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Numerical simulations of capillary displacement in 2D porous media indicate a dynamical critical
transition as the contact angle 8 of the invading fluid varies. In the nonwetting limit (§=180°), growth
patterns are fractal as in the invasion percolation model. As 8 decreases, cooperative smoothing mecha-
nisms involving neighboring throats become important. The typical width of invading fingers appears to
diverge at a critical angle which depends on porosity. Below this angle the fluid floods the system uni-

formly.

PACS numbers: 68.10.Gw, 47.55.Mh, 68.10.Cr

Many recent papers have addressed fluid invasion into
a porous medium filled with an immiscible fluid. 1=
Such systems are ideal models for studies of pattern for-
mation in growth and are of great practical interest. As
the velocity, viscosity, and pore geometry are varied, the
pattern formed by the invading fluid changes from com-
pact to dendritic! or to a fractal of either a percolation®?
or diffusion-limited aggregation®® type. The wetting
properties of the fluids also play a crucial role in pattern
selection,®7 but their influence has received less theoreti-
cal attention.

In this paper, we study fluid invasion in the quasistatic
limit where capillary forces dominate viscous ones. Mi-
croscopic pore-level simulations of interface evolution
are described for model 2D porous media as a function
of the contact angle 8 of the invading fluid (Fig. 1).8
When the invading fluid is nonwetting (NW), §=180°,
the interface is similar to the fractal produced by the in-
vasion percolation (IP) model.>® The mean width of an
invading finger, W, is of order the pore size. As 6 de-
creases, w appeafs to diverge at a critical angle 6.
Below 6. the fluid floods the medium in a compact pat-
tern. This smoothing of the fluid interface results from
cooperative invasion by neighboring pores and is absent
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FIG. 1. Four equal-radius disks (=0.25) and connecting
arcs at the bursting pressure for 8=180° (solid lines) and
6=60° (dashed lines). The invading fluid is below the inter-
face and 6 is measured as indicated. All arcs would burst to the
disk at the upper left. For §=60° overlap occurs first and the
new interface connects the lower-left and upper-right disks.
This arc would touch the upper-left disk leading to further
growth. If the disk in the upper left were larger it might be
touched before overlap occurred and would become part of the
interface.
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in the IP model which predicts a fractal pattern with
pore-scale structure for all 6.

Experimental evidence for interface smoothing as the
invading fluid becomes more wetting is well established
in etched networks of tubes® and thin Hele-Shaw cells
packed with glass beads.” When viscous and boundary
effects become negligible and 6 is near 180° (NW) the
pattern is an IP fractal with pore-scale fingers. For in-
vasion by a wetting (W) fluid, the interface is nearly flat.
Even at high velocities, viscous fingers in the W case
remain much larger than the pore size.” There appears
to be a strong smoothing force analogous to a surface
tension at long length scales. Similar behavior is ob-
served in porous rocks.” Note that since it is hard to
vary 6 continuously, only the limiting behavior is known
in these systems.

To model the nearly 2D flow observed in Ref. 7, we
use a 2D array of disks with random radii. This should
be similar to a cross section through a random bead pack
and allows a full solution for the interface shape. For
simplicity we place the disks on an L XL triangular or
square lattice with unit spacing, and L between 300 and
800. Radii are uniformly distributed within an interval
[r1,72]. The parameters describing the systems studied
are given in Table I. Similar results were obtained when
the disk centers were randomly shifted from lattice sites.

At a fixed pressure difference, p, a stable interface
consists of a set of arcs between consecutive disks. Each
arc must have radius r =y/p, where y is the surface ten-
sion. It must also attach to both disks at the proper 6
(Fig. 1).* To minimize boundary effects, our growth

TABLE I. Systems studied and observed critical angles.

0c

System r ra ¢ (deg)
Triangular A 0.05 0.48 0.665 50
Triangular B 0.22 0.32 0.730 69
Triangular C 0.38 0.48 0.322 29
Square D 0.05 0.48 0.709 58
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simulations start from a ring connecting six or more
disks near the center of the lattice. For any starting ring
and @ the interface is stable over a range of p. However,
as p increases a section of the interface becomes unstable
and flow starts.

In principle flow should be simulated by our solving
for the viscous pressure drop in the medium, and in-
tegrating the velocity for each section of the interface.
However, in the quasistatic limit and at constant p, the
interface moves rapidly between nearly stable configura-
tions of the interface. One may model the dynamics as a
stepwise process where each unstable section of the inter-
face moves to the next stable or nearly stable
configuration in turn.

There are three basic types of instability and corre-
sponding growth mechanism (Fig. 1):

(1) “Burst”—there is no stable arc connecting two
disks at p. The interface jumps forward to connect to
the nearest disk.

(2) “Touch”—the arc connecting two disks intersects
another disk at the wrong 8. The interface must connect
to this intermediate disk.

(3) “Overlap”—nearby arcs overlap. The disk to
which both arcs connect is removed from the interface.

Figure 1 shows the interfaces between three disks at
the bursting pressures for 8=179° and 60°. Note that
in the NW case the arcs lie in the narrowest part of the
throats. Both arcs would burst to the fourth disk which
is not yet on the interface. As @ decreases, the arcs
spread into the pore space and touches and overlaps be-
come more likely. For #=60° and the configuration
shown in Fig. 1, overlap occurs at a lower p than bursts
or touches. In fact, even arcs between three collinear
disks overlap below the pressure for bursts. The varia-
tion in importance of the growth mechanisms with 6
leads to dramatic changes in pattern.

Growth is determined by fixing p and finding the un-
stable arcs. These are advanced sequentially along the
interface to simulate uniform growth. Arcs unstable
against bursts are represented by stable arcs of minimal
radius (highest p) in tests for touches and overlaps.
Bursts occur to the disks which are closest to such arcs
and in the angle subtended by them. If more than one
type of instability occurs for a given arc, touches are
eliminated first and bursts last—touches and overlaps
imply an excessive advance.

Advancement of an unstable arc may cause it to inter-
sect a nonadjacent arc. This forms a closed loops that
traps the invaded fluid. Arcs stop at the system bound-
ary. Growth is continued until a stable interface is
found. The pressure is than increased until the invading
fluid percolates. Small increments in p are used to simu-
late quasistatic motion. The sequence of p’s affects the
fraction of trapped fluid, but changes in w are negligible.
For a uniform system (r) =r,) a regular faceted pattern
with the lattice symmetry is found in agreement with ex-

periment. !

This growth algorithm differs in several ways from the
IP model.>* The microscopic configuration of the inter-
face is not calculated in IP. Instead, each throat is as-
signed a critical p where the arc becomes unstable, which
is independent of the configuration of the interface and
the direction of invasion. In general this model can only
describe bursts. Touches depend on flow direction, and
overlap is a cooperative mechanism which depends on
both flow direction and the configuration of adjacent
arcs. Another difference is that IP growth occurs at the
least stable throat at each step. This corresponds to
growth at constant infinitesimal flow rather than con-
stant p.

Figure 2 shows the marked change in the invaded pat-
tern as 0 decreases from the NW limit. Growth was
started from a ring of unit radius around a central disk.
For each 6, the ring center was varied to give percolation
at the lowest p. Values of p where growth started also
varies with 8 and the position of the starting ring.

One obvious change with decreasing 0 is an increase in

FIG. 2. Percolating patterns for sample A with L =300 and
(a) 6=179°, and (b) #=58°. The invading fluid is black,
disks and invaded fluid are white.
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w. Slices through each pattern were made and the distri-
bution of widths of the invaded segments found. The
mean width #w gave the most reproducible measure and is
plotted in Fig. 3. Fluctuations with the choice of starting
ring, sequence of p’s, and stage of growth were of order
5%. The second moment of the distribution and ex-
ponential decay rate at large w showed similar scaling
with 6, as did measures based on surface normal correla-
tions and bulk and interface density correlations.

Figure 3 shows the growth of W as @ decreases for the
systems listed in Table 1. For all cases w appears to
diverge at a critical angle 6, which decreases with the
porosity ¢, i.e., the area fraction of the pore space (Table
I). Dotted lines in Fig. 3 are power-law fits, w(8)
—w(180°)x(6—6,) ~" with v=2.3 and 6, from Table
I. Because of finite sample size, uncertainties are of or-
der £0.5in vand +3° or —5°in 6,.

Below 6. a stable percolating interface could not be
produced for any sequence of pressures or starting ring.
Once p was large enough to initiate growth across the
sample, flow continued in a uniform flood which filled
the system. In general the pressure to initiate flow de-
creased as the radius of the starting ring increased. This
was also seen just above 0, where starting rings of radius
=10 were needed to produce stable percolating inter-
faces. The variation of p with radius is reminiscent of
the effect of a macroscopic surface tension, but fluctua-
tions were too large to establish whether the excess pres-
sure for flow scaled inversely with ring radius.

The divergence of W at 6, results from a change in the
dominant growth mechanism. For large 8, w has a value
near 5 and growth is almost entirely by bursts. The pat-
tern is nearly 6 independent, since the hierarchy of pres-
sures where each throat bursts is unchanged. For the
same reason, growth from any ring on the pattern in Fig,
2(a) with any sequence of intermediate p’s produces an
almost identical pattern. Only the structure of the
trapped regions is modified slightly. Furthermore, when
the random numbers were chosen so that the hierarchy
of throat widths in systems A, B, and C was the same,
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FIG. 3. Divergence of w as 0 decreases. Error bars are indi-
cated and doted lines represent power-law fits.
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the NW growth patterns were identical.

The predominance of bursts in the NW limit allowed a
direct comparison to the IP model. Our algorithm was
modified to advance the throat with the lowest bursting
pressure at each step. For every p, the outer portion of
the stable interface was identical to that obtained with
our usual rules. The trapped regions in IP were similar,
but somewhat larger. Trapped regions are also the only
difference between IP and regular percolation clusters
which are known ! to have similar fractal dimensions d.
Our results for the triangular lattice are consistent with
dr==1.9 at length scales above W which is consistent with
the value!® for IP: dy=1.88. Our statistics were not
large enough to fix dy more precisely or determine
whether it varies with 6.

As 68— 8., overlaps gain in importance. The pressure
for overlap is smallest when the interface makes the most
acute angle. In Fig. 1 the interface angle is  =120° and
overlap occurs before bursts for 8§ <90°. For the same
radii, crossover from bursts to overlap occurs at 6==160°
and 60° for « =60° and 180°, respectively. For different
radii the corresponding crossover angles vary. As 6 de-
creases, overlaps remove less and less acute angles from
the interface at pressures where growth can be initiated
by bursts. This smoothing continues until 6, where even
a=180° becomes unstable for most local geometries.
Since the crossover angles decrease with ¢, so does 6.

When overlaps and touches are important the pattern
is not reproducible. Starting from different points in the
cluster for 58° in Fig. 2(b), or using a different sequence
of pressures, may produce an entirely different pattern
(but a similar #). Indeed, the pressure where growth
starts for a ring on the cluster may be far above the per-
colating pressure for many starting rings and may vary
with radius.

An interesting variation in the progression of patterns
was observed for the most dense system, C. For a nar-
row range of 6(55°-65°) about 95% of growth is by
touches. A corresponding peak in w appears in Fig. 3.
Touches should continue to increase in importance as ¢
decreases. Since they do not reflect cooperation by
neighboring arcs, they should not lead to a divergence in
w. By superseding overlaps they may actually depress 6,
or even femove the transition.

Related studies of growth mechanisms in square tube
networks have been presented by Lenormand and co-
workers. 26 They find that bursts dominate NW invasion
leading to IP patterns. Mechanisms corresponding to
overlap of three arcs and overlap of two arcs followed by
a touch dominate the W limit and lead to a smoother in-
terface. While intermediate 8’s have not been studied,
one may expect a dynamical transition similar to that
found here.

In conclusion, we have presented evidence of a dynam-
ical phase transition associated with changes in local
growth modes in a model porous medium. Below a criti-
cal contact angle 6., fluid advances in a stable flood.
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Above 6, the fluid percolates at constant pressure. The
width of fingers in the percolating pattern diverges as
06— 6,. This transition appears to be independent of the
exact pore geometry, but 8, varies with porosity.

We have studied this transition in the lowest number
of dimensions where it can be defined. The interface is
1D and will be roughened by arbitrarily weak disorder.
Thus below 6, an advancing interface is still not smooth.
However, we may expect self-affine roughness here rath-
er than fractal structure. By analogy with equilibrium
critical phenomena, we expect the transition to occur in
more dimensions. Indeed, the greater connectivity of in-
terfaces in 3D should facilitate divergence of the finger
width, and lead to smoother advancing fronts below 6.

Experiments in the NW and W limits show a marked
change in growth patterns which is consistent with our
results. However, measurements over a range of contact
angles are needed to establish the existence of a transi-
tion.
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