PHYSICAL REVIEW E VOLUME 62, NUMBER 3 SEPTEMBER 2000

Dynamical chaos and power spectra in toy models of heteropolymers and proteins
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The dynamical chaos in Lennard-Jones toy models of heteropolymers is studied by molecular dynamics
simulations. It is shown that two nearby trajectories quickly diverge from each other if the heteropolymer
corresponds to a random sequence. For good folders, on the other hand, two nearby trajectories may initially
move apart but eventually they come together. Thus good folders are intrinsically nonchaotic. A choice of a
distance of the initial conformation from the native state affects the way in which a separation between the twin
trajectories behaves in time. This observation allows one to determine the size of a folding funnel in good
folders. We study the energy landscapes of the toy models by determining the power spectra and fractal
characteristics of the dependence of the potential energy on time. For good folders, folding and unfolding
trajectories have distinctly different correlated behaviors at low frequencies.

PACS numbegps): 87.15~v, 71.28+d, 71.27+a

[. INTRODUCTION Among the three system§, is found to be a good foldeR’
is a bad folder, andd has intermediate folding properties.

The notion of chaos in physical systems has severalhus G is an analog of a protein and’ corresponds to a
meanings. For instance, in the context of spin glasses it rdypical random heteropolymer ard is a borderline case.
fers to the phenomenon of instability of the ground statelhe task of this paper is to compare the chaos-related prop-
against weak perturbations in the exchange coupliiggsn  erties across this range of foldability.
the context of dynamical systems, on the other hand, it refers As a measure of the distance between two conformations
to an acute sensitivity of trajectories to the initial conditions.a2 andb we taked,, where
Both of these meanings have relevance for understanding
proteins and random heteropolymers. 5 -y > -

In sequences of aminoacids, the static chaos can be  %ab~ 7 3n: 2 #%il (Iri=rfl=Iri=rih?% @D
probed by investigating how mutations affect the stability of
the ground state. Several studigs-4] have demonstrated
that the native state of a random heteropolymer is unstabl
against mutations whereas there is stability in designed s
guences provided the lengths of the sequendesyre suffi-

and whera @ is the position vector of theth monomer in the
g_onformationa. This distance involves relative distances be-
Sween the monomers and is bounded due the finite spacial

extent of any conformation. Thus this distance cannot di-

ciently small. It should _be n(_)ted_ that the mutations may haV‘?/erge as time grows which makes the characterization of the
a strong effect on folding kinetics even in the case of Sho”dynamical chaos unconventional in this case

pr'ote_ins[t_')]. Investigati_on of the effects of an aminoacid sub- Notice that once the system folds from a random confor-
Zﬂtruetéogiénegagrgé?er;n;smﬁ]n ?r?j?rn;nesigr)r?;?airelr?ne?gﬁﬂlﬁg rOC€hation to the native state, it may either stay in the immediate
Here we focus on the ngotion of dvnamical chaos in%uc vicinity of the native state or it may depart further away and

y r1hen keep visiting the native state. This translates into two

?;itﬁ Z]tie?n;js ?ﬁg Shz\;\érﬂoe\t/\gﬁ/ efslf? Ic:]rg ttvrvzij)erfégrrlt? S crc?rll?é?n: ossible scenarios for the asymptotic behaviosgf: either
y y he distance saturates asymptotically at a finite value—the

tions. Furthermore, can such information provide clues abou ase ofH andR’, or it tends to zero—the case Gf Thus

5
the nature of the energy landscape of the system? ag_ood folding properties are reflected in the small asymptotic

We consider continuum space models, as opposed to | . : L
. ; A . . values of8,, which may be used as an alternative criterion
tice models, since the latter have intrinsically discretized dy-

namics of a rather arbitrary nature. Specifically, we consideEolr ngOd. f0|d?1bl|lty(.j Thte asym;?]tonhc staturtatmn 6&" In tE‘ad
three toyN =16 off-lattice models that have been extensively olders 1s achieved at a much shorter ime scale than one
characterized befor¢g7—9] and whose native states are

shown in Fig. 1. The Hamiltonians of these systems are de- X

fined in terms of the Lennard-Jones potenti@se Sec. ) .

and the time evolution is determined by Newton’s equations

that are solved by using the methods of molecular dynamics

[10]. The first two of these systems, denoted 18] as G T

andR’, are two dimensional whereas the third, denoted by c R’ H

H, is a Go-like mode[11] of a three-dimensional helij9].

The quality of folding of these systems has been determined FIG. 1. Native conformations of three sequences studied in this
by using thermodynamid12] and kinetic [13] criteria.  work.
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needed to establish the asymptotic tendency in a good foldet00° and the azimuthal length is displaced b§ A . The
Thus the bad folders can be said to be more chaotic than thdamiltonian used to describe the helix is a Go-like modifi-

good folders. cation of Eq.(2) and it readg49]
Studies of the distance between two trajectories provide BB . UNAT . \NON
information about the energy landscape available to a se- H=V=E+ Vit + VR, (2.2

guence. Complementary information can be obtained b . . . L
studying individual trajectories. This is shown in Sec. vaﬁ-he first term is a backbone potential which includes the

where we consider fractal and spectral properties of the pdlarmonic and anharmonic interactions

tential energy curvek,(t), as seen on a trajectory as a func- N-1
tion of time t. The power spectrum, obtained by Fourier VBB= > [ky(d;,1—do)2+Ko(d; i+ 1—do)*]. (2.3
transformingE(t), is found to indicate a correlated noise i=1 ’ ’

pattern and it shows sensitivity to a sequence in a way which ) .

is consistent withH being intermediate. Furthermore, the We takedo=3.8 A, ky=¢, andk,=100e. The interaction
corresponding low-frequency power-law exponent is foundPetween rgs@ues which form native contacts in the target
to be markedly different for folding and unfolding trajecto- conformation is chosen to be of the Lennard-Jones form

ries in systems of good foldability. The fractal dimensional- NAT 1 5
ity of the E,(t) curve is determined according to a procedure VNATZ S 46 (ﬂ) _ (ﬁ) 2.4
developed if14,15. We find that, for the well-folding sys- i< dj; dj) | '

tem, the temperature dependence of this fractal dimensional- _ _ _
ity has a dip around a temperature which is optimal for fold-We chooser;; so that each contact in the native structure is

ing. No such dip arises in poor folders. stabilized at the minimum of the potential, i.eq;
=2"Y&d, whered)} is the length of the corresponding na-
Il. THE SEQUENCES tive contact. Residues that do not form the native contacts

interact via a repulsive soft-core potentidl°®N, where
We start our discussion by defining models that we study.
The_sequences denofned B/ and R’ are two_-dimensional_ _ YNON_ SV \/NON 25
versions of the model introduced by lori, Marinari, and Parisi - = ijooo .
[16]. Their native states are shown in Fig. 1. The Hamil-

tonian is given by oo\ 12 o) ®
ol 15

c A,
Il’?—IG’] , (21) 0, dij>dcut-

NON

4e + €, dij<dcut

Vi ON= (2.6

Hz;j k(di,j_do)zgi,j+l+46

Here op=2"Y®d.y, deui=5.5 A .

wherei andj range from 1 toN=16. The distance between  The time evolution of the sequences is determined by the
the beadsd, ; is defined asr,—r;|, wherer; denotes the fifth-order predictor-corrector schenﬁe:O].2 The integration
position of bead. dj; is measured in units of, the typical ~ St€P i chosen to be 0.065wherer=mo/¢ is the charac-
value of which isc=5 A . The harmonic term in the Hamil- teristic time unit andm is the mass of a bead. In order to
tonian, with the spring constakt couples the beads that are Simulate systems in contact with a heat bath of temperature
adjacent along the chain. The remaining terms represent the W€ augment the equations of motion by the Langevin
Lennard-Jones potential. IFL6], A;j=Aq+ \/Enij . where uncorrelated noise terms as describei9h
A is constant andy;;’s are Gaussian variables with zero
mean and unit variance8 controls the strength of the
quenched disorder. The case oifj'zo and A,=C would whereF = —V,E, and
correspond to a homopolymer with the standard Lennard- P
Jones i_nteraction. used in the simulations of liquids. In Eq. (5(0)5(t))=2TkgT&(1), (2.9
(2.1) € is the typical Lennard-Jones energy parameter. We
adopt the units in whicl€=1 and considek to be equal to wherekg is the Boltzmann constant. We taKesqual to 2. In
25¢. Smaller values ok may violate the self-avoidance of the following, the temperature will be measured in the re-
the chain[7]. The coupling constant4;; for systemR’ are  duced units ofe/kg .
listed in Ref.[7]. These are shifted Gaussian-distributed Figure 2 shows th& dependence of folding times for the
numbers with the strongest attracting couplings assigned tthree sequences studied. The folding time is defined as the
the native contacts. For syste@) A;; is taken to be 1 or 0 median first passage time and the folding is declared to be
for the native and non-native contacts, respectively. Systeraccomplished if the distance to the native stétgebecomes
R’ has been shown to be structurally overconstrained andmaller than the native basin sizg. §. is defined by the
hard to fold. shape distortion metho[8] and it is equal t0(0.2+0.0)c

The helical systentd has a native state, shown in Fig. 1, and(0.09+0.01)c for sequencds andR’, respectively. For
that mimics typicak-helix secondary structures. In this case sequenced, 5,=(0.6+0.05) A=(0.12+0.01)o.
the distances between beads are assumed to have the lengthiThe folding is the fastest at the temperatirg;,, below
do=3.8 A . As oneproceeds along the helix axis from one which glassy kinetics set in. We determine tfat;,=0.15
bead to another, the bead’'s azimuthal angle is rotated by 0.02, 0.4-0.02, and 0.2 0.02 forG, R’, andH, respec-

mr=—Tr+F.+7, (2.7
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0.0 0.2 0.4 0.6 0.8 native state as a result of quenching on the distance to the native
T state. The arrows indicate the valuesspf The results are obtained

FIG. 2. The temperature dependence of the folding times forby the Monte Carlo method and are averaged over 100 starting

sequencess, R’, and H. The results are based on 100 starting configurations.

random conformations. The arrows indicate the folding tempera-

tures. are initially separated by a distandeR. We choseAR
=0.001r. Smaller values ofAR vyield qualitatively similar
results. The forces due to the Langevin noise are identical for
both trajectories.

tively. Similar estimates of ,;;, were obtained with a Monte
Carlo “dynamics” [7] (at a larger CPU cost

Socci and Onuchi¢13] have proposed that what deter- Figure 4 illustrates what happens with two initially nearby

mines good foldability is whether the folding temperatilire trajectories as a function of time for syste@sR’, andH,

is outside of the range of temperatures where kinetics be- : ; : -
i . i respectively. The trajectories are characterized by the poten-
come glassyT; is defined as a temperature at which the P y ] y P

equilibrium probability of being in the native state is 1/2. tial energy, radius of gyratioRy, and the number of estab-

Here, we rephrase this criterion in the following way: a se—IiShed native contactdl,. Two monomers andj are de-

» We Tep : g way: clared to form a native contact if the distance between them
guence is a good folder if; is greater thafT,,;,, otherwise is in the interval[0.9d" ,1.1d"]. Independent of which of
foldability is bad. We determing&; through a Monte Carlo ' T P

s L . .
process and get values indicated by the arrows in Fig. 2. Th@ese quantities is used, we see that the two trajectories
relative values offl ,,;;, and T; indicate what was announced

duickly come together for systers but continue to be
in Sec. I:G is a good folderH is intermediate, an®R’ is a

clearly distinct for a much longer time in the case of system

) . )

bad folder. Characterization based on the specific heat ang o.sgﬁlimgctlig\aol?;ebselr?;?/gs s"c;ges on theaxis and, on a

structural susceptibility yields a similar conclusipi-9]. Figure g show,s the time de eﬁdenc St T=T av-
Another relevant property of a sequence is its character- 9 P . min

istic funnel sized; . It can be estimated by generating ran-

eraged over many pairs of starting trajectories. The time
dom conformation of the system and then quenching then"cl‘cales extend to much beyond the folding times. Roand
(by setting T=0) and determining whether the resulting

H the distance’ remains nonzero at these large time scales
guenched state is native or f@&]. This allows one to esti- but for G_é.ﬂo' '_I'hus for good folders all two |n|t_|al_ly
mate the probabilityP of getting to the native state from a separated traje_ctorles e_ventually come together. This is not
conformation which iss away form the native state. The so for bad and intermediate folders. In general, the better the
critical value of §, 6. above which this probability becbmes _fold_er, the longer it takes to estab_lish the_asymptotic bghav-
smaller than one may be identified as a characterigtic lorin 5. We can rephrase it by_ stating ttis more chaotic

Our results onP are shown in Fig. 3 from which we can thanH because the asymptotic large separation between the
deduce that;~0.55, 0.35r, and 0.16 for G, R’, andH,

trajectories is established sooner.
respectivelyfor H we tooka="5 A). Thus the good folde®

Figure 5 refers to trajectories that start in unfolded con-
has a much larger funnel, as measured by the distange formations. It is interesting to consider what happens when
than the bad foldeR’. A direct comparison o#; for G and

the starting conformations come from a closer neighborhood
R’ to that forH is not meaningful because the Hamiltonians

of the native state. We generate such starting “points” by
and dimensionalities are different. Thus even thodgho

evolving a trajectory from an unfolded conformation to vari-
for H is the smallest among the three sequences, its foldabifo> stages characterized by predefined valuesyof At
ity is intermediate.

each state, we spawn a nearby companion trajectory which is
displaced byAR from the current conformation of the lead-
ing trajectory. The stages can alternatively be characterized
by the numbers of established native contacts butsthds

In order to study the dynamic chaos we monitor two tra-more convenient to use when one deals with long het-
jectories that evolve in time from two conformations which eropolymers.

Ill. DYNAMICAL CHAOS
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FIG. 4. Time evolution of the potential energy,, the gyration radiu®, the distance to the native staig;, and the number of native
contactsN, for two typical trajectories which have the initial depart&tB=0.001. The left-hand, center, and right-hand parts of the figure
correspond to sequenc€& R’, andH, respectively, and all data refer 16=T,;,,. The first and second trajectories are denoted by solid and
dotted lines, respectively. The left arrow indicates when the last native contact appears for the first time, and the right arrow indicates when
folding takes place, i.e§,s< d; -

The first panel in the left-hand part of Fig. 6 shows thedistance. This can be interpreted as a situation in which the
time dependence affor GatT=0.1, 0.15, and 0.2 for times twin trajectories are placed within the folding funnel. Thus
significantly shorter than those corresponding to Fig. 5. It ighe threshold value 06, under the optimal folding condi-
interesting to point out that the short time behaviordgf,  tions should be a measure of size of the folding funnel. In
may yield information about the size of the folding funnel. fact, this threshold value agrees with the funnel size as de-
This can be achieved by studying two initially nearby trajec-termined from Fig. 3. For temperatures abdvg;, the ki-
tories which start at various locations in the folding funnel, netic conditions deteriorate, the funnel disintegrates, and the
i.e., at various distances,; away from the native state, as threshold behavior in chaos disappears: the system becomes
illustrated in Fig. 6. Notice that the initial placement affects more chaotic. Below ,,;,,, on the other hand, the funnel also
the character of the initial evolution of. For 8,s> 6.  fades away but the system is close to the quenching condi-
=0.55% and T=T,,;,=0.15 (the first panel of Fig. § the tions. As the system evolves it becomes driven by energy
two trajectories diverge. Otherwise, they reduce their relativéninimization so the trajectories start to come closer together
right away even for substantial values &f;.

The center and right-hand parts of Fig. 6 show results of a
similar analysis for system®’ andH, respectively. For bad
folders, even if the trajectories start approaching each other
at low T, as it happens foH (the bottom right-hand panel of
Fig. 6), they do not meet asymptotically because it is un-
likely that they will be simultaneously in the same energy
valleys.H displays some borderline behavior but there is no
threshold behavior in systeR' at any temperature: a viable
folding funnel never forms. For good folders, however,
studying twin trajectories allows one to establish the geom-
etry of the folding funnel.

In the case oR’, for T=0.2, the time dependence 6fis
—16 - ' qualitatively the same as foF=T,,;,=0.4. The qualitative
, | , | U change is observed, however,Tat 0.1. Namely, the appar-

0 4 8 12 ent decrease of the distance is seendfff=0.4¢. It should
In t/T be noted that the difference between the good foldemd
the bad folderR’ is clearly seen only at,,;,. Away from

FIG. 5. The time dependence & for G, H, andR’ at T T, they may behave qualitatively in the same way.
=Tmin for two nearby trajectories which start at two nearby un-
folded conformations. The solid portions of the curves are averaged |\y  TIME EVOLUTION OF THE POTENTIAL ENERGY

over 1000 to 1500 pairs of such trajectories. The dotted portions are ) _ _
averaged over 20 to 200 pairs. The circles indicate values of the In order to understand the difference in the chaotic behav-

median folding times. ior of good and bad folders better we consider the time de-
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FIG. 6. The time dependence éffor various types of starting configurations at temperatures which are indicated. The left-hand, center,
and right-hand parts correspond to sequer8e®’, and H, respectively. For eachi, the initial separation between two trajectories is
AR=0.001s. The solid line corresponds to the unfolded starting configuraBequence G-or T=T,,;,= 0.15 the dotted lines correspond
to 8,s=0.75, 0.6, 0.55, 0.5, 0.35, and ©:Zrom top to bottom, respectively. The curve wiﬂﬁ‘s: 0.55 has a threshold character in the
sense that fob,s> 5}]“5 distances decreases with time monotonically. The bar separates two different types of behagidF@fT=0.2,
the dotted lines correspond #,=0.7, 0.5, 0.3, and 0.@6 from top to bottom, respectively. In the case£0.1 the dotted lines are
arranged in ordeb,s=1.6, 1.3, 1.1, 0.8, and Q5 For T=0.2 the distance between two trajectories grows for &y Sequence R For
T=Tpin= 0.4 the dotted lines correspond &p;=0.8, 0.6, 0.4, and 0.@6from top to bottom, respectively. FGr=0.2, the dotted lines are
arranged in the orde$,s=0.8, 0.6, 0.4, and O® For T=0.1 the order i$¥,;=0.8, 0.7, 0.6, and 0d Sequence HFor T=T,;,=0.3 the
dotted lines correspond t8,,=2, 1.5, 1.2, 1, 0.8, 0.6, 0.4, 0.3, and Qw1&om top to bottom, respectively. FAr=0.2 the dotted lines
correspond t@,=1.2, 1, 0.8, 0.6, 0.5, 0.4, 0.2, and 6.1FFor T=0.1 the dotted lines corresponddg,=1.5, 1.2, 1.0, 0.8, 0.6, 0.5, 0.4, and
0.20. The results are averaged over 500—3000 starting configurations.

pendence of the potential energy, on individual trajecto- The high-frequency behavior corresponds to a large expo-
ries under the optimal folding conditions, i.e., Bf;,. We  nent in the power law, of order 5-(the error bars here are
consider folding and unfolding trajectories separately andf order 0.5. The low frequency, i.e., long time behavior,
demonstrate that the corresponding propertieg pare dis-  however, is clearly distinct fo and almost the same f&'.
tinct.

The first question we ask is what are the properties of the |z —UNFOLDED  T=T,,
power spectra oE,. Figure 7 shows the frequency depen-

2.16 -
dence of|Ep(w)|?, where Bl ™ _12,

NATIVE

Ep(w)= %f expli ot) Ep(t)dt. (4.1) i

The first observation is that &, is viewed as noise then this
noise is clearly correlated — there is no frequency regime
which would correspond to white noise. In other words, if

R’

Logyo [E ()

IE,)2~ o 4.2

then the exponertis nonzero. For each of the systems stud-
ied we observe two regimes with a power-law dependence
on w: the low- and high-frequency regimes which are sepa-
rated bywy~0.032/r which corresponds to a time scale of
about 206. The values of the power-law exponent are indi-
cated in the figure. For syste@ithere is also an intermediate  F|G. 7. Spectrum of the potential energy 6 R’, andH at

time scale in the folding trajectories whese 1.20+0.20. It T ... The starting conformations are either unfolded or native as
is possible that the existence of the intermediate-frequencindicated at the top of the figure. The results are averaged over 400
regime is a signature of a good foldability in general. trajectories. The values dfare shown next to the curves.

Log,,w
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| 1.9 H FIG. 9. Temperature dependenceyofor G (open circleg R’
(closed squargsandH (closed triangles The starting conforma-
o ~ tions are unfolded. The time steps are equal to the folding times at
L | T=Tmin. The number of starting configurations is 20—100.
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Log,.€

conformation is unfolded, thep~1.81, 1.94, and 1.93 for
FIG. 8. Dependence d&f(€) one for G, R’, andH. The results G, R, andH, respectively. This suggests that the smaller the
are obtained af =T,,,,. The left- and right-hand panels are for y the better the foldabilityand less chags
folding and unfolding_conf_ormations, respectively. The time steps From Figs. 7 and 8 one can see tlahas a stronger
are equal to the folding times at=Tin. The values ofy are system dependence comparedytoThis is due to the fact
shown next to the data points. that the spectral and roughness properties refer to different

For G, the low-frequency behavior c, corresponds td aspects of the pehavior. This may be seen clearly in the case
=2.16+0.20 and 0.680.2 for the folding and unfolding ©f the white noise where/=2 buts=0 which means that
trajectories, respectively. F&t, on the other hand, one gets the white noise is not correlated but |t.s profllg remains rou'gh.
the 1f noise for both kinds of trajectories. This clearly indi- N Other words the spectral analysis provides information
cates a lack of any folding direction R’. SystemH has an apout the pattern correlation whereas the fractal dimension-
intermediate behavior again: for the low-frequency folding@lity relates to the roughness. Therefopeands may depend
trajectoriess=1.88+0.24 and for the unfolding trajectories ON the system in a different way. It is interesting to ask why
s=1.18+0.20. Thus there is a difference between foldingthe system dependencesoénd y in the folding mode are
and unfolding but the difference is not as strong asGor  stronger compared to the unfolding mode. The reason seems
Another way to characterize trajectories has been recentlip be that the time dependence of the potential energy in the
proposed by Lidaet al.[14] and it involves determination of folding mode(shown in Fig. 4 is substantially stronger than
the fractal dimensionalityy, which relates to the self-affinity in the unfolding mode for all of the three sequences. Thus, in
properties of theE,(t) curve. This fractal dimensionality the unfolding case the system dependence becomes weaker
may be obtained by the-variation method developed by andy even loses the dependence entirely. It would be inter-
Dubucet al.[15]. Typically, for any functiong one can in-  esting to know if this observation is still valid in real pro-

troduce itse variationV(e,g) as follows: teins.
L The temperature dependenceofor three sequences is
V(e,g)=f (X, €)dx, (4.3 ~ shown in Fig. 9 where the starting conformations are un-
0 folded. The values ofy presented in this figure fulfill the

relation y=2— «, wherec is the roughness expondrt4] if

«a is determined directly. Studies of models of real proteins
[14] indicate thaty may depend ol weakly. This is also
true for our model systems as shown in Fig. 9. Note that
systemH again behaves in a way which is intermediate be-
tweenR’" andG. Interestingly, in the proteinlike sequenGe

Figure 8 shows the dependence of variationV(e) for W€ observe a dip iry aroundT;,. A similar but wider dip
E,(t) of three typical trajectories &y, run in the folding was also observed for real proteins like myoglobin, BPTI

or unfolding modes. In the folding mode, the trajectories aréd"d PPT14]. The presence of the dip could be explained in
evolved until the folding is accomplished. In the unfolding the following way: aroundTy,, the system establishes a
mode, the trajectories are analyzed for a duration of a typicdPlding funnel and the motion becomes less rugged or less
median folding time aff,;,. The slopes in Fig. 8 give the chaotic. Thus, fractal analysis aroufig;, may provide use-
values of y. If the starting conformation is native thepn  ful information about the foldability. It should be noted that
appears to be system independent and equal to about 1.99ur results have been obtained for times equal to the folding
This again indicates a correlated behavior since for Gaussidimes atT,;, and the related conclusions are valid on these
distributed numberg=2. On the other hand, if the starting time scales. Longer or shorter runs may, in principle, change

where thee variation is
v(X,€)=SUP cr (09(X") —infyr g (9I(X"),

R.(x)={se[0,1];|x—s|<€}. (4.9
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the estimates ofy [14]. Within the error bars, the results terized by the spectral and fractal properties of the time evo-
shown in Fig. 9, however, do not change if the time scale idution of the potential energy of the system.
doubled.
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