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Abstract
There are several simple criteria of folding to a native state in model proteins.
One of them involves crossing of a threshold value of the root mean square
deviation distance away from the native state. Another checks whether all
native contacts are established, i.e. whether the interacting amino acids come
closer than some characteristic distance. We use Go-like models of proteins and
show that such simple criteria may prompt one to declare folding even though
fragments of the resulting conformations have a wrong sense of chirality. We
propose that a better condition of folding should augment the simple criteria
with the requirement that most of the local values of the chirality should be
nearly native. The kinetic discrepancy between the simple and compound
criteria can be substantially reduced in the Go-like models by providing the
Hamiltonian with a term which favours native values of the local chirality. We
study the effects of this term as a function of its amplitude and compare it to
other models such as ones with side groups and ones with angle-dependent
potentials.

1. Introduction

Theoretical studies of the kinetics of protein folding in off-lattice models encounter a difficulty
when it comes to making a decision about at what stage of the temporal evolution from an
unfolded state the system can be considered as having reached the native conformation. The
native conformation is usually known within some experimental resolution but, in models, this
is a state of ‘zero measure’ in the three-dimensional space. Criteria of folding must then involve
some finite effective spatial extension of the native conformation and then checking whether
an evolving conformation has already entered the resulting native ‘cocoon’. An example of
providing a way to define such an cocoon is given in [1–4] where one studies features in time
evolution of distortions in shape of the native conformation. The shape distortion method,
however, turned out to be rather subtle and applicable, in practice, only to secondary structures
of proteins.

1 Author to whom any correspondence should be addressed.

0953-8984/05/181565+16$30.00 © 2005 IOP Publishing Ltd Printed in the UK S1565

http://dx.doi.org/10.1088/0953-8984/17/18/013
http://stacks.iop.org/JPhysCM/17/S1565


S1566 J I Kwiecińska and M Cieplak

Figure 1. Conformations of crambin in the backbone representation (there are 46 residues in
crambin). The figure on the left-hand side shows the native structure (1crn in the Protein Data
Bank). The figure on the right-hand side corresponds to the conformation in which all native
contacts are established through a folding process accomplished through a molecular dynamics
evolution in the Go-like model that is used in this paper. Even though all amino acids are within
the contact establishing distances from each other in the folded state, some local chiralities are
opposite to what they should be. The sense of chirality is shown by the spinning arrows. The
helical structure placed at the top of the figure winds in opposite senses in the two panels.

(This figure is in colour only in the electronic version)

Simple and widely used criteria of folding postulate the existence of a variable that crosses a
predefined threshold value on folding. One example of such a variable is the root mean square
deviation (RMSD) distance away from the native state. Another is the fraction, Q, of the
established native contacts which implies descending below some selected value of the total
energy. Usually, the threshold value of Q is selected to be equal to 1. Note, however, that the
very notion of an established contact itself depends on two amino acids coming closer together
than some threshold value, rc, of their mutual distance. In the following, the folding criterion
based on the RMSD distance will be denoted by R and the criterion based on contacts by
Q. For completeness, we also consider a third criterion, denoted by A, which is based on the
angular properties of the protein backbone. Criterion A involves checking whether the bond
and dihedral angles are at their native values within a chosen range.

In this paper, we use coarse-grained Go-like models of proteins [5, 6] with the Lennard-
Jones potentials in the contacts. We show that all three of these simple criteria may prompt
one to declare folding even though fragments of the resulting conformations have a non-native
sense of chirality—a point that has already been noted by Ortiz et al [7]. Figure 1, for crambin,
shows an example of this problem when the Q criterion is used. It is seen that the folding
process may generate a left-handed α-helix instead of the right-handed one that is actually
present in the true native conformation. This misfolding event occurs despite the fact that all
native contacts are found to be within their respective values of rc (1.5 times the characteristic
length parameter σ in the potential) and the RMSD distance away from the native state is only
around 2.5 Å. In order to counter this difficulty with the folding criteria one may consider
adopting more stringent values of the threshold parameters but this approach turns out to be
impractical for it usually leads to prohibitively long time evolution, i.e. it results in a lack of
folding. Even though our conclusions are drawn from studies of Go-like models, we expect
similar problems also to be encountered in all-atom simulations.
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We propose that a reasonable condition of folding should combine the simple criteria with
the requirement that all local values of the chirality should be nearly native. We show that
setting of the local chiralities to native-like values may or may not precede the ‘calls’ resulting
from the simple criteria, depending on the criterion and the type of a protein, but the compound
requirement allows for more accurate studies of folding and typically generates structures that
appear to be of correct topology.

The kinetic discrepancy between the simple and compound criteria can be substantially
reduced in the Go-like models by providing the Hamiltonian with an extra term which favours
native values of the local chirality as introduced in [8]. We study the effects of this term as a
function of its amplitude and select a value of it that could be used in simulations.

As will be made explicit later, the definition of the local chirality involves coordinates
of four subsequent Cα atoms. It should be noted that a definition of the bond angle involves
three Cα atoms and that of the dihedral angle, four. One may ask then two questions: First,
how does the chirality based criterion relate to the criterion involving the bond and dihedral
angles? Second, is it better to use potentials that favour the native sense of chirality or those
which favour the native values of the bond and dihedral angles? We discuss these issues at
the end of the paper and find the chirality potential to act in a comparable way to the angular
potential. However, its usage is much more economical in simulations. We also find that
simple modelling of the side groups by the Cβ atoms does not automatically take care of
making the chirality in the folded state correct.

2. The Go-like model

We perform molecular dynamics simulations of a continuum space coarse-grained Go-
like model. The Go-like models are defined through experimentally determined native
conformations of proteins as stored in the Protein Data Bank [9]. The details of our approach
are described in [3, 4]. Each amino acid is represented by a point particle of mass m located
at the position of the Cα atom. The interactions between amino acids are divided into native
and non-native contacts. We determine the native contacts by considering the all-atom native
structure and by identifying those pairs of amino acids in which there is an overlap between
effective spheres that are associated with heavy atoms [8, 10]. These spheres have radii that
are a factor of 1.24 larger than the atomic van der Waals radii [11] to account for the softness
of the potential. The native contacts are then represented by the Lennard-Jones potentials
4ε[(σi j/ri j)

12 − (σi j/ri j)
6], where ri j = |�ri − �r j | is the distance between Cα atoms i and

j located at �ri and �r j respectively. The length parameters σi j are determined such that the
minimum of the pair potential coincides with the distance between Cα atoms in the native
structure. In order to prevent entanglements, the remaining pairwise interactions, i.e. the
non-native contacts, correspond to a pure repulsion. This is accomplished by taking the
Lennard-Jones potential with σi j = σ = 5 Å and truncating it at 21/6σ .

All contacts have the same energy scale ε. This energy scale corresponds to between
800 and 2300 K as it effectively represents hydrogen bond and hydrophobic interactions. The
room temperature should then correspond to values of T̃ = kBT/ε of about 0.1–0.3 (kB is
the Boltzmann constant). Neighbouring Cα atoms are tethered by a harmonic potential with a
minimum at 3.8 Å and the force constant of 100ε Å−2.

The equations of motion are integrated using a fifth-order predictor–corrector algorithm
with time step dt = 0.005τ . A Langevin thermostat with damping constant γ is coupled
to each Cα to control the temperature. For the results presented below, γ = 2m/τ , where
τ = √

mσ 2/ε ∼ 3 ps is the characteristic time for the Lennard-Jones potential. This produces
the overdamped dynamics appropriate for proteins in a solvent [8], but is roughly 25 times
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smaller than the realistic damping from water [12]. Tests with larger γ confirm a linear scaling
of folding times with γ [3, 4]. So the folding times reported below should be multiplied by 25
for a more meaningful comparison to experiment.

The folding processes are characterized by the order in which native contacts are formed.
At a finite T , a pair distance ri j may fluctuate around a selected cut-off value. Thus, when
discussing folding using the contact criterion, we determine the average time tc for each contact
to form for the first time. Unless stated otherwise, as the cut-off value for the presence of a
contact between amino acids i and j we take 1.5σi j in model proteins and 1.36σi j in model
secondary structures. The latter value is equal to the inflection distance for the Lennard-Jones
potential. This choice of the prefactor does not matter much for the secondary structures
but choosing the inflection distance for proteins makes the folding process prohibitively long
lasting. Note that the cut-off rc depends on the pair of amino acids in our model.

The chirality of residue i is defined as

Ci = (�vi−1 × �vi ) · �vi+1

d3
0

, (1)

where �vi = �ri+1 − �ri , and d0 = |vi | is a distance between neighbouring residues as represented
by the Cα atoms. For a protein of N amino acids, Ci is defined for i from 2 to N − 2.
In equation (1), the amino acids are labelled from the terminal N to the terminal C . It is
possible to consider an alternative definition which would involve proceeding in the opposite
way and which would define chiralities for i from 3 to N − 1. Another possibility is to
consider a symmetrized combination of the two definitions. We have found, however, that
these alternative variants work quite similarly to the basic definition.

In the unlikely event in which all of the atoms involved in the determination of Ci are
located in a plane, one gets a Ci which is equal to zero. Otherwise Ci is positive or negative for
the right-handed and left-handed local turns respectively. The magnitudes are small in nearly
planar loop regions. The distribution of Ci in proteins is essentially bimodal [8]. A maximum
around 0.7 corresponds to α-helices. We will show that in β-sheets, Ci ranges between −0.15
and 0.15. In turns and loops, Ci can also be either positive or negative.

We illustrate the findings of our studies by focusing on the (16–31) helical fragment of
the P chain of the capsid protein P24—1e6j, the (41–56) hairpin of the protein 1pga and on
crambin, 1crn. The folding times were determined as the median first passage time. 501
different trajectories were used in the case of secondary structures and at least 101 trajectories
in the case of crambin.

3. Criteria of folding

Consider 1e6j(16–31)—the helical fragment of 16 monomers. Figure 2 shows examples of
conformations that are declared folded according the criteria Q, R, and A. The first two criteria
were specified in the introduction. As to the A criterion, we require that the local bond, θi ,
and dihedral, φi , angles are within ±	θ and ±	φ of the native values respectively. We take
rather generous 	θ and 	φ of 60◦ in order to get folding times which are comparable to those
obtained through the other two criteria. Values which are substantially more stringent usually
yield no folding in computationally accessible time.

It is seen that each of the dynamically obtained example conformations has regions,
usually at the terminals, which twist in the opposite sense relative to what is found in the native
conformation. This misfolding phenomenon is captured by the values of the local chiralities
that are listed in the caption of figure 2.
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Figure 2. Backbone conformations of the α-helix 1e6j(16–31), extracted from the protein 1e6j.
The first conformation shown is native. The remaining conformations are shown at a stage when
folding is considered to be accomplished. The time evolution is performed as the molecular
dynamics process in the Go-like model. The starting conformation corresponds to a straight line.
The folding criteria are Q, R, and A, left to right, respectively. The values of the local chiralities
for i running from the second to the second from the end terminal amino acid are as follows. As
found in the true native state: 0.83, 0.71, 0.75, 0.78, 0.81, 0.84, 0.80, 0.71, 0.81, 0.64, 0.84, 0.36,
0.63. At folding declared by criterion Q: 0.84, 0.64, 0.82, 0.76, 0.71, 0.81, 0.64, 0.76, 0.74, 0.79,
0.46, 0.60, −0.50. At folding declared by criterion R: −0.79, −0.77, −0.55, −0.77, −0.48, 0.66,
0.60, 0.79, 0.79, 0.59, 0.91, 0.37, 0.34. At folding declared by criterion A: 0.88, 0.45, 0.75, 0.69,
0.86, 0.87, 0.91, 0.66, 0.84, 0.66, 0.86, 0.39, −0.18.

One way to characterize this phenomenon is to count the number, b, of Ci s that have a sign
which is opposite to the native sign. The distributions of b for the helix and for the (41–56)
hairpin fragment of the protein 1pga are shown in the top panels of figure 3. The zero value of
b means the absence of chirality defects. It is seen that the distributions depend on the folding
criterion used and A is found to be the most successful in this respect: b is concentrated at
values not exceeding 3. The Q and R criteria work in a comparable way for the hairpin, but
Q is worse for the helix (for several other helices it was found to be comparable). The bottom
panels of figure 3 illustrate the sequential distribution of the local chirality defects, bi . (i is
counted here from the beginning of the fragment and not from the N terminal of the host
protein.) In the helix, the three criteria generate defects throughout the chain, though, for this
particular helix, A favours defects arising closer to the C terminal. On the other hand, the
defects generated in the hairpin as a result of adopting the A criterion are localized at the centre
(and do not depend on the example of a hairpin). The other two criteria favour no particular
region in the hairpin.

In order to monitor the chirality defects dynamically we introduce the parameter K
which compares the values of Ci to the native values, CNAT

i , and counts the values which
can be considered as being substantially native-like, i.e. which are of the right sign and have
magnitudes at least 50% of the native strength. A convenient definition of K is then given by

K =
N−2∑

i=2


(Ci/CNAT
i − 0.5), (2)

where 
(x) is the step function (
(x) is 1 if x � 0 and 0 otherwise).
The top left panel of figure 4 shows that the local values of Ci may have a rapid temporal

evolution which translates into a noisy behaviour of K . It is thus not realistic to seek the
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Figure 3. The top panels show distributions, D(b), of the numbers, b, of the wrong signed local
chiralities when folding is declared according to the criteria Q, A, and R, as indicated. The left and
right panels are for the helix 1e6j(16–31) and the hairpin 1pga(41–56) respectively. The bottom
panels show the sequential distribution of such chirality defects.

fully native value KNAT of N − 3. However, Kc = 0.75 KNAT is attainable in simulations,
as illustrated in the remaining panels of figure 4. These panels show examples of the time
evolution of the number of established native contacts, N Q, and of K for two secondary
structures and for crambin. In the case of the helix, K strikes Kc for the first time in the
example trajectory before Q hits 1 for the first time. The opposite takes place in the illustrative
trajectories for crambin and for the hairpin.

We propose that the shape sensitive criterion of folding should combine simple criteria
such as Q, R, and A with a condition on the chirality:

K � Kc. (3)

From now on, we focus on the contact based criterion, Q. The compound contact–chirality
criterion will be denoted by QK . The folding time in the QK criterion is then defined as the
first instant when both Q = 1 and K � Kc. Similar conclusions are expected to hold for the
R and A criteria. The Q criterion and its extension seem to us to be the simplest to use. When
employing the R criterion an appropriate choice of the cut-off RMSD value ought to involve
scaling with the system size as pointed out by Betancourt and Skolnick [13]. We also observe
that conditions on the angles are especially hard to satisfy in loop regions.

The compound criterion QK leads, of course, to longer folding times than the simple
criterion Q. This is illustrated in figure 5 which shows three characteristic times, tQ , tK , and
tQK , for two secondary structures and for crambin. The first of these times corresponds to the
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Figure 4. The top left panel illustrates the time dependence of the local chirality for a single amino
acid—the central amino acid in the 1pga(41–56) hairpin. The remaining panels show examples
of the time dependence of the number of established native contacts, N Q, and the number of
established correct chiralities, K , in single trajectories for the systems indicated. The evolution
is stopped when Q becomes equal to 1 and K achieves the 75% level of the native value. These
target thresholds are indicated by the horizontal lines.

median folding time obtained by using the Q criterion. The second time denotes the median
time for K to reach Kc for the first time. Finally, tQK is the folding time obtained through
the compound criterion QK . Both tQ and tQK exhibit the ubiquitous U-shaped dependence
on the temperature indicating the presence of the optimal temperature, Tmin, at which folding
proceeds the fastest. The value of Tmin itself depends somewhat on the choice of the folding
criterion.

At the vicinity of the optimal temperature, the establishment of native-like chirality and
that of the native-like number of contacts, separately, are seen to be almost simultaneous for
the helix. Establishing both of these quantities simultaneously takes twice as long. In the
hairpin, the contacts get established before the chirality. In crambin, there is a clear separation
between various stages and the contacts get established first.

The QK criterion leads to a significant reduction in the extension of the wrong chirality
defects compared to the Q criterion. This feature is illustrated in figure 6 for the helix and
the hairpin. In the helix, there are no defects with size b of two or larger (i.e. the left-handed
conformations do not arise) and, if present, they are concentrated at the C terminal where
chiralities at the last two sites are not defined. With the simple Q criterion (figure 3) the
defects arise at any site and can extend throughout the helix. The QK criterion also introduces
a significant improvement in the conformations found for the hairpin.
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Figure 5. The median folding times of the systems indicated at the top of the panels. The data
are based on at least 101 trajectories. The dashed curves and the square data points correspond to
the contact based folding criterion Q. The solid curve and the circle data points correspond to the
combined contact and chirality based criterion QK . The dotted curves and the crosses correspond
to the times needed to establish 75% of the local chiralities in the native fashion.

Figure 6. The nature of chirality defects in conformations found through the compound criterion
QK for the helix (the solid lines) and the hairpin (the dashed lines). The left-hand panel shows the
distribution of the sizes of the defects whereas the right-hand panel shows the distribution of their
sequential location.

4. The chirality potential

The Go-like modelling works with a potential which favours the native conformation. In this
spirit, it seems sensible to improve on the current modelling by adding a potential which favours
the native sense of the local chirality. It should also be noted that atomic level interactions in
proteins do favour specific senses of chirality that are found in nature. Following [8] (there is
a misprint in the definition shown there) we consider the term

V CHIR =
N−2∑

i=2

1
2κεC2

i 
(−Ci C
NAT
i ), (4)
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Figure 7. Median folding times for the systems indicated at the top of each panel as a function of
the strength of the chirality potential. The square data symbols correspond to the QK criterion and
the crosses to the Q criterion. The data points were obtained at Tmin which depends on κ and the
criterion.

where the dimensionless parameter κ controls the strength of the potential and its value needs
to be selected. The potential V CHIR involves a harmonic cost in Ci if the local chirality is
non-native. We have also considered an even more Go-like version of V CHIR in which instead
of the step function, there is a harmonic penalty for deviations from the native values of the
local chiralities:

V CHIR
1 =

N−2∑

i=2

1
2µε(Ci − CNAT

i )2, (5)

where µ is a strength parameter. We have found that either choice of the potential leads to
qualitatively similar results except that V CHIR

1 tends to yield broader regions of temperature in
which folding is optimal. The results shown in this section are based on equation (4).

Still another way to introduce a chirality-related potential has been recently proposed by
Chen et al [15] in their studies of homopolypeptides on a lattice. Their definition applies to
helices and it involves a linear energy cost (i.e. the chirality acts like an external uniform field
and not like a restoring potential). It may be worthwhile to compare the molecular dynamics
of such a model with our results.

When one considers not coarse-grained but atomic models then the preference for a native
chirality can also be implemented through conditions of consistency with the Ramachandran
maps [16, 17] (in this reference the maps are translated into a simplified description of the
conformational space).

For a system with the added potential V CHIR, the folding times obtained with the criterion
QK depend on the value of κ . Figure 7, for the hairpin, shows that the dependence saturates
around κ = 1. Furthermore, for κ � 1 the difference between the folding times obtained with
the Q and QK criteria becomes small. In other words, one can revert to the simple criterion
Q by introducing V CHIR with a sufficiently large κ . From now on, we stay with the choice of
κ = 1 as used in [8] and [14]. The kinetic equivalence of QK to Q combined with V CHIR is
qualitative and it appears to be valid in the vicinity of Tmin as shown in figure 8. Away from
Tmin, tQ and tQK diverge from each other in the case of the hairpin. For crambin and the helix,
there is no divergence. It should be noted, however, that the folding times in systems without
V CHIR are longer compared to the case of κ = 1, independent of the folding criterion used.
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Figure 8. The same as figure 5 but with the chiral potential added to the Hamiltonian of the system.
For the helix data shown in the left panel, tQ and tK Q coincide within the scale of the figure.

Figure 9. The distribution of the RMSD distances away from the native state at folding declared by
the criteria indicated. The dashed line corresponds to the Hamiltonian with no chirality potential
and the solid line to that with the chirality term with κ = 1. The data are collected at the temperature
of optimal folding and are based on 101 trajectories.

The contact criterion Q with the chiral potential naturally leads to small RMSD values at
folding as illustrated in figure 9 for crambin. This figure also shows that the distribution of
the RMSD values on folding with the chiral potential and criterion Q is nearly the same as
without the chirality potential but with criterion QK .

One may qualitatively assess the role of the chirality potential on the folding funnel by
plotting the free energy as a function of Q, the fraction of the established native contacts,
and R, the binned values of the RMSD. This F(Q, R) for the helix is shown in figure 10 at
the temperature of optimal folding. It is seen that, in the absence of V CHIR, the free energy
is endowed with two minima, whereas for κ = 1 there is just a simple folding funnel. This
indicates that the chirality term leads to a smoother shape of the free energy landscape.
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Figure 10. The free energy corresponding to specific values of Q and R (the RMSD distance
away from the native state) for the helix at T̃ = 0.3. The figure on the right-hand side is for
the system with the chirality potential with κ = 1. The figure on the left-hand side involves no
chirality potential. The results are based on 100 trajectories of 20 000 τ that start from unfolded
conformations.

Figure 11. The folding scenario for the α-helix 1e6j(16–31) with (the right panel) and without (the
left panel) the chirality potential. The building of the structure is illustrated through the contacts
that correspond to the hydrogen bonds—between amino acids i and i + 4. tQ denotes the average
first time for establishing the contact between i and j whereas tK is the average first time at which
the local chiralities of both amino acids are native like. tQK denotes the average first time at
which both the contact and the chiralities are set correctly. The data points are averaged over 2000
trajectories.

We now examine the folding process in more detail by looking at establishment of specific
contacts, i.e. by studying the so-called folding scenarios. A contact is said to be established if
its amino acids approach each other sufficiently closely—for the first time. A chirality in the
contact will be said to be established if both of the amino acids involved acquire native-like
chirality (50% of the native value of Ci ).

The folding scenarios of the helix, hairpin, and crambin are shown in figures 11 to 13
where the case of κ = 1 is compared to that of κ = 0. In the case of the helix with κ = 1,
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Figure 12. Similar to figure 11, but for the hairpin 1pga(41–56). The focus here is on the hydrogen
bonds between i and N − i + 1.

Figure 13. The folding scenario of crambin with (the right panel) and without (the left panel) the
chirality potential. | j − i| denotes the sequential distance between two amino acids, j and i . The
symbols used are as in figure 11.

the average times for establishing pairwise chirality are nearly site independent and practically
equal to the times needed to establish the contacts (independently of the establishment of
the chirality). The combined criterion essentially doubles the times and leads to somewhat
shorter times at the terminals. For κ = 0, there is a stronger preference for initiation at the
C terminal. In the case of the hairpin, there is a tendency to fold the structure from the turn
outward, independently of the value of κ , except that it appears to be difficult to establish the
right chirality at the turn (i = 7). The folding scenario of crambin is nearly monotonic as
a function of the contact order. When κ = 1, the folding events as measured by the contact
establishment nearly coincide with those determined by the contact–chirality criterion. Thus,
in practice, when the chirality potential is present, there is no need for the compound criterion
as evidenced also by the distribution of the resulting RMSD (figure 9).
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Figure 14. The left panel shows the dependence of T̃min and Tf on the strength of the chirality
potential. Q and QK denote the methods used to define the native basin. The right panel shows
similar quantities but as a function of the amplitude of the angle-dependent potential (the values of
T̃min do not depend on the material).

Figure 15. Similar to the left hand panel of figure 14, but for crambin.

Finally, we comment on the values of the characteristic temperatures Tmin and Tf . The
latter is the folding temperature at which the probability of staying in the native ‘cocoon’
crosses 1

2 . Tf is a measure of the thermodynamic stability and its determination involves a
definition of the cocoon, i.e. whether we use the Q or QK criterion to define the effective native
conformation. The left panel of figure 14 shows that both characteristic temperatures saturate
as a function of κ and the results obtained with the two criteria merge. For crambin (figure 15)
and the hairpin (not shown) there is no merger but there is a saturation beyond κ = 1.
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5. The angular potential

We now consider the angle-dependent Go-like potential V ANG = ϒ(V B A + V D A), where

V B A =
N−2∑

i=1

Kθ (θi − θ0i )
2, (6)

and

V D A =
N−3∑

i=1

[K 1
φ(1 + cos(φi − φ0i)) + K 3

φ(1 + cos 3(φi − φ0i ))]. (7)

Here, θi and φi denote the bond and dihedral angles respectively and the subscript 0 indicates
the native values that this potential favours. Following Clementi et al [18] (see also a further
discussion in [19]), we take 20ε, ε, 0.5ε for Kθ , K 1

φ , and K 3
φ respectively. The quantity ϒ is

an overall control parameter of the potential strength such that when ϒ = 1 the customarily
used strength is obtained [18].

The determination of the dihedral angles involves four sites which suggests a formal
similarity to V CHIR. We now demonstrate that the effects of the two potentials are different.
One example of the difference is shown in the right-hand panel of figure 15 which shows no
saturation phenomenon in the dependence of the characteristic temperatures on ϒ for the helix.
Instead, both Tmin and Tf grow with ϒ except at small values of the parameter. However, the
folding times and the distributions of the defects in chirality do saturate with ϒ around the
value of 1, so from now on we consider the canonical case of ϒ = 1.

Figure 16 compares the distribution and localization of the defects in chirality obtained
by incorporating V CHIR to those with V ANG. In both cases, the folding is declared by means
of the Q criterion. It is seen that the angular terms perform about the same, or slightly better,
in eliminating the defects in the helix (the defects with V ANG are also found to be delocalized)
but somewhat worse for the hairpin and crambin (not shown). In crambin, V CHIR may yield
up to 14 defects whereas V ANG may yield up to 9. We find, however, that the computer time
is significantly shorter when using V CHIR than when using V ANG because of the difference in
effort taken to calculate the potentials and to derive forces. Thus V CHIR appears to generate
about the same conformational effect as V ANG but the calculations proceed faster. A purist’s
approach would be to include both terms in the Hamiltonian.

6. The side groups

The origin of chirality effects in proteins sits in the atomic structure of amino acids. Suppose
we generalize our Go-like model so that it includes the Cβ atoms in addition to the Cα of the
backbone. Our version of this generalization will be described in a separate publication and
it involves interactions between two kinds of effective atoms representing particular amino
acids. The extra degrees of freedom generate a more sophisticated set of steric constraints.
Will these constraints be sufficient to account for the chiral effects?

Figure 17 suggests that such a modelling of the side groups in itself does not guarantee
emergence of the correct chirality when the native contacts are established and, in fact, fares
worse than the simple Go-like model with the chirality term. The side group modelling based
on the Cβ atoms still requires augmentation with the chirality potential. We note that the
chirality defects in the side group model are found to be delocalized.

We conclude that the chirality potential with κ equal to 1 or larger is a useful and important
ingredient of Go-like models of proteins. The chirality-related criteria of folding should also
be of value when considering models that go beyond the Go approximation. Our results
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Figure 16. The same as figure 3, but with the chiral potential (solid line) or with the angular
potential (dotted line) added to the contact interactions and the tethering terms. Folding is decided
on the basis of the Q criterion.

Figure 17. The distribution of the wrong signed chiralities for the systems indicated and modelled
by the Go-like Hamiltonian with the side groups (SG—the solid lines) and by the Go-like
Hamiltonian without the side groups but with the chirality potential corresponding to κ = 1
(the dotted line). The Q criterion is used here to determine folding.

were illustrated for two specific examples of secondary structures and one protein. However,
similar results were found for several other helices (1ifv(127–142) and 1f63(3–18)), another
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1pga hairpin and two other proteins: 1rpo and 1efn. We have found that the α-protein 1rpo
behaves like a helix in that it responds correctly to the chirality potential better than to the
angular potential.
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