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Invasion Percolation and Eden Growth: Geometry and Universality
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The mapping of optimal paths in the strong disorder limit to the strands of invasion percolation
clusters is shown to lead to a new universal property of these clusters. We suggest that the
corresponding strands arising in the annealed Eden growth process are in the same universality
class as directed polymers in weak quenched disorder with an upper critical dimession
[S0031-9007(96)00188-3]

PACS numbers: 64.60.Ak

The dynamics and the resulting geometries of nonequi- We address several issues in this Letter. What are
librium growth phenomena have been a subject of muclthe geometries of the optimal polymer in a strongly
recent study. It is now recognized that the simplesdisordered medium in higher dimensions? What is
nonlinear continuum growth equation that captures théhe upper critical dimensionality for this problem? Is
physics of ballistic deposition, flux lines in supercon-the geometry of the polymer in a strongly disordered
ductors, as well as Eden growth is that due to Karmedium universal? Our study is carried out in the
dar, Parisi, and Zhang (KPZ) [1,2]. The KPZ equationcontext of a growing invasion percolation cluster. In
in 1 + 1 dimensions has an exact solution. The expo+this procedure, the bonds of the lattice are assigned
nent describing the power-law dependence of the saturatrengths in a quenched random manner, and a cluster
tion width of the rough interface on the lateral systemgrows by invading the weakest interfacial bond. We
size axpz = % the exponent characterizing the temporalwill show that both bond and site variants of percolation
growth of the roughnesgxp; = % and the dynamical lead to the same universality class. We then go on
exponent of the saturation time as a function of the laterao study an analogous model witnnealedinstead of
sizezgxpz = a/B = 3/2 [2]. Strikingly, the KPZ equa- quencheddisorder. In this case all interfacial bonds
tion with annealednoise (uncorrelated in space and timehave an equal probability of being invaded. We present
and random) can be mapped to the problem of a directedrguments and numerical evidence that even though
polymer (DP) in a random medium [3] or equivalently, in the randomness is annealed, the effects of quenched
two dimensions(D = 2), the pinned domain wall prob- disorder areself-generatedwvithin the model leading to
lem in random exchange ferromagnets [4]. Both thesgeometries that are self-affine and characterized by the
situations correspond tguenchedrandomness arising roughness exponeatpp. Thus, within the same process,
from a fixed (in time) disordered environment. Yet thethe interface of the Eden cluster is characterized by a
DP has a self-affine geometry with the exponent characdynamical exponentkpz, Whereas the static wandering
terizing the end-to-end displacementp equal tol /zxp;  €xponent of the strands of the cluster is givenlBykpz
[2,4]. The upper critical dimension of the KPZ equation(a strand is defined as the unique path that excludes
is believed [5] to be 5 (i.e4 + 1). dead ends from an arbitrary site to a central seed

The geometry of an undirected polymer (path) at zeresite). Our results have a wide range of applicability—
temperature in a strongly disordered medium has beetiie strong disorder limit is relevant up to a correlation
recently considered [6] i = 2. As before, the bonds of length in a variety of situations [7] including transport in
the medium are quenched random variables. All possiblemorphous semiconductors at low temperatures, electrical
configurations of the polymer are considered that starconduction and fluid flow in porous rocks, and the
and end at given sites (the length of the polymer is notnagnetic properties of doped semiconductors. Further,
fixed)—the optimal one is that with the lowest cost. Thethere are novel forms of percolation that are equivalent
cost of a particular configuration is assumed simply toto the problem of the optimal polymer in a strongly
be equal to the largest bond within it. In the case of adisordered environment [6]. Our prediction of the self-
tie, the next largest bond is used as a tiebreaker and generated quenched randomness ought to be observable
on. Strikingly, a new universality class was found in thisin Eden growth and other random invasion processes.
case: The polymer is no longer self-affine but is self- We begin with an alternative way to view the geometry
similar with a fractal dimensionp; =~ 1.2 in 2D [6]. of the polymer in a strongly disordered environment. We
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FIG. 2. Average length/) of the optimal polymers (paths)
in the strong disorder limit versus the spanning distance
The dimensionalities of the systems are indicated. The
lid and open symbols are for the bond and site disorder
roblems, respectively. The data points for the site problem

FIG. 1. A cluster generated in a 2D invasion percolation
process on a square lattice with a central seed site, indicat
by a larger circle. Here, the growth has been stopped whe

the maximal horizontal distance reached is equal to 128 lattic s o -
constants. The bonds picked during the se?ection of growt ave been multiplied by 5/4 so that they almost coincide with

sites are indicated. They form a loopless network of strandshe corresponding data points for the bond problem. The slopes

: A : ; L indicated correspond t®, shown in Table I. The number of
The circles indicate sites with a significant overlap of thesamples is as follows: (a) square lattice— 20 000Zfarp to 40

individual strands. and at least 3000 for largér's; (b) cubic lattice—20 000 fof.
up to 10 and at least 5000 for largkts; (c) 4D hypercubic—

; ; tween 2000 and 40000. The slopes shown in Table | are
assume that random numbers are assigned in a quenCh%@eraged between the site and bond problems. The average

random manner to the bonds of a lattice. \We NoWansyerse displacement scales linearly withThe inset shows
describe an invasion percolation process [8] starting fron scaling plot of the distribution of the path lengtti(), for

a central seed site. We consider all possible bonds thafte 2D bond problem for the values bfindicated in the inset.

the invasion can take place into and pick the bond with,

say, the smallest random number assigned to it. The

same procedure is used with the enlarged set of interfacial We now turn to the annealed version of the invasion
bonds with the invasion proceeding only to previouslypercolation problem. We proceed exactly as before except
uninvaded sites. This procedure avoids loops, and ththat all interfacial bonds have an equal probability of
resulting structure is a spanning tree that is the union of albbeing invaded again leading to a spanning tree. This
the optimal polymer configurations from the central seecprocedure is the same as the Eden growth problem that
site to each of the other sites on the lattice [9]. Note thahas been well studied in the biological context of the
when two polymers intersect they overlap the rest of thdormation of cell colonies such as tissue cultures or
way to the central site (Fig. 1). Since the upper criticalbacterial growth. The scaling properties of the interface
dimension of invasion percolation is 6 [10], this mappingof the Eden cluster is described by the annealed KPZ
allows us to deduce that the upper critical dimensiorequation. The growth process results in each occupied
of our problem is also 6—abov® = 6, the optimal site having a unique path to the seed site with the whole
polymer has a fractal dimension of 2 corresponding tccluster being a union of such paths. A 2D example of the
that of an uncorrelated random walk. Eden network of paths is shown in Fig. 3.

We have carried out detailed numerical studies to de- We have carried out detailed studies of the geometry of
termineD; in two, three, and four dimensions on a hyper-the Eden cluster network. We have monitored the length
cubic lattice. Figure 2 shows a plot of the mean polymerand transverse displacement of the strand that first reaches
length versus the distance spanrigd for both bond and
site percolation. The bond and site percolation exponents
are consistent with each other in accord with universalTABLE I.  Summary of the numerical results obtained in this
ity, and we find the approximate resulty = (D + 4)/5  work on hypercubic lattices.
for the dimensions studied. The precise values of the nu-
merically determined exponents are shown in Table I. We

a—~Eden strands  D;—Invasion percolation strands

note that the geometry of the strands of an invasion per—g 8'22 f 8'8; ifé :f 8'8%
colation cluster is a new universal attribute [11] of these4 0.50 + 0.02 159 = 0.02

clusters and should be experimentally accessible.
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il FIG. 4. The transverse end-to-center distance of the most
forward paths, generated in the Eden growth in a spherical
FIG. 3. Same as Fig. 1 but for an Eden growth procesgjeometry on L-dimensional lattices, as a function of the
stopped when the maximal horizontal distance reached is equidngitudinal distancel. The square, triangle, hexagon, and
to 64 lattice constants. circular symbols correspond to the square, triangular, cubic,
and 4D hypercubic lattices, respectively. The slopes indicated

. . . correspond to those shown in Table I. The number of samples is
a distancd. from the seed along, say, thelirection. The as follows: (a) square lattice—42 000 fbrbetween 4 and 128,

results for the transverse displacementiirdimensional 12000 forz, = 192 and 256; (b) triangular lattice—27 000; (c)
systems presented in Fig. 4 and summarized in Table dubic lattice—more than 40000 fdr between 4 and 32, 5000
show that the Eden paths aself-affine. In particular, for L = 40, and 3000 forZ = 64; (d) 4D hypercubic—more

in the 2D case, for both thesquare and trlangular than 25000 forL between 4 and 12, anq 11000.fbr= 16.
The average length of the paths scales linearly &ith
lattices, our results are consistent with= app = g.

On increasingD, «a decreases but apparently remains in

the DP universality class [2]. This is a quite unexpectednedium ought to be larger than that of a random walk

and striking result, since the disorder is annealed and notith the same number of steps. These two observations,

quenched. along with the conjecture [12] that the Eden strand is
In addition to the spherical geometry, we have alsdn the same universality class as a DP in a quenched

studied Eden growth on 1D and 2D substrates with eachandom environment, lead to/D; = app = % Since

substrate site acting as a seed. Periodic boundary co®; becomes equal to 2 fab = 6, we deduce that the

ditions are imposed in the directions parallel to the subupper critical dimensionality of the DP problem [5] (and

strate. We have determined the transverse displacemetigence the KPZ equation) is6 (= 5 + 1).

away from a mother seed, fall sites in the Eden clus- We are indebted to Mehran Kardar and Michael Moore

ter which are at a vertical distandefrom the substrate. for bringing Ref. [12] to our attention and for useful dis-
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