular to the leads.!® Specifically, for the 2D

geometry, we get

_elaLiu’
O = =3 [ImG(l,,l;n.,n,,Ex)ImG(n,+a,,n,l. +a,,l, Ep)
XX y2riTx2 Tty y X%y F
hLya, L,n,

+ImG(lx+ax,ly;nx+ax,ny,EF)ImG(nx,n I.,l,,Ep)

y’ Xy

—ImG(l,,l,;n, +a,,n,, Ep)ImG(ny,n,,l, +a,,l,,Ep)
—ImG(l, +a,,l;n,,n,, Eg)ImG(n, +a,,ny,1.,1,,Ep)] , (11)

which is related to the continuum version of the equa-
tions derived by Lee, Stone, and Fukuyama.*

The disordered segment has the coordinates I, and I,
between 1 and L, and 1 and L,, respectively. Here
L,=L,=L. The coordinates n, and n, have similar
properties.  Equation (7) is valid for any
— o <I,,n, < x, ie., also where the sites belong to the
perfect leads. It is convenient to pick I, =n,=L,. The
system can be treated similar to a one-dimensional sys-
tem!®2° where the Green’s functions are expressed as
continuous fractions. In our case it is convenient to use
the matrix notation in which the elements of matrices are
labeled by [, and n,. The Green’s functions needed in

formula (11) are determined in a recursive way from

Gily (EY=E1—8; ; —uG[ _i1 1

—uG£x+l,Lx+1u (12)
and
GLX,Lx+1=GLx,LquIi+l,LX+1 , (13)

In these equations GLxLx(ly,ny,E )=G(Ly,l,,Ly,n,,E), T
is an L, XL, unit matrix and a, L, is the Hamiltonian

for the L, th row without including any couplings to the

left- and right-hand side neighbors. The Green’s func-

tions Gf _; ;_—j and Gf_ 4 4 describe clectron prop-
: L, L,
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agation in the semi-infinite strips to the left and right
from the L th row respectively.
Note that GR ., L +1 corresponds to a uniform semi-
L tL

infinite system described by the Hamiltonian

HO =2' ‘P}‘U( l’a)ql1+a—ge#’BB 2 \I’;UZ‘III ’ (14)
la i

where the prime denotes summation over [, =L, +1.
Performing the Fourier transformation in the u direction
yields

H0= E E’ \I’ka U(lx’ax )wlx+ax,ky
k I a
y x%x

+2u cos(k,a,) ?’ \I'};ky\l',xky

—upB z'w}kayazw,xky X (15)
lx

For the periodic boundary conditions in the y direction,
the summation over k, takes place for

217'm), <
k,= La, , 0=m,<L, . (16)

In the case of the free-boundary conditions in the y direc-
tion, we would have

m™Tm
k

= Y . <
y (Ly+1)ay’ O<m,=<L, . (17)

The Hamiltonian H, is a sum of the one-dimensional

Hamiltonians corresponding to different wave numbers

k,. Therefore, the matrix elements of GR , ., are given
X x

by
Gga',Lx,Lx +1 (ly’ny )

_ 80’0"
= 7 ze

VK

iky(ly—ny)aYGlD
X[E—ugBo+2u cos(k,a,)] , (18)

where the Green’s function for a one-dimensional semi-
infinite uniform strip Gp is given by

G (E)=L[E+i(4u®>—E?)'], (19)
for |E| <2u, and
Gip(E)=L[E+sgn(EXE?—4u?)'"?], (20)

for |E|>2u. The left-hand side Green’s function
GE _,; _ can be calculated in a recursive way by not-
x X

ing that
(Gf , )'=ET-8, , —uGy _,, _u, 1)
and by starting from n, =0 when G§,=G fi 1,z +1 Since

the system is uniform in that row.
To conclude, the calculation of conductivity of a finite
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disordered system reduces to a sequence of iterations and
matrix inversions corresponding to adding subsequent
layers of the disordered segment one by one starting from
the semi-infinite uniform strip. The conductivity
o, (Ep) is the proportional to a transmission.!® One can
say also that o, (Ey) is proportional to a number of ac-
tive channels. In the case of a uniform system, the num-
ber of channels is equal to a number of k,’s for which
ImGp[Er—ppBo+2u cos(k,a,)]70, ie., to the num-
ber of plane waves with different k, which are transmit-
ted through the system.?! Disorder is expected to reduce
the number of active channels and thus to reduce o. The
final result for o can be expressed in the following way:
o =(e?/h) (number of active channels).

IV. EFFECTS OF FROZEN SPINS
ON UNIVERSAL CONDUCTANCE FLUCTUATIONS

Throughout this paper we study one randomly selected
sample. It is defined by a particular configuration of the
site potentials and of the exchange couplings. Conduc-
tivity depends on the value of the Fermi level E. Figure 1
shows the conductivity 0 =0, as a function of E in a
range between 0 and 0.6u. The solid line is for a system
in which electrons are decoupled from the lattice spins.
The line is composed of many resonant peaks.

The dotted lines are for the same system, but with the
spins “reattached.” These lines correspond to two ran-
domly selected and then frozen spin configurations. The
influence of the spins is substantial, but the dotted lines
follow the no-spin curve in an essentially “parallel shift-
ed” fashion.

The size of the variance in o as a function of E and for
a fixed spin configuration is difficult to be made precise
because of the small statistics in the number of reso-

CONDUCTIVITY

E/u

FIG. 1. Conductivity as a function of the Fermi energy in the
random system under study. Conductivity is in units of e2/A.
The solid line is for the situation in which the interaction of
electrons with the lattice spins is switched off. The dotted lines
show the conductivity when the spins are coupled back to the
tight-binding subsystem. The spin configurations correspond to
two random spin configurations.
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nances. It seems, however, that it is of the same order as
fluctuations in o for a given E in an ensemble of the elec-
tronic potentials. We took 2500 random sets of poten-
tials and fixed E at 0. The average conductivity and the
dispersion in this ensemble were found to be 2.39¢2/h
and 0.64e?/h, respectively. For the electronic system
size of 24X 24, we get 2.32e¢2/h and 0.60e2/h for these
quantities. If we disconnect the lattice spins from the
electrons, by putting J, , =0, we get the same mean con-
ductivities, but the dispersion increases to 0.76e%/h for
L =20 and to 0.75¢*/h for L =24.

Altshuler and Shklovskii® relate the dispersion to prop-
erties of density of eigenvalues of random matrices and
derive for weak disorder, by diagrammatic techniques,

the result
172

2
%K —’;f—ﬂ—;\/ by (22)

where 8G is a fluctuation of conductance and by is a
dimension-dependent factor: It is equal to 1.08, 1.51, and
2.0 for D=1, 2, and 3, respectively. The universality
classes in the behavior of {8G 8G )!/? depend, in addition
to D, on the asymmetry of the Hamiltonian via the factor
B, on the s-fold (spin) degeneracy which is not removed
by the random Hamiltonian, and on K, the number of the
noninteracting series of energy levels. The factor B is
equal to 1, 2, and 4 for the orthogonal, unitary, and sym-
plectic ensembles of levels, respectively. If there are no
spin-orbital and magnetic orbital effects present, S=1.
When J;_, is set equal to zero, we should have s =2 and
K =1, which yields, for D =2, {8G 8G )1/2=0.863¢2/h,
in agreement with the value proposed by Lee, Stone, and
Fukuyama,* for this universality class of fluctuations.
Our numerical result of 0.75—0.76e?/h, possibly affected
by the small system size, is close to the above estimate.
When J,_, is nonzero, we expect for the Ising spins that
the splitting between the up and down states appears so
that s =1, while K =2. Thus formula (22) predicts fluc-
tuations of order 0.61e?/h. Our value for the fluctua-
tions with spins agrees very closely with this estimate.

Finally, we note that the effect of spin-disorder scatter-
ing on universal conductance fluctuations in a paramag-
netic phase was examined by Bobkov, Falkov, and
Khmelnitskii.?> For frozen Heisenberg spins in two or
three dimensions, their result agrees within 12% with
that of Eq. (22) for s =1, K =2, and f=2.

(8G 8G )1/*=5

V. SPIN-INDUCED CONDUCTANCE NOISE

We now study what happens to our chosen sample on
thermal processing as defined by a standard Monte Carlo
simulation. In each Monte Carlo step per spin, we pick
L, XL, XL, sites, one at a time, and attempt to flip the
spin there. If flipping the spin lowers the system’s ener-
gy, the flip is actually performed. Otherwise, the flip is
made with the Boltzmann probability related to the ratio
of energy increase to kg T. It is difficult to relate the time
7o corresponding to one Monte Carlo step per spin to an
experimental time scale. The time 7, is determined by
the rate of energy dissipation by the spin system, which
usually depends on the strength of the coupling to pho-
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nons. It is thus customary to consider 7, to be of order of
the inverse Debye frequency, i.e., picoseconds. One can
envision mechanisms which could extend this time scale
significantly though. The longest train of conductivities
at a given T that we calculated for one energy was ob-
tained for 8192 Monte Carlo steps per spin. This corre-
sponds to rather short probing times scales, of the order
of at least 10 ns. It is possible to extend the time scale
here by up to two orders of magnitude by calculating the
conductivity, say, every one-hundredth Monte Carlo
step. It is the calculation of conductivity, and not the
Monte Carlo simulation itself, that consumes most of the
CPU time and limits the statistics.

In our simulations we cool the system through the
freezing temperature of 1J,/ky by starting high up in the
paramagnetic regime — at T=3J,/kg. At each T the
Monte Carlo process evolves the system for 4500 steps
per spin. The sequence of the temperatures is, in a typi-
cal run, 3 JO/kB’ 2.5 JO/kB’ 2 JO/kB’ 1.5 JO/kB’ 1.2
Jo/ky, V.1 Jy/kg, 0.9 Jy/kg, 0.8 Jy/kp, 0.7 Jy/kp, 0.6
Jo/kg, 0.5 Jy/kg, and 0.4 Jy/kg. The conductivity is
being calculated for several selected temperatures. The
first 2000 Monte Carlo steps are excluded from the calcu-
lations to allow for thermal equilibration of the spin
configurations. Since then, the conductivities are deter-
mined at the completion of each Monte Carlo step per
spin (one stochastic passage through the system). At
each T we have a series of between 2500 and 8192 values
of o. It seems, however, that this procedure results in
conditions which are, at best, only partially stationary
during the observation time. The experimental studies of
noise?? have pointed to the presence of aging effects last-
ing for waiting times exceeding observational time scales
by three orders of magnitude.

We focus on two particular locations of the Fermi en-
ergy: one at E =0, which is close to a minimum in o
shown in Fig. 1, and another at £ =0.2u, which is close
to one of the resonances. When discussing Fig. 1 we not-
ed that the dotted lines showing o(E) corresponding to
frozen-spin configurations follow the no-spin curve in an
essentially parallel shifted fashion. Thus, at E =0, the
thermally induced changes in o are generally observed to
be smaller than those at E =0.2u for each temperature.
{In Fig. 1 the two dotted lines actually correspond to two
consecutive Monte Carlo steps per spin at 7=0.8J,/kp.)

Figures 2-7 show 500-step-long portions of the time
evolution of the conductivity for 6 temperatures between
3 Jo/kp and 0.4J,/kg, all calculated for the same sam-
ple and for the two values of E. We observe that, for
both energies, the magnitude of noise in o systematically
decreases with temperature. The smaller the tempera-
ture, the farther apart the ‘‘events,” or pronounced
features, become separated and the smaller their ampli-
tude.

We observe that the noise in ¢ is very sensitive to the
starting spin configuration. The sensitivity appears not
only in the actual look of the time dependence, which is
expected, but, more strikingly, in the dispersion of o.
This is illustrated in Fig. 8, which displays a cumulative
dispersion as a function of time, as measured in Monte
Carlo steps per spin. Each cutve is for the same sample,
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CONDUCTIVITY

0 100 200 300 400 500
TIME

FIG. 2. Conductivity in units of e2/h as a function of time
for two values of the Fermi energy. The time is measured in
number of Monte Carlo steps per spin. The lower, solid line is
for E =0 and the upper, dotted line is for E=0.2u. The figure
shows the first 500 values of the conductivity after an initial re-
laxation of 2000 steps at T'=3J,/kp. '

but the starting spin configurations differ. The figure
shows dispersion as calculated by gathering the first
500-2500 data points. Each of the curves seems to reach
some kind of an asymptote, the value of which depends
on the initial configuration. The behavior of the cumula-
tive dispersion as a function of time is shown here for
three temperatures and for E =0. High in the paramag-

T = 1.1 J,/ ks
3.51 I I _ [ ! ]

2.5 - i sy

20 1| :Mfﬁ. W
] ," | . J I ||I l I‘Il

A B ¥

1 ' 'L1 7

| { | ~ 1
0 100 200 300 400 500

TIME" A

CONDUCTIVITY

15 F

FIG. 3. Same as in Fig. 2, but for T=1.1J,/k, i.e., just
above the freezing temperature.

| T T T o e

| ,
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T = 0.9 J,/ky

“3s5L T z "l" T T
G ; . Iéﬁ_{u_ _I

2.0 — T

-CONDUCTIVITY

1.5 - - - -

- i ] { {
0 100 200 300 400 500

TIME . T

FIG. 4. Same as in Fig. 2, but for T==0.9J,/kg, i.e., just
below the freezing temperature.

netic regime (T'=2J,/kg), the asymptotes are close to
each other and give an average dispersion of 0.2¢2/h. As
the temperature decreases, the history dependence of the
dispersion becomes more and more pronounced, but the
asymptotes tend to be lower. E.g., for T=1.1J,/kg and
0.87,/kp, they are on average 0.14e2/h and 0.09¢%/A,
respectively, if 10 starting configurations and 2500 Monte
Carlo steps are taken into account. When calculations are
based on 8000 steps, we get 0.16e2/h and 0.13e2/h for
dispersion at these two temperatures (the error bars are

T = 0.8 Jp/ kg
as 1 - T — T T

2.0

CONDUCTIVITY

_’ LA A w IJ\‘N“T‘,['I".:"'.":T:‘/Q

r L I :
0 100 200 . 300 400 500
TIME

1.5

FIG. 5. Same as in Fig. 2, but for 77=0.8J/kp.




N

T = 0.8 Jo/ kg
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0 100 200 300 400 500
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FIG. 6. Same as in Fig. 2, but for T=0.6J/kp.

0.03).

An interesting question is what happens to the disper-
sion when orders-of-magnitude-longer time scales are
considered. Will the asymptotic values eventually merge
at each temperature? Should they become identical to
the high-temperature value? The latter does not seem
likely since, as we shall explain in the next section, the
fluctuations are driven by flips of spins, the number of
which are controlled by temperature. Thus, at low tem-
peratures, one observes essentially small changes only, no
matter how long the observation. A further study of the
above issues for longer time scales than those presently

T = 04: Jo/kg
a5 T — 1 T T 7]
3.0 |- i m ;
. Ho 1l %‘Ei T
E 2.5 S -
[®]
o)
]
Z
O 20 -
&) m_ . AL |
1.5 - ]
| 1 i 1

0 100 200 300 400 500
TIME

FIG. 7. Same as in Fig. 2, but for T=0.4J, /k5.
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accessible to us would be valuable in view of the recent
suggestion of Weissmann and co-workers™?* that the time
evolution of resistance in small spin-glass samples can be
used to choose between various theoretical models of
spin-glass dynamics.

Figure 9 shows the cumulative dispersion after 1000,
1500, and 2000 Monte Carlo steps as a function of tem-
perature for T between 0.5J,/kp and 1.5J5/ky. The
data points correspond to E =0 and are averaged over
ten different runs in the same sample. The data give no
evidence of an anomaly at T, at least for the system sizes

' 7 studied. The dispersion is essentially linear in 7.

The dispersion is more a measure of the amplitude of
the fluctuations than measure of time separation between
the events. One can see in Figs. 2—7 that the lower the
temperature, the sparser the events. This should enhance
the low-frequency end of the power spectra at low T. For
a fixed low frequency f, one would expect an increase in

“the intensity of the spectrum. However, a decrease in T

also reduces the amplitude of the noise, and the overall
effect may not necessarily be monotonic in T. We calcu-
lated the power spectra of the noise and averaged them
over 20 realizations of 4096-step-long trains of data for
the same sample, corresponding to different initial condi-
tions. Some of our results are shown in Fig. 10.

We find that in the high-T limit (I"=3J,/kj) the spec-
trum corresponds to a white noise (f°) at low frequencies

024
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FIG. 8. Cumulative dispersion as a function of time for
several starting spin configurations in the same system. The
dispersion is in units of e?/4, and the temperatures are indicat-

ed.
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FIG. 9. Cumulative dispersion vs temperature. The dotted,
dashed, and solid lines are based on 1000, 1500, and 2000 Monte
Carlo steps per spin. The data points are for E =0 and are
averaged over ten runs.

and becomes a power law with a small exponent at large
frequencies. On lowering the temperature, a power-law
behavior takes over all of the frequency range. In a vicin-
ity of T, (both above and below), the power-law exponent
is close to —0.5. This is a two-dimensional analog of the
1/f noise encountered frequently in 3D systems. In ad-
dition to the spectra displayed in Fig. 10 (T =3J,/kp,
1.2 Jy/kg, and 0.8J,/kg), we also studied spectra at
T=1.1J0/k3, I.OJo/kB, O.9J0/kB, 0.7]0/](3, and
0.4J,/kg. At the lowest T the exponent appears to be
somewhat smaller in magnitude, but that may merely sig-
nify shorter effective time scales available in calculations
compared to the higher temperatures.

We also observe that on lowering T the amplitude of
the spectrum decreases monotonically. The decrease in
the logarithm of the amplitude is found to be faster than
linear; possibly, there is a quadratic law here. Israeloff
et al.,’ on the other hand, report that logarithm of the
spectral density of the low-frequency resistance noise in
Cu,;_,Mn, develops a steplike shape at T, when plotted
versus temperature. The position of the step is correlated

10g:0(POWER SPECTRUM)

© 2.0 )
log 1o(FREQUENCY)

-3.0 ~1.0

FIG. 10. Power spectrum on the log-log scale for tempera-
tures indicated (in the usual units).
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with temperature at which a cusp in the susceptibility de-
velops, which suggests a magnetic source of the noise.
Our results do not reproduce the experimental finding,
and the discrepancy should be understood. There are
several possibilities in way of explanation. First, our time
scales studied might be too short to seec the phenomenon.
Second, in this experiment spins that affect conductivity
occupy a 3D volume, and 3D geometry could enhance
any possible anomalies. Third, our calculations of con-
ductivity are performed at T =0 and thus do not take
into account variations of the inelastic scattering length
with 7. A decrease in T increases this length which al-
lows us to gather signal from a larger volume. This
would be expected to be able to counter the diminishing
trend in the noise amplitude. Actually, it is to this effect
that Israeloff et al.” attribute a difference in the T depen-

dences of the magnetization and resistance noises below
T,.
As already mentioned, there seems to be no abrupt
change in the pattern of the noise on crossing the freezing
temperature. However, at smaller temperatures, such as
0.4J,/kg and 0.6J/kg, and to some extent at 0.8J,/kp,
events in the time evolution of o become not only
sparser, but also more correlated across energies. As seen
in Figs. 6 and 7, feature for E =0 has its counterpart for
E =0.2u, except that the amplitude in the latter is usual-
ly larger.

VI. PHYSICAL INTERPRETATION
OF THE CONDUCTANCE FLUCTUATIONS

We now focus on intepretation of the features present
in the noise. Our numerical simulations imply no corre-
lation between the noises in magnetization and in con-
ductivity. According to Israeloff et al.’ this could be ex-
pected because the latter involve spin correlations of at
least fourth order. Note also that not all of the spins are
coupled to the electrons. Only those spins which are in
the central plane are. Figure 11 correlates numbers of
spins that flipped in the central plane in each time step
with the resulting change in o. A stretch of only 120
Monte Carlo steps per spin is shown to enable a detailed
inspection. We contrast two exireme cases: At
T=3J,/ky, and at each time step, between 8 and 30 pla-

_ nar spins flip, but at T==0.4J,/kg, up to three spins are

affected and most often none is. A flip of order 15 spins
produces usually a large change in . A flip of one or
two spins results typically in a smaller change. However,
the number of the flips is in no monotonic relationship
with the change in ¢ induced by it. Flipping three spins
may bring about much smaller change than flipping
merely one spin.

In order to explain this, we note that some spins are lo-
cated in places that are temporarily pivotal in the quan-
tum coherence of the electronic wave functions and some
are off the relevant Feynman trajectories. Which places
are crucial varies as a function of time since the global
structure is being affected. We made a computer experi-
ment in which we stored some initial spin configuration
and then flipped one spin at systematically selected
places, after which the system was restored to its initial
state. The results for two spin configurations taken from
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FIG. 11. Solid line shows the number of spin flips, N, that
occurred in the central plane in a Monte Carlo step per spin at
time indicated. The dashed line shows the conductivity rescaled
by a factor b: ¥ =bo. In the top figure, T =3J,/kp and b =20.
In the bottom panel, T =0.4J,/kp and b =2. The conductivity
is in units e /A.

the evolution at T=0.4J,/ky are shown in Fig. 12. The
y axis is for the change in o relative to a situation in
which the spins are decoupled from the electrons. The x
axis shows labels, in some arbitrary convention, of the 81
spin locations that are available in the central plane.
Flipping a spin at a given site is seen to be inducing a
change that depends more on the initial configuration
than on the location of the site.

Events in the spin subsystem lead to events in the be-
havior of conductivity only provided the spins in the cen-
tral plane are involved. Thus, in this particular
geometry, we are bound to look only at a shadow of the
spin dynamics. Could placing the spins and electrons in
the same three-dimensional volume help in getting a

better monitoring handle on the evolution of the spins?.

Our results suggest that arranging for a three-
dimensional geometry would not help much because the
extent of a spin event is usually in no simple relationship
with the size of an electronic event. All we can say when
observing a glitch in conductivity is that the spin
configuration has changed.

There may, however, exist statistical laws that are valid
and useful in predicting, say, the average size of domains
that passed by. Figure 13 suggests that the noise in o
may actually have some overall relationship with the
spectrum of spin-relaxation times. The figure shows the
noise in o when in the thermal cooling process and in the
first 1000 time steps at T'=0.4J,/kp the spins are arrest-
ed by a strong magnetic field (of strength g up=J,/2;

the electrons themselves are artificially not influenced by
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FIG. 12. Change in conductivity, relative to the situation
where spins are absent, resulting from flips of single spins from
a stored spin configuration. The two lines correspond to two
different starting configurations generated at T=0.4J,/kj.
The x axis is a label of the position, in the central plane, of a
spin flipped. Conductivity is in units of e?/.

the field: g,=0), and then, at “time” 1000, the field is
switched off. A relaxation to equilibrium is taking place,
first through rapid processes and then through longer and
longer global rearrangements. The behavior of the elec-
tronic noise is clearly affected by the field-switching event
(a similar statement holds also at higher temperatures).
The nature of the change is that in the field the glitches
are sporadic, but when the field is switched off, a series of
rapid fluctuations in o is observed. The conductivity cal-
culated for E =0 shows a sequence of more sparsely lo-
cated glitches after the initial series of rapid fluctuations.
This suggests a transition from fast to slow relaxation
times. However, the conductivity for E=0.2u for the
same system is harder to be interpreted in terms of the
spectrum of the relaxation times. Switching the field on
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FIG. 13. Conductance fluctuations in the system perturbed
by a magnetic field. The field is switched off after 1000 time
units. The upper line is for E =0.2u, and the lower one is for
E =0.
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and off may keep shifting average values of conductivity
within some range.

We have also attempted to investigate the role of the
temperature-switching effects, as suggested by Feng
et al® In particular, we made the system evolve at
T=0.9Jy/kp and then reduced T to 0.87,/kz. We
could see nothing striking happening in the noise on the
T reduction, at least within the first 1000 time steps after
the reduction. Studying the effects of changes in temper-
ature probably requires larger sizes of the spin system.

VII. CLOSING REMARKS

It is interesting to compare conductance noise in spin
glasses to that in ferromagnets. The latter is shown in
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FIG. 14. Conductance fluctuations for a uniform ferromag-
net characterized by the exchange constant J at temperatures
indicated. The data points are for E =0 and are shown in a
stretch of 500 time steps.
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Fig. 14. Two differences are noticeable immediately.
First, the cumulative dispersion in ferromagnets shows a
broad maximum at the Curie temperature of 4.5J /kp.
The maximum is well marked already within 1000 Monte
Carlo steps. Second, at low temperatures the plot of the
noise as a function of time looks like a defective comb: a
line with occasional spikes. In spin glasses the spikes can
point up or down from the average line. In ferromagnets,
on the other hand, the spikes are predominantly down-
ward. The reason is that the ferromagnetic ground state
is uniform, which reduces the amount of disorder in the
system. Thermal fluctuations destroy the uniformity and
reduce the conductivity. The power spectra based on ten
4096-step-long data trains are shown in Fig. 15. Except

. for a very short time scale, the spectra are essentially

given by a white noise with an amplitude peaking at 7.
A weak power law in f seems to be developing only at an
immediate vicinity of T,.

We conclude this paper by emphasizing that conduc-
tivity does respond to events in the spin system, but the
interpretation of the noise is difficult because the response
seems to be monotonic only statistically. Furthermore,
low-probability spin events may have a major impact on
the electronic noise pattern. In a recent report, Weiss-
man and Israeloff* discuss the experimental fluctuation
statistics of resistance in Cu,_,Mn, to choose between
various theoretical models of spin-glass dynamics and
pick the hierarchical kinetics of the infinite-range model*®
over the droplet?® and spin-density-wave?’ pictures. Fur-
ther studies are needed to decide whether or not such
claims are justified. The nature of the information one
gets about the lattice spin dynamics from the conduc-
tance fluctuations is indirect. It is likely that properties
of the noise reflect general features of the system such as
whether it is anisotropic or not. We plan, for instance, to
study Heisenberg spin glasses to make a comparison.

Another problem that requires investigation is charac-
terization of the noise as a function of the magnetic field,
how the presence of the spin impurities affect the noise

T [

g T=4.5

r

é / \\‘A\'v'f\u: Ao

(= ' '-In"\. i,

& : w-l'- i

y N ' 7y :
1.0 M

E \/\—\/\/\[ ] |_! 14#

E% T=3

>

o
[

-3.0 —-2.0 —-1.0
109 1o(FREQUEN CY)

FIG. 15. Power spectrum on the log-log scale for a uniform
ferromagnet at temperatures indicated (in units of J /kp).
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patterns, not as a function of time, but as a function of
field-induced fluctuations in o. By an “ergodic hy-
pothesis™ these fluctuations are expected to be similar to
those induced by a random restructuring of the electronic
potentials; but are they? Studying such questions re-
quires augmenting the formulas for the conductivity of
Sec. III by terms responsible for the orbital electronic
magnetism. Such simulations are now under way.
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