
PHYSICAL REVIEW E SEPTEMBER 2000VOLUME 62, NUMBER 3
Dynamical chaos and power spectra in toy models of heteropolymers and proteins
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The dynamical chaos in Lennard-Jones toy models of heteropolymers is studied by molecular dynamics
simulations. It is shown that two nearby trajectories quickly diverge from each other if the heteropolymer
corresponds to a random sequence. For good folders, on the other hand, two nearby trajectories may initially
move apart but eventually they come together. Thus good folders are intrinsically nonchaotic. A choice of a
distance of the initial conformation from the native state affects the way in which a separation between the twin
trajectories behaves in time. This observation allows one to determine the size of a folding funnel in good
folders. We study the energy landscapes of the toy models by determining the power spectra and fractal
characteristics of the dependence of the potential energy on time. For good folders, folding and unfolding
trajectories have distinctly different correlated behaviors at low frequencies.

PACS number~s!: 87.15.2v, 71.28.1d, 71.27.1a
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I. INTRODUCTION

The notion of chaos in physical systems has sev
meanings. For instance, in the context of spin glasses it
fers to the phenomenon of instability of the ground st
against weak perturbations in the exchange couplings@1#. In
the context of dynamical systems, on the other hand, it re
to an acute sensitivity of trajectories to the initial condition
Both of these meanings have relevance for understan
proteins and random heteropolymers.

In sequences of aminoacids, the static chaos can
probed by investigating how mutations affect the stability
the ground state. Several studies@2–4# have demonstrated
that the native state of a random heteropolymer is unst
against mutations whereas there is stability in designed
quences provided the lengths of the sequences,N, are suffi-
ciently small. It should be noted that the mutations may h
a strong effect on folding kinetics even in the case of sh
proteins@5#. Investigation of the effects of an aminoacid su
stitution in a protein is an essence of experimental pro
dures aimed at determining the transition state in folding@6#.

Here we focus on the notion of dynamical chaos in su
systems and ask how do two folding trajectories relate
each other as the system evolves from two nearby confor
tions. Furthermore, can such information provide clues ab
the nature of the energy landscape of the system?

We consider continuum space models, as opposed to
tice models, since the latter have intrinsically discretized
namics of a rather arbitrary nature. Specifically, we consi
three toyN516 off-lattice models that have been extensive
characterized before@7–9# and whose native states a
shown in Fig. 1. The Hamiltonians of these systems are
fined in terms of the Lennard-Jones potentials~see Sec. II!
and the time evolution is determined by Newton’s equatio
that are solved by using the methods of molecular dynam
@10#. The first two of these systems, denoted in@7,8# as G
and R8, are two dimensional whereas the third, denoted
H, is a Go-like model@11# of a three-dimensional helix@9#.
The quality of folding of these systems has been determi
by using thermodynamic@12# and kinetic @13# criteria.
PRE 621063-651X/2000/62~3!/4025~7!/$15.00
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Among the three systems,G is found to be a good folder,R8
is a bad folder, andH has intermediate folding properties
Thus G is an analog of a protein andR8 corresponds to a
typical random heteropolymer andH is a borderline case
The task of this paper is to compare the chaos-related p
erties across this range of foldability.

As a measure of the distance between two conformati
a andb we takedab where

dab
2 5

1

N223N12
(

iÞ j , j 61
~ urW i

a2rW j
au2urW i

b2rW j
bu!2, ~1.1!

and whererW i
a is the position vector of thei th monomer in the

conformationa. This distance involves relative distances b
tween the monomers and is bounded due the finite spa
extent of any conformation. Thus this distance cannot
verge as time grows which makes the characterization of
dynamical chaos unconventional in this case.

Notice that once the system folds from a random conf
mation to the native state, it may either stay in the immedi
vicinity of the native state or it may depart further away a
then keep visiting the native state. This translates into t
possible scenarios for the asymptotic behavior ofdab : either
the distance saturates asymptotically at a finite value—
case ofH and R8, or it tends to zero—the case ofG. Thus
good folding properties are reflected in the small asympto
values ofdab which may be used as an alternative criteri
for good foldability. The asymptotic saturation ofdab in bad
folders is achieved at a much shorter time scale than

FIG. 1. Native conformations of three sequences studied in
work.
4025 ©2000 The American Physical Society
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needed to establish the asymptotic tendency in a good fo
Thus the bad folders can be said to be more chaotic than
good folders.

Studies of the distance between two trajectories prov
information about the energy landscape available to a
quence. Complementary information can be obtained
studying individual trajectories. This is shown in Sec.
where we consider fractal and spectral properties of the
tential energy curve,Ep(t), as seen on a trajectory as a fun
tion of time t. The power spectrum, obtained by Fouri
transformingEp(t), is found to indicate a correlated nois
pattern and it shows sensitivity to a sequence in a way wh
is consistent withH being intermediate. Furthermore, th
corresponding low-frequency power-law exponent is fou
to be markedly different for folding and unfolding traject
ries in systems of good foldability. The fractal dimension
ity of the Ep(t) curve is determined according to a procedu
developed in@14,15#. We find that, for the well-folding sys
tem, the temperature dependence of this fractal dimensio
ity has a dip around a temperature which is optimal for fo
ing. No such dip arises in poor folders.

II. THE SEQUENCES

We start our discussion by defining models that we stu
The sequences denoted byG and R8 are two-dimensiona
versions of the model introduced by Iori, Marinari, and Pa
@16#. Their native states are shown in Fig. 1. The Ham
tonian is given by

H5(
iÞ j

H k~di , j2d0!2d i , j 1114eF C

di , j
12

2
Ai j

di , j
6 G J , ~2.1!

wherei and j range from 1 toN516. The distance betwee
the beadsdi , j is defined asurW i2rW j u, where rW i denotes the
position of beadi. di j is measured in units ofs, the typical
value of which iss55 Å . The harmonic term in the Hamil
tonian, with the spring constantk, couples the beads that a
adjacent along the chain. The remaining terms represen
Lennard-Jones potential. In@16#, Ai j 5A01Abh i j , where
A0 is constant andh i j ’s are Gaussian variables with ze
mean and unit variance;b controls the strength of the
quenched disorder. The case ofh i j 50 and A05C would
correspond to a homopolymer with the standard Lenna
Jones interaction used in the simulations of liquids. In E
~2.1! e is the typical Lennard-Jones energy parameter.
adopt the units in whichC51 and considerk to be equal to
25e. Smaller values ofk may violate the self-avoidance o
the chain@7#. The coupling constantsAi j for systemR8 are
listed in Ref. @7#. These are shifted Gaussian-distribut
numbers with the strongest attracting couplings assigne
the native contacts. For systemG, Ai j is taken to be 1 or 0
for the native and non-native contacts, respectively. Sys
R’ has been shown to be structurally overconstrained
hard to fold.

The helical systemH has a native state, shown in Fig.
that mimics typicala-helix secondary structures. In this ca
the distances between beads are assumed to have the l
d053.8 Å . As oneproceeds along the helix axis from on
bead to another, the bead’s azimuthal angle is rotated
er.
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100° and the azimuthal length is displaced by 1.5 Å . The
Hamiltonian used to describe the helix is a Go-like mod
cation of Eq.~2! and it reads@9#

H5VBB1VNAT1VNON. ~2.2!

The first term is a backbone potential which includes
harmonic and anharmonic interactions

VBB5 (
i 51

N21

@k1~di ,i 112d0!21k2~di ,i 112d0!4#. ~2.3!

We taked053.8 Å, k15e, and k25100e. The interaction
between residues which form native contacts in the tar
conformation is chosen to be of the Lennard-Jones form

VNAT5 (
i , j

NAT

4eF S s i j

di j
D 12

2S s i j

di j
D 6G . ~2.4!

We chooses i j so that each contact in the native structure
stabilized at the minimum of the potential, i.e.,s i j

5221/6di j
N , wheredi j

N is the length of the corresponding na
tive contact. Residues that do not form the native conta
interact via a repulsive soft-core potentialVNON, where

VNON5 (
i , j

NON

Vi j
NON , ~2.5!

Vi j
NON5H 4eF S s0

di j
D 12

2S s0

di j
D 6G1e, di j ,dcut

0, di j .dcut .

~2.6!

Heres05221/6dcut , dcut55.5 Å .
The time evolution of the sequences is determined by

fifth-order predictor-corrector scheme@10#. The integration
step is chosen to be 0.005t, wheret5ms2/e is the charac-
teristic time unit andm is the mass of a bead. In order t
simulate systems in contact with a heat bath of tempera
T, we augment the equations of motion by the Lange
uncorrelated noise terms as described in@9#,

mr̈52G ṙ1Fc1h, ~2.7!

whereFc52¹ rEp and

^h~0!h~ t !&52GkBTd~ t !, ~2.8!

wherekB is the Boltzmann constant. We takeG equal to 2. In
the following, the temperature will be measured in the
duced units ofe/kB .

Figure 2 shows theT dependence of folding times for th
three sequences studied. The folding time is defined as
median first passage time and the folding is declared to
accomplished if the distance to the native statedns becomes
smaller than the native basin sizedc . dc is defined by the
shape distortion method@8# and it is equal to~0.260.01!s
and ~0.0960.01!s for sequenceG andR8, respectively. For
sequenceH, dc5(0.660.05) Å5(0.1260.01)s.

The folding is the fastest at the temperatureTmin below
which glassy kinetics set in. We determine thatTmin50.15
60.02, 0.460.02, and 0.360.02 for G, R8, andH, respec-
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tively. Similar estimates ofTmin were obtained with a Monte
Carlo ‘‘dynamics’’ @7# ~at a larger CPU cost!.

Socci and Onuchic@13# have proposed that what dete
mines good foldability is whether the folding temperatureTf
is outside of the range of temperatures where kinetics
come glassy.Tf is defined as a temperature at which t
equilibrium probability of being in the native state is 1/
Here, we rephrase this criterion in the following way: a s
quence is a good folder ifTf is greater thanTmin , otherwise
foldability is bad. We determineTf through a Monte Carlo
process and get values indicated by the arrows in Fig. 2.
relative values ofTmin andTf indicate what was announce
in Sec. I:G is a good folder,H is intermediate, andR8 is a
bad folder. Characterization based on the specific heat
structural susceptibility yields a similar conclusion@7–9#.

Another relevant property of a sequence is its charac
istic funnel sized f . It can be estimated by generating ra
dom conformation of the system and then quenching th
~by setting T50! and determining whether the resultin
quenched state is native or not@8#. This allows one to esti-
mate the probabilityP of getting to the native state from
conformation which isd away form the native state. Th
critical value ofd, dc above which this probability become
smaller than one may be identified as a characteristicd f .
Our results onP are shown in Fig. 3 from which we ca
deduce thatd f'0.55s, 0.35s, and 0.16s for G, R8, andH,
respectively~for H we tooks55 Å!. Thus the good folderG
has a much larger funnel, as measured by the distancedns ,
than the bad folderR8. A direct comparison ofd f for G and
R8 to that forH is not meaningful because the Hamiltonia
and dimensionalities are different. Thus even thoughd f /s
for H is the smallest among the three sequences, its folda
ity is intermediate.

III. DYNAMICAL CHAOS

In order to study the dynamic chaos we monitor two t
jectories that evolve in time from two conformations whi

FIG. 2. The temperature dependence of the folding times
sequencesG, R8, and H. The results are based on 100 starti
random conformations. The arrows indicate the folding tempe
tures.
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are initially separated by a distanceDR. We choseDR
50.001s. Smaller values ofDR yield qualitatively similar
results. The forces due to the Langevin noise are identica
both trajectories.

Figure 4 illustrates what happens with two initially near
trajectories as a function of time for systemsG, R8, andH,
respectively. The trajectories are characterized by the po
tial energy, radius of gyrationRg , and the number of estab
lished native contactsNc . Two monomersi and j are de-
clared to form a native contact if the distance between th
is in the interval@0.9di j

N ,1.1di j
N#. Independent of which of

these quantities is used, we see that the two trajecto
quickly come together for systemG but continue to be
clearly distinct for a much longer time in the case of syst
R8. SystemH involves larger scales on they axis and, on a
closer inspection, it behaves likeR8.

Figure 5 shows the time dependence ofd at T5Tmin av-
eraged over many pairs of starting trajectories. The ti
scales extend to much beyond the folding times. ForR8 and
H the distanced remains nonzero at these large time sca
but for G—d→0. Thus for good folders all two initially
separated trajectories eventually come together. This is
so for bad and intermediate folders. In general, the better
folder, the longer it takes to establish the asymptotic beh
ior in d. We can rephrase it by stating thatR’ is more chaotic
thanH because the asymptotic large separation between
trajectories is established sooner.

Figure 5 refers to trajectories that start in unfolded co
formations. It is interesting to consider what happens wh
the starting conformations come from a closer neighborh
of the native state. We generate such starting ‘‘points’’
evolving a trajectory from an unfolded conformation to va
ous stages characterized by predefined values ofdns . At
each state, we spawn a nearby companion trajectory whic
displaced byDR from the current conformation of the lead
ing trajectory. The stages can alternatively be character
by the numbers of established native contacts but thedns is
more convenient to use when one deals with long h
eropolymers.

r

-

FIG. 3. The dependence of the probabilityP of falling into the
native state as a result of quenching on the distance to the n
state. The arrows indicate the values ofd f . The results are obtained
by the Monte Carlo method and are averaged over 100 star
configurations.
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FIG. 4. Time evolution of the potential energyEp , the gyration radiusRg , the distance to the native statedns , and the number of native
contactsNc for two typical trajectories which have the initial departureDR50.001. The left-hand, center, and right-hand parts of the fig
correspond to sequencesG, R8, andH, respectively, and all data refer toT5Tmin . The first and second trajectories are denoted by solid
dotted lines, respectively. The left arrow indicates when the last native contact appears for the first time, and the right arrow indica
folding takes place, i.e.,dns,dc .
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The first panel in the left-hand part of Fig. 6 shows t
time dependence ofd for G atT50.1, 0.15, and 0.2 for times
significantly shorter than those corresponding to Fig. 5. I
interesting to point out that the short time behavior ofdab
may yield information about the size of the folding funne
This can be achieved by studying two initially nearby traje
tories which start at various locations in the folding funn
i.e., at various distancesdns away from the native state, a
illustrated in Fig. 6. Notice that the initial placement affec
the character of the initial evolution ofd. For dns.dns

th

50.55s and T5Tmin50.15 ~the first panel of Fig. 6!, the
two trajectories diverge. Otherwise, they reduce their rela

FIG. 5. The time dependence ofd for G, H, and R8 at T
5Tmin for two nearby trajectories which start at two nearby u
folded conformations. The solid portions of the curves are avera
over 1000 to 1500 pairs of such trajectories. The dotted portions
averaged over 20 to 200 pairs. The circles indicate values of
median folding times.
s

-
,

e

distance. This can be interpreted as a situation in which
twin trajectories are placed within the folding funnel. Th
the threshold value ofdns under the optimal folding condi-
tions should be a measure of size of the folding funnel.
fact, this threshold value agrees with the funnel size as
termined from Fig. 3. For temperatures aboveTmin the ki-
netic conditions deteriorate, the funnel disintegrates, and
threshold behavior in chaos disappears: the system beco
more chaotic. BelowTmin , on the other hand, the funnel als
fades away but the system is close to the quenching co
tions. As the system evolves it becomes driven by ene
minimization so the trajectories start to come closer toget
right away even for substantial values ofdns .

The center and right-hand parts of Fig. 6 show results o
similar analysis for systemsR8 andH, respectively. For bad
folders, even if the trajectories start approaching each o
at low T, as it happens forH ~the bottom right-hand panel o
Fig. 6!, they do not meet asymptotically because it is u
likely that they will be simultaneously in the same ener
valleys.H displays some borderline behavior but there is
threshold behavior in systemR8 at any temperature: a viabl
folding funnel never forms. For good folders, howeve
studying twin trajectories allows one to establish the geo
etry of the folding funnel.

In the case ofR8, for T50.2, the time dependence ofd is
qualitatively the same as forT5Tmin50.4. The qualitative
change is observed, however, atT50.1. Namely, the appar
ent decrease of the distance is seen ford ns

th50.4s. It should
be noted that the difference between the good folderG and
the bad folderR8 is clearly seen only atTmin . Away from
Tmin they may behave qualitatively in the same way.

IV. TIME EVOLUTION OF THE POTENTIAL ENERGY

In order to understand the difference in the chaotic beh
ior of good and bad folders better we consider the time
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e
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FIG. 6. The time dependence ofd for various types of starting configurations at temperatures which are indicated. The left-hand,
and right-hand parts correspond to sequencesG, R8, and H, respectively. For eachT, the initial separation between two trajectories
DR50.001s. The solid line corresponds to the unfolded starting configuration.Sequence G: For T5Tmin50.15 the dotted lines correspon
to dns50.75, 0.6, 0.55, 0.5, 0.35, and 0.2s from top to bottom, respectively. The curve withdns

th50.55s has a threshold character in th
sense that fordns.d ns

th distanced decreases with time monotonically. The bar separates two different types of behavior ofd. For T50.2,
the dotted lines correspond todns50.7, 0.5, 0.3, and 0.05s from top to bottom, respectively. In the case ofT50.1 the dotted lines are
arranged in orderdns51.6, 1.3, 1.1, 0.8, and 0.5s. For T50.2 the distance between two trajectories grows for anydns . Sequence R8: For
T5Tmin50.4 the dotted lines correspond todns50.8, 0.6, 0.4, and 0.05s from top to bottom, respectively. ForT50.2, the dotted lines are
arranged in the orderdns50.8, 0.6, 0.4, and 0.2s. For T50.1 the order isdns50.8, 0.7, 0.6, and 0.4s. Sequence H: For T5Tmin50.3 the
dotted lines correspond todns52, 1.5, 1.2, 1, 0.8, 0.6, 0.4, 0.3, and 0.15s from top to bottom, respectively. ForT50.2 the dotted lines
correspond todns51.2, 1, 0.8, 0.6, 0.5, 0.4, 0.2, and 0.1s. ForT50.1 the dotted lines correspond todns51.5, 1.2, 1.0, 0.8, 0.6, 0.5, 0.4, an
0.2s. The results are averaged over 500–3000 starting configurations.
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pendence of the potential energyEp on individual trajecto-
ries under the optimal folding conditions, i.e., atTmin . We
consider folding and unfolding trajectories separately a
demonstrate that the corresponding properties ofEp are dis-
tinct.

The first question we ask is what are the properties of
power spectra ofEp . Figure 7 shows the frequency depe
dence ofuEp(v)u2, where

Ep~v!5
1

2pE exp~ ivt !Ep~ t !dt. ~4.1!

The first observation is that ifEp is viewed as noise then thi
noise is clearly correlated — there is no frequency regi
which would correspond to white noise. In other words, i

uEpu2;v2s ~4.2!

then the exponents is nonzero. For each of the systems stu
ied we observe two regimes with a power-law depende
on v: the low- and high-frequency regimes which are se
rated byv0;0.032/t which corresponds to a time scale
about 200t. The values of the power-law exponent are in
cated in the figure. For systemG there is also an intermediat
time scale in the folding trajectories wheres51.2060.20. It
is possible that the existence of the intermediate-freque
regime is a signature of a good foldability in general.
d

e

e

-
e
-

-

cy

The high-frequency behavior corresponds to a large ex
nent in the power law, of order 5–7~the error bars here ar
of order 0.5!. The low frequency, i.e., long time behavio
however, is clearly distinct forG and almost the same forR8.

FIG. 7. Spectrum of the potential energy forG, R8, and H at
Tmin . The starting conformations are either unfolded or native
indicated at the top of the figure. The results are averaged over
trajectories. The values off are shown next to the curves.
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For G, the low-frequency behavior ofEp corresponds tof
52.1660.20 and 0.6860.2 for the folding and unfolding
trajectories, respectively. ForR’, on the other hand, one get
the 1/f noise for both kinds of trajectories. This clearly ind
cates a lack of any folding direction inR8. SystemH has an
intermediate behavior again: for the low-frequency foldi
trajectoriess51.8860.24 and for the unfolding trajectorie
s51.1860.20. Thus there is a difference between foldi
and unfolding but the difference is not as strong as forG.

Another way to characterize trajectories has been rece
proposed by Lidaret al. @14# and it involves determination o
the fractal dimensionalityg, which relates to the self-affinity
properties of theEp(t) curve. This fractal dimensionality
may be obtained by thee-variation method developed b
Dubucet al. @15#. Typically, for any functiong one can in-
troduce itse variationV(e,g) as follows:

V~e,g!5E
0

1

v~x,e!dx, ~4.3!

where thee variation is

v~x,e!5supx8PRe(x)g~x8!2 infx8PRe(x)g~x8!,

Re~x!5$sP@0,1#;ux2su,e%. ~4.4!

Figure 8 shows thee dependence ofe variationV(e) for
Ep(t) of three typical trajectories atTmin run in the folding
or unfolding modes. In the folding mode, the trajectories
evolved until the folding is accomplished. In the unfoldin
mode, the trajectories are analyzed for a duration of a typ
median folding time atTmin . The slopes in Fig. 8 give the
values ofg. If the starting conformation is native theng
appears to be system independent and equal to about
This again indicates a correlated behavior since for Gaus
distributed numbersg52. On the other hand, if the startin

FIG. 8. Dependence ofV(e) on e for G, R8, andH. The results
are obtained atT5Tmin . The left- and right-hand panels are fo
folding and unfolding conformations, respectively. The time ste
are equal to the folding times atT5Tmin . The values ofg are
shown next to the data points.
tly

e

al

90.
an

conformation is unfolded, theng'1.81, 1.94, and 1.93 for
G, R8, andH, respectively. This suggests that the smaller
g the better the foldability~and less chaos!.

From Figs. 7 and 8 one can see thats has a stronger
system dependence compared tog. This is due to the fact
that the spectral and roughness properties refer to diffe
aspects of the behavior. This may be seen clearly in the c
of the white noise whereg52 but s50 which means that
the white noise is not correlated but its profile remains rou
In other words the spectral analysis provides informat
about the pattern correlation whereas the fractal dimens
ality relates to the roughness. Therefore,g ands may depend
on the system in a different way. It is interesting to ask w
the system dependences ofs andg in the folding mode are
stronger compared to the unfolding mode. The reason se
to be that the time dependence of the potential energy in
folding mode~shown in Fig. 4! is substantially stronger tha
in the unfolding mode for all of the three sequences. Thus
the unfolding case the system dependence becomes we
andg even loses the dependence entirely. It would be in
esting to know if this observation is still valid in real pro
teins.

The temperature dependence ofg for three sequences i
shown in Fig. 9 where the starting conformations are u
folded. The values ofg presented in this figure fulfill the
relationg522a, wherea is the roughness exponent@14# if
a is determined directly. Studies of models of real prote
@14# indicate thatg may depend onT weakly. This is also
true for our model systems as shown in Fig. 9. Note t
systemH again behaves in a way which is intermediate b
tweenR8 andG. Interestingly, in the proteinlike sequenceG
we observe a dip ing aroundTmin . A similar but wider dip
was also observed for real proteins like myoglobin, BP
and PPT@14#. The presence of the dip could be explained
the following way: aroundTmin the system establishes
folding funnel and the motion becomes less rugged or l
chaotic. Thus, fractal analysis aroundTmin may provide use-
ful information about the foldability. It should be noted th
our results have been obtained for times equal to the fold
times atTmin and the related conclusions are valid on the
time scales. Longer or shorter runs may, in principle, cha

s

FIG. 9. Temperature dependence ofg for G ~open circles!, R8
~closed squares!, andH ~closed triangles!. The starting conforma-
tions are unfolded. The time steps are equal to the folding time
T5Tmin . The number of starting configurations is 20–100.
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the estimates ofg @14#. Within the error bars, the result
shown in Fig. 9, however, do not change if the time scale
doubled.

In conclusion, we have studied the dynamic chaos of s
eral model sequences and demonstrated that good folder
essentially nonchaotic and bad folders are intrinsically c
otic. The energy landscape of heteropolymers can be cha
ev

jee

I.

.

is

v-
are
-
c-

terized by the spectral and fractal properties of the time e
lution of the potential energy of the system.
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