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Effects of pore walls and randomness on phase transitions in porous media
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We study spin models within the mean field approximation to elucidate the topology of the phase diagrams
of systems modeling the liquid-vapor transition and the separation of3He-4He mixtures in periodic porous
media. These topologies are found to be identical to those of the corresponding random field and random
anisotropy spin systems with a bimodal distribution of the randomness. Our results suggest that the presence of
walls ~periodic or otherwise! are a key factor determining the nature of the phase diagram in porous media.
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I. INTRODUCTION

Critical phenomena are generally well understood but
effects of randomness on the nature of the transitions are
well studied. This is especially true in the case of pha
transitions that take place in porous media where the eff
of quenched randomness are provided by the pore w
Among the best studied are phase transitions in highly
rous aerogels@1#—both the liquid-vapor transition@2# and
thel transition of4He @1,3,4# have been found to be remark
ably sharp. Even more interestingly, the topology of t
phase diagram for3He-4He mixtures in aerogels has bee
found to be different from that in the bulk@1,5#.

The simplest theoretical framework for studies of critic
phenomena in nonrandom systems is the Ising model.
important role played by multiple length scales at a criti
temperatureTc leads to universality@6–8#—binary alloys
which are about to order, binary liquids which are about
phase separate, certain kinds of magnets with uniaxial an
ropy which are about to become magnetized all exhibit
same critical behavior as the Ising model. Perhaps the s
plest extension that incorporates randomness is the ran
field Ising model~RFIM! wherein a quenched random fie
is applied at each site@9–11#. One example of the probability
distribution is the symmetric bimodal distribution which co
responds to a situation in which half of the sites experie
an up field and the other half, a down field of equal streng
Another example involves fields which are Gaussian dist
uted. In both cases, the symmetry between the up and d
directions is not broken by hand and thus provides a sc
for a spontaneous symmetry breaking and a phase trans
associated with it.

Recent research@12–16# has led to the result that the tw
probability distributions may correspond, at least in dime
sions 3 and larger, to distinct behaviors associated with
RFIM. The Gaussian case is governed by aT50 fixed point
while the bimodal model’s phase diagram is qualitative
different. The origins of the two distinct scenarios relate
1063-651X/2002/66~5!/056124~9!/$20.00 66 0561
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their quite differentT50 phase diagrams.
Experimental realizations of the RFIM include dilute a

tiferromagnets in a uniform field@17–20# and binary liquid
mixtures in a porous medium@21–28#. In both these cases
many of the expected signatures associated with the R
with a Gaussian distribution of random fields were observ
@17–20# ~but significant deviations were also found when t
disorder was correlated@20#!. However, the sluggish dynam
ics and irreversibility predicted by the theory@10,11,29# pre-
cluded accurate measurements of the exponents for bi
liquids in porous media. Nevertheless, the exponents de
mined for the dilute Ising antiferromagnet in a uniform fie
were in accord with the theory.

A major surprise in this field were the measurements
Chan and his collaborators@2,30# on the liquid-vapor transi-
tion of helium and hydrogen in a variety of porous med
While the liquid-vapor coexistence region was considera
shrunk compared to the bulk uniform case, the expone
were found to be much more akin to those of the unifo
Ising model instead of the RFIM. It has been sugges
@31,32# that these features are related to the properties of
RFIM with the fields being distributed bimodally~though not
necessarily symmetrically!.

Another surprise was the different shape of the exp
mentally determined@1,5,33# phase diagram of the3He-4He
mixtures in porous media which allowed for superfluidity
large concentrations of3He. The classical aspects of th
phase separation are captured by the Blume-Emery-Griffi
~BEG! @34# spin-1 model with an anisotropy. The presence
a porous medium can be modeled by making this anisotr
random with a bimodal distribution@35#.

In this paper, we focus on the role played by pore walls
liquid-vapor transitions in porous media, as studied in th
corresponding spin-1

2 Ising spin systems. There are two a
pects to the role of walls in a porous medium. First, there
a preference for one of the phases over the other in the
cinity of the walls. This mechanism alone ought to lead
observable consequences even when the placement o
©2002 The American Physical Society24-1
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CIEPLAK et al. PHYSICAL REVIEW E 66, 056124 ~2002!
walls is substantially periodic, i.e., the different phases
connected but there is no inherent randomness. Second
random placement of the walls in the porous medium p
vides quenched disorder and can induce further change
the phase behavior. The principal result of our paper is
the former aspect is more crucial—indeed, we show t
within the framework of simple models, the phase diagr
does not change on incorporating randomness. This find
is consistent with the analysis by Galam and Aharony@36#
indicating that the mean field results of a ferromagnet i
random longitudinal field are the same as a uniaxially an
tropic antiferromagnet in a uniform field. Our results sugg
that liquid-vapor transitions in designed porous media, wit
periodic geometrical pattern@37,38#, ought to exhibit behav-
ior quite akin to that observed in random porous media.
demonstrate these findings in simple mean field Ising mo
and two distinct values of the local magnetic fields. We th
generalize these studies to spin-1 Ising models with non
form anisotropy and show that such systems behave like
random anisotropy BEG systems with a bimodal distribut
of the anisotropies@35#. Our results suggest that th
3He-4He phase separation is also primarily governed by
mere presence of walls in the porous medium and not
domness.

It should be noted that there have been several re
mean field studies of phase transitions in random porous
dia @39–41#. One would expect that fluctuations in lowe
dimensions@42# could play a key role in qualitatively modi
fying the mean field picture.

II. EFFECTS OF CONFINEMENT IN THE RANDOM
FIELD ISING MODEL—THE SYMMETRIC CASE

We start by considering the simplest case—that of f
Ising spins located at two kinds of sites, 0 and 1, as show
Fig. 1~a!. Periodic boundary conditions are adopted in t
plane of the figure. Furthermore, it is assumed that above
below this plane, there are spins which sit in locations t
repeat the pattern shown and allow for a connected strin
nearest neighbor 0 and 1 sites in the direction perpendic
to the plane of the paper. Physically, this geometry co
sponds to a periodic arrangements of one-dimensional str
of 0 and 1 arranged on two sublattices. All spins are coup
by a uniform exchange constantJ. The magnetic field on
sites 0 is denoted byh0 and it points up. On sites 1, on th
other hand, the magnetic field is equal toh1 and it points
down. ~The case of a simple ferromagnet with a stagge
field is obtained when periodic boundary conditions a
adopted in all directions. One then does not have conne
strings of 0 or 1 sites which lead to an inability to susta
certain phases at nonzero temperatures.!

Our objective here is to determine the phase diagram
this nonrandom system within the mean field approximat
and compare it to the corresponding mean field res
@31,32,43# of the RFIM in which the probability distribution
of the magnetic fields is bimodal: half of the randomly s
lected sites have an up-pointing fieldh0 and the other
half—a down-pointing fieldh1. The RFIM may be though
of as a modeling porous media with the sites with fieldh0
05612
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corresponding to locations near pore walls and the sites w
field h1 to the interior locations. The underlying assumpti
here is that there is a different environment near the p
wall than in the interior.

The phase diagram is obtained in the three-dimensio
space ofh0 , h1, and T and is determined by solving th
following equations for the magnetizationsm0 andm1:

m05tanh@~h012Jm014Jm1!/kBT#, ~1!

m15tanh@~2h114Jm012Jm1!/kBT#, ~2!

on sites with fieldh0 and h1 respectively. The solution is
obtained in an iterative manner that leads to self-consiste
The form of Eqs.~1! and~2! reflects the fact that each site o
a given kind has four neighbors of the other kind and t
neighbors of the same kind—the latter resulting from t
out-of-plane connectivity. Once the solutions for the loc
magnetizations are found, one can determine the free ene
F5U2TS, by calculating the internal energy

U522J~m0m01m1m114m0m1!22h0m012h1m1
~3!

and the entropy

S52s012s1 , ~4!

where

FIG. 1. ~a! The basic unit of the model used to study the sy
metric case in which there are as many sites with the local fieldh0,
denoted by 0, as with the fieldh1, denoted by 1. The 0s and 1s a
placed on two sublattices in the plane as shown and is periodic
repeated in both directions in the plane of the paper. The model
lines of 0 and 1 sites, respectively, perpendicular to the plane of
paper. In other words, the pattern shown is repeated in other par
planes.~b! The geometry of the model used to study the asymme
case. The site denoted by 0 has a fieldh0 and the remaining sites a
field h1. As before, there are periodic boundary conditions in
plane and repeat boundary conditions in the direction perpendic
to the page.
4-2



o

s

pi
pi

a

ol
s

in
is
i-

as
-

re
e
c-

sts

the
-
not

he
no

me

lls
he
n-

et-
n

y 0,
ld

s of
and
low
pat-
tion

di
tio
n
ns
ow
pe
s

nt.

ions

-
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si52kB

1

2
@~11mi !ln~11mi !/21~12mi !ln~12mi !/2#.

~5!

A first-order phase transition is identified by the presence
a cusp in the free energy.

It is easy to show that there are three possible phase
T50 in this system. We shall denote them by1, 2, and
12 and their energies byE1 , E2 , andE12 , respectively.
In the first phase, all spins are up and in the second all s
are down. In the third phase, on the other hand, the s
point in the directions of the local magnetic fields.

At T50, the1 and2 phases coexist along the diagon
direction in theh0-h1 plane~until h05h154J), as shown in
the top left panel of Fig. 2. The12 phase coexists with the
1 phase alongh154J for h0.4J and with the2 phase
alongh054J for h1.4J. All of the phase boundaries atT
50 are first-order lines denoted by dashed lines. The s
lines denote lines of continuous transitions. Two of the
lines occur close toT52J/kB and separate the12 phase
from the1 and2 phases, respectively. The star in the ma
phase diagram, where three critical lines come together,
tricritical point. The critical line corresponding to the trans
tion between1 and2 starts at 6J/kB whenh0 andh1 tend
to zero and then decreases steadily as the fields are incre
In the vicinity of h05h154J, the descent towards the tric
ritical point is almost vertical.

FIG. 2. The main panel shows the phase diagram correspon
to the symmetric case in a three-dimensional representa
h0-h1-T. The dashed lines correspond to first order transitio
whereas the thick solid lines correspond to the continuous tra
tions. The star indicates a tricritical point. The top panels sh
constant temperature slices of the phase diagram for the tem
tures indicated. The asterisk on the right hand panel indicate
critical point and the square on the top left panel is a triple poi
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A particularly simple case is obtained on fixingh0 at the
value of 6J ~corresponding to strong pinning at the po
wall! and varyingh1 andT to map out the coexistence curv
between the1 and12 phases. In order to cancel the effe
tive field introduced by the nearly fully alignedm0 spins, one
needs to impose a fieldh154J ~note that each site ‘‘1’’ has
four ‘‘0’’ neighbors! and effectively one is left with the bulk
Ising model. Figure 3 shows that the coexistence manife
itself in the presence of two values ofm1 but a unique value
of m0. Of course, a similar scenario takes place when
boundary between2 and12 is crossed. What is quite re
markable is that the topology of the phase diagram does
change even when randomness is introduced@31,32,43# in
such a way that the symmetry between the1 and2 phases
is maintained. Thus within the mean field theory, for t
symmetric case, the random placement of the walls plays
role at all. We will show in the rest of the paper that the sa
result holds for more complex situations.

III. EFFECTS OF CONFINEMENT IN THE RANDOM
FIELD ISING MODEL—THE ASYMMETRIC CASE

In porous media, the volume of a fluid near the pore wa
is usually much less than the volume of the fluid in t
interior. In the Ising spin model, this translates into an u
equal number of sites with fieldsh0 and h1. In fact, in a
random version of the model, we@31# considered a situation
in which a fractionp of the sites has a fieldh0—the sym-
metric case is obtained whenp5 1

2 .
In order to study the effects of walls under such asymm

ric conditions, we consider, for simplicity, the model show
in Fig. 1~b! which is a generalization of Fig. 1~a!. The plane
of the figure shows nine sites. The central site, denoted b
has a local field ofh0. The remaining eight sites have a fie
of h1 and they are denoted by 1 and 2. Thusp5 1

9 but there
is no randomness. The distinction between the two classe
sites, 1 and 2, is that the former have site 0 as a neighbor
the latter do not. Again, it is assumed that above and be
the plane shown there are other planes which repeat the
tern of the central plane so that each site has a coordina

ng
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s
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ra-
a

FIG. 3. The temperature dependence of the local magnetizat
m0 and m1 on crossing the boundary between the1 and 12
phases ath056J. For temperatures belowT52J, there is a coex-
istence of two values ofm1 but m0 stays essentially fully magne
tized up toT52J.
4-3
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number of 6. Recall that the boundary conditions along
two directions within the plane are periodic.

The mean field equations for the three magnetizati
read

m05tanh@~h012Jm014Jm1!/kBT#, ~6!

m15tanh@~2h11Jm013Jm112Jm2!/kBT#, ~7!

m25tanh@~2h112Jm114Jm2!/kBT#. ~8!

The internal energy of the system is given by

U52J~m0m016m1m118m2m214m0m118m1m2!

2h0m014h1m114h1m2 ~9!

and the entropy by

S5s014s114s2 . ~10!

This system continues to have three phases atT50 as
indicated in the top left panel of Fig. 4. The boundaries
tween the phases, however, are shifted to new locations.
instance, the1 and 2 phases coexist along the lineh0
58h1, from the origin untilh054J. The1 and12 phases
coexist alongh15 1

2 J for h0.4J whereas the2 and 12

FIG. 4. The main panel shows the phase diagram correspon
to the asymmetric case in a three-dimensional representa
h0-h1-T. The dashed lines correspond to first-order transitio
whereas the thick solid lines correspond to continuous transiti
The pentagon indicates a critical end point. The top panels s
constant temperature slices of the phase diagram for the tem
tures indicated. The asterisk on the right hand panel indicate
critical point, whereas the square on the top left hand panel
triple point.
05612
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phases coexist alongh054J for h1.J/2. The triple point at
which all the three phases coexist is atT50, h054J, and
h15 1

2 J.
The emergence of the three phases is the only simila

that exists between the symmetric and the asymme
model. The way they coexist at nonzero temperatures,
instance, is quite different. The biggest distinction, shown
the main panel of Fig. 4, is that now the two sheets sepa
ing the 1 phase from the12 and the1 and 2 phases
along the diagonal direction combine together to form o
surface. This surface has a tilt that is clearly visible on
right top panel of Fig. 4 which shows a section of the pha
diagram atkBT55.5J. The surface terminates at a critic
line which falls very gently fromkBT56J at h050 andh1
50 to about 5.5J at h058.5J andh150.42J.

The coexistence surface of the2 and12 phases contin-
ues to be substantially planar with a critical line close toJ
reflecting the one-dimensional connectivity of the 0 sit
This line of critical points intersects the combined1,2 and
1,12 coexistence surface at a critical end point atkBT
52.05J, h053.9612J, and h15 1

2 J. Quite remarkably, the
topology of this phase diagram is exactly as in the rand
case@31#.

The coexistence curves forh056J ~again mimicking a
strong pore-wall interaction! are shown in Fig. 5. Physically
the transition corresponds to crossing from a phase in wh
the interior of the pore space is filled by liquid to one
which the liquid coats the walls and the vapor occupies
interior. Note the unusual geometry of the coexistence cu
The magnetizationsm1 and m2 have broad coexistenc
curves, similar tom1 of Fig. 3 for the symmetric case. On th
other hand, the coexistence curve form0 is much narrower
than for m1 and m2 and its nonzero width arises when th
values ofm1 andm2 are distinct. Whenm25m1 , m0 has a
unique value in analogy to the symmetric case. It should
noted that there are just two coexisting solutions—the lar
value of m0 selects positive values ofm1 and m2, whereas
the smaller values correspond to negativem1 andm2.

ng
on
,
s.
w
ra-
a
a

FIG. 5. The temperature dependence of the local magne
tions,m0 , m1, andm2 on crossing the boundary between the1 and
12 phases ath056J. The coexistence curve form0 is much nar-
rower than form1 andm2. There are two coexisting solutions an
the larger value ofm0 selects positive values ofm1 and m2,
whereas the smaller values correspond to negativem1 andm2.
4-4
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IV. SUPERFLUID PHASES IN 3He-4He MIXTURES IN
AEROGEL

We turn now to a discussion of spin systems modeling
phase separation of3He-4He mixtures. Figure 6~a! shows a
sketch of the experimental phase diagram@in the T-x plane,
whereT is the temperature andx is the concentration of3He]
of the bulk3He-4He mixtures in the vicinity of the super
fluid transition of 4He. In the temperature range of intere
the superfluid transition involving the pairing of3He atoms
is not a factor and indeed the3He atoms can be thought of a
inert, annealed~i.e., they are not stuck in space but can mo
around! entities. At low 3He concentrations, on cooling th
system, a superfluid transition denoted by the solid line (AB)
is observed. However at higher3He concentrations, the sys

FIG. 6. Schematic representations of the experimentally@panels
~a! and ~c!# and theoretically determined phase diagrams
3He-4He separation as described in more detail in the text. T
phase diagram is shown in theT-x plane, whereT is the tempera-
ture andx is the concentration of3He. Panels~a! and ~b! corre-
spond to experimental and theoretical results for the bulk case
other panels refer to random situations. Panel~c! corresponds to the
experiments in aerogels. Panel~d! corresponds to the mean fiel
analysis of the random anisotropy BEG model with a bimodal d
tribution of the anisotropies. Panels~e! and ~f! correspond to theo-
retical results in whichp, the fraction of randomly chosen site
corresponding to the pore walls, is smaller or larger than the pe
lation threshold, respectively.
05612
e

,

e

tem opts to phase separate into a4He rich region which
becomes superfluid. The coexistence curve of the3He-4He
phase separation is shown as a dashed curve (CBD). Two
interesting features of the phase diagram are the tricrit
point B, where the superfluid transition line collides with th
coexistence curve at its critical point and the miscibility g
at C—small amounts of3He added to4He do not lead to
phase separation, a feature exploited in dilution refrigerat

Perhaps, the simplest classical model that captures
topology of this phase diagram is the BEG model@34# which
is a lattice model populated with spinsSi that can take on
one of three values 0, -1, or 1. The inert3He is represented
by 0 spins and4He is denoted by11 or 1 spin values. An
exchange coupling between the nearest neighbor non
spins, favoring alignment, causes the analog of the supe
idity transition with the broken symmetry phase having
nonzero magnetization~i.e., a mismatch in the number o
11 and 1 spins!. The Hamiltonian reads

H52J(̂
i j &

SiSj1(
i

DSi
2 , ~11!

where D is an anisotropy field which controls the relativ
concentrations of the two isotopes. The presence of4He cor-
responds toSi561, superfluidity of4He to the existence o
nonzero magnetization and the3He atoms are represented b
Si50. The random anisotropy field here does not break
6 symmetry.

The resulting phase diagram@shown in Fig. 6~b!# has all
the correct qualitative features, except for the absence of
miscibility gap atC which is believed to arise from a purel
quantum mechanical effect. Even though the BEG mode
purely classical and does not have the correct symmetr
the spins~the superfluid transition has the same characte
tics of the transition in axy model in which spins lie in a
plane rather than having up-down symmetry!, it nevertheless
reproduces almost all the qualitative features of the exp
ment correctly.

Recent experiments of Chan and co-workers@1,5,33# on
the phase separation of3He-4He mixtures in aerogel in the
vicinity of the superfluid transition have yielded a phase d
gram shown in Fig. 6~c!. The key features of the phase di
gram are~i! the absence of the tricritical point~the superfluid
transition line no longer intersects the coexistence curve!, ~ii !
an enhancementof the superfluid transition temperatur
compared to the bulk at large3He concentration,~iii ! at low
temperatures~below the critical point associated with th
phase separation! and for a range of values ofx within the
coexistence curve,4He rich and 3He rich regions coexist,
both of which are superfluid, and~iv! the experimental data
while restricted to temperatures above 0.35 K, are sugges
that the aerogel causes a miscibility gap to open up at la
value ofx. This is of fundamental importance, if true, sinc
the superfluid phase observed is the one in which a sm
quantity of 4He in 3He does not phase separate~as observed
in the bulk!, but is yet superfluid and probably represents
long sought after dilute Bose gas superfluid phase. E
more exciting, such a miscibility gap would lead to an e
tremely different situation of two distinct coexisting supe
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CIEPLAK et al. PHYSICAL REVIEW E 66, 056124 ~2002!
fluid phases at low temperatures, the dilute Bose gas pha
4He and the superfluid phase of3He. Two factors in suppor
of the dilute superfluid phase are the following.~a! Adding a
small amount of4He to the aerogel~in the absence of3He)
leads to a superfluid phase whose density isenhancedby the
addition of 3He. ~b! Because a coexistence curve for t
phase separation is found in the phase diagram, it is plaus
that there isno phase separation in the region betweenB and
D @Fig. 6~c!#, since it is unlikely to expect phase separati
of an already phase separated phase.

V. THE RANDOM ANISOTROPY BEG MODEL

In the BEG model the effect of the aerogel is assumed
be present on a fractionp of the sites, these sites are ra
domly chosen and fixed~unlike the mobile3He atoms, the
aerogel is a manifestation of quenched randomness!. The dis-
tribution of the single-site anisotropies is bimodal and giv
by @35#

P~D i !55pd~D i2D0!1~12p!d~D i2D1!. ~12!

The sites with anisotropyD0 correspond to the vicinity of
pore walls and for the situation in which4He prefers to be
near the wall,D0,0. The D1 anisotropy characterizes th
pore interior and its value controls the total number of3He
atoms. In a mean field approach, one obtains the phase
gram shown in Fig. 6~d!. Note that this is in accord with the
experimental observations~i! and ~iii !, but does not repro-
duce~ii ! and~iv!. The tricritical point~where three phases g
critical simultaneously! requires a special symmetry, whic
is absent when one incorporates the random anisotrop
mimic the aerogel. The line of superfluid transitions is, ho
ever, virtually insensitive to the presence of the random
isotropy. The coexistence curve, however, is shifted to low
temperatures and higher effective4He concentration due to
the space taken up by the aerogel, thus leading to the to
ogy shown in Fig. 6~d!.

In order to investigate whether this lack of comple
agreement arises due to quantum mechanical effects
their neglect by the BEG model or due to the inherent s
plicity of the mean field approach, we have carefully stud
the BEG model within an improved mean field theory whi
is a generalization of the approach presented in Ref.@44#.
The improved method captures features such as a percol
threshold and yields better estimates of the transition t
perature than the mean field theory.

The phase diagrams in Figs. 6~e! and 6~f! are obtained
depending on whether the fractionp of the sites at which the
aerogel is present is less than or greater than the percol
thresholdpc . Unlike the porous medium aerogel, which h
a strongly correlated, connected interface, our model, in
simplest form, consists of randomly chosen interface s
allowing for a percolation threshold. In the experiment,
spite of the large porosity, one is always in the fully co
nected regime. Note the presence of a miscibility gap at h
3He concentrations. Unlike mean field theory@Fig. 6~d!#, the
point D is at a concentration less than (12p). Indeed, our
calculations suggest a second coexistence curve betweD
05612
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and the point (x512p; T50) analogous to the one be
tweenC andD except that the critical temperature is shifte
down to zero. Thus for concentrations of3He corresponding
to points betweenD and (x512p; T50), and temperatures
less than the superfluid transition lineAB, the model predicts
the analog of the dilute Bose gas superfluid phase.

The superfluid transition temperature smoothly extra
lates to the value of the transition temperature of a coa
phase of helium atoms residing on the aerogel surface. T
is dramatically seen in Fig. 6~f! where the transition plunge
to zero atx512p whenp is less than the percolation thres
old pc and is unable to sustain a phase transition at nonz
temperatures. Within the context of the BEG model, the
perfluid phase is found to be one in which the magnetizat
~superfluidity! arises from the aerogel sites and from the si
in their vicinity. Indeed, in any classical model with sho
range interactions, the spins yielding a nonzero magnet
tion must lie on a connected cluster and are thus in an es
tially phase separated phase. This phase separation, how
doesnot preclude a further bulklike phase separation on
creasing the concentration of4He atoms. In our BEG model
the minimum number of4He atoms is equal to the number o
aerogel surface sites. A further addition of4He atoms~in the
absence of3He) causes an increase in the magnetizati
corresponding to the attachment of some of these atom
the already existing spanning cluster at the aerogel surf
Subsequent addition of3He atoms results in more o
the 4He atoms going in the cluster, thereby enhancing
magnetization, as in the experiment. We have also stud
the effects of correlation in the selection of aerogel surfa
sites: the probability of a nearest neighbor site of an aero
surface site to be another aerogel surface site is enha
compared to a completely random selection. We find that
correlation enhances the superfluid transition tempera
compared to the bulk in accord with experiment.

In summary, a simplified model for3He-4He mixtures in
aerogel reproduces many~but not the miscibility gap at low
3He concentrations! of the features observed in experimen
and suggests the opening of a miscibility gap at low4He
concentration. The analog of the dilute Bose gas ph
within the classical model is the one in which the superfl
idity arises from4He adsorbed on the aerogel. Note that th
does not however preclude further phase separation. Coo
the system to ultralow temperatures in the miscibility gap
high 3He concentrations should lead to two coexisting sup
fluid phases:3He and the4He near the aerogel. It would b
very exciting if quantum mechanical effects~not considered
here! delocalize the4He atoms leading to a dilute Bose ga
phase at higher temperatures and interpenetrating4He
and3He superfluid phases at low temperatures.

It should be noted that much of the physics correspond
to the scenarios of Fig. 6 has been captured by the renor
ization group analysis of Berker and his collaborators@45–
48#. They considered random and nonrandom models of
aerogel and explained the phase diagrams by the conne
ity and tenuousness of the aerogel.

VI. EFFECTS OF CONFINEMENT IN THE BEG MODEL

In order to study the separate roles of the presence
walls and randomness in3He-4He separation, we again con
4-6
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sider the geometry shown in Fig. 1~b! and set up mean field
equations that correspond to the spin-1 problem. These e
tions for the magnetizations, i.e., the expectation values
Si , and for the three parametersq0 , q1, andq2 which are the
expectation values ofSi

2 , are

m05q0tanh@~2Jm014Jm1!/kBT#, ~13!

m15q1tanh@~Jm013Jm112Jm2!/kBT#, ~14!

m25q2tanh@~2Jm114Jm2!/kBT#, ~15!

and

FIG. 7. The phase diagram for the BEG model with a bimo
nonrandom distribution of the anisotropies in a three-dimensio
representationD0-D1-T. The broken lines correspond to the firs
order transitions, whereas the solid lines correspond to continu
transitions.

FIG. 8. Constant temperature slices of the phase diagram sh
in Fig. 7 at the temperatures indicated.
05612
a-
of

qi

5
4 exp~22D i /kBT!2Ami

214 exp~22D i /kBT!~12mi
2!

4 exp~22D i /kBT!21
.

~16!

The internal energy is given by

U52J~m0m016m1m118m2m214m0m118m1m2!

1D0q014D1q114D1q2 ~17!

and the entropy by

S5 s̃014s̃114s̃2 , ~18!

where

s̃i52kBF ~12qi !ln~12qi !1
1

2
~qi1mi !ln~qi1mi !/2

1~qi2mi !ln~qi2mi !/2G . ~19!

In direct analogy to the random case@35#, there are four
posssible phases atT50.

~1! Phase 1 in which all threemis are nonzero.
~2! Phase 2 in whichm0.0, m15m250.
~3! Phase 3 in whichm050, m1 , m2.0.
~4! Phase 4 in whichm05m15m250.
In each phase,qi5mi at T50. The nonzero magnetiza

tion persists to higher temperatures and its disappeara
corresponds to thel line for superfluid4He. ~Note that our
analysis lumps in any inert or dead layer of4He as belonging
to the pore wall.! The analog of the3He concentration is
given by

x512~q014q114q2!/9. ~20!

The overall topology of the phase diagram is shown
Fig. 7 and several isothermal slices through it are shown

l
al

us

wn

FIG. 9. Plot of the critical lines~the temperature at which th
magnetization goes to zero! as a function ofD1 for the indicated
values ofD0.
4-7
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Fig. 8. At low temperatures all four phases exist and th
number goes down on increasing the temperature. ThT
50 boundaries are given by

~a! 1-2 coexistence atD15 13
4 J, D0,J.

~b! 1-3 coexistence atD055J, D1, 11
4 J.

~c! 1-4 coexistenceD15 27
8 J2 1

8 D0 , J,D0,5J.
~d! 2-4 coexistence atD05J, D1. 13

4 J.
~e! 3-4 coexistence atD15 11

4 J, D0.5J.
These first-order boundaries become vertical surfaces

considering theT axis. The top edges of these surfac
are critical lines. This has as its roof a critical surface
which the magnetization disappears. Of course phase
which is paramagnetic, is not covered by a roof. This ro
corresponds to the superfluid transition of4He or thel line.
The shape of the roof is illustrated in Fig. 9 for several v
ues ofD0. In the figure, forD0 /J<0.8, the roof continues
indefinitely for largeD1, becausem0 remains zero at suffi-
ciently low temperatures. However, whenD0 /J, the roof
smoothly terminates at the top of the wall separating plane
and 4. This is necessitated by the fact that phase 4 ha
roof.

Figure 10 illustrates the nature of the phase diagram
selected values ofD0. The insets show the transition lines
a function of D1 and the main figures—as a function
x—the analog of the3He concentration. The top two pane
of Fig. 10 refer to the uniform anisotropy case—whenD0 is
equal toD1 and confirm that this simple nine-spin mod
captures the topology of the phase diagram of the unifo
BEG model@34#.

The physically interesting regime is that of negativeD0

FIG. 10. Top left panel: The phase diagram for the unifo
~bulk! anisotropy BEG model in theT-x plane, wherex is the spin
analog of the concentration of3He. Top right panel: The sam
phase diagram but in theT-D1 plane.l indicates the critical line for
the magnetization and I the first-order transition in theq-order pa-
rameter. Middle left panel: The phase diagram for the nonunifo
~periodic! anisotropy BEG model in theT-x plane. The data are fo
D0520.5J. Middle right panel: The corresponding phase diagr
in the T-D1 plane. The bottom panels: The phase diagrams forD0

5D1/5.
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which favors4He near the pore walls. It is seen that, asD1 is
varied, thel line becomes disconnected from the pha
separation coexistence lines~the middle panels!. The details
depend on how one moves on theD0-D1 plane. For instance
if one crosses the 1-2 and 2-4 boundaries at an angle,
gets the situation depicted in the bottom panels of Fig.
All of these phase diagrams are in accord with the rand
anisotropy version of the model except that thel line of the
bottom panels of Fig. 10 does not reemerge fro
the 3He-4He coexistence region because this region end
x51 in this simple model and not at anx which is less than
1. Figure 11 shows the coexistence curves for theq-order
parameters forD0520.5J. They are remarkably similar to
the magnetization coexistence curves of Fig. 6. In particu
the nonzero width for the coexistence region inq0 reflects
inequality ofq1 andq2.

The basic message of our analysis is that the topolog
the phase diagram changes qualitatively~in accord with ex-
periment! when one moves in the (D0-D1) plane such
that instead of going directly from phase 1 to the param
netic phase 4, one moves through the intermediate phas
Somewhat surprisingly and at odds with expectations,
finds that the mean field topology of the phase diagram
more sensitive to the presence of walls in a porous med
than to the role played by their random placement. A sim
conclusion has been reached by Pricaupenko and Tre
@49# within a nonlocal density functional analysis o
3He-4He mixtures in a channel geometry. In particular th
analysis shows possibility of the detachment of the sup
fluid line from the coexistence region. It would be interesti
to consider whether fluctuations make a qualitative diff
ence in the conclusions reached in our simple mean fi
analysis.

We are indebted to Moses Chan for stimulating disc
sions. This work was supported by the Center of Collect
Phenomena in Restricted Geometries, the Penn State
SEC under NSF Grant No. DMR-0080019, INFM, MURS
and NASA.

FIG. 11. The coexistence curves for the order parameterq on the
three sites whenD0520.5J. There are two coexisting solution
and the larger value ofq0 selects larger values ofq1 andq2.
4-8
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