
Assembly of Protein Tertiary Structures From Secondary
Structures Using Optimized Potentials
Trinh Xuan Hoang,1 Flavio Seno,2 Jayanth R. Banavar,3 Marek Cieplak,4 and Amos Maritan5

1The Abdus Salam International Center for Theoretical Physics (ICTP), Trieste, Italy
2INFM-Dipartimento di Fisica “G. Galilei,” Università di Padova, Padova, Italy
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ABSTRACT We present a simulated annealing-
based method for the prediction of the tertiary
structures of proteins given knowledge of the sec-
ondary structure associated with each amino acid
in the sequence. The backbone is represented in a
detailed fashion whereas the sidechains and pair-
wise interactions are modeled in a simplified way,
following the LINUS model of Srinivasan and Rose.
A perceptron-based technique is used to optimize
the interaction potentials for a training set of three
proteins. For these proteins, the procedure is able to
reproduce the tertiary structures to below 3 Å in
root mean square deviation (rmsd) from the PDB
targets. We present the results of tests on twelve
other proteins. For half of these, the lowest energy
decoy has a rmsd from the native state below 6 Å
and, in 9 out of 12 cases, we obtain decoys whose
rmsd from the native states are also well below 5 Å.
Proteins 2003;52:155–165. © 2003 Wiley-Liss, Inc.
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INTRODUCTION

The protein folding problem entails the determination of
the secondary and tertiary structure of a protein based on
the knowledge of its sequence.1,2 The tertiary structure
determines the functionality of the protein and thus the
prediction of the folded structure is a central challenge.
The protein folding problem can be successfully tackled by
using an “engineering approach” that may involve compara-
tive modeling, investigation of statistical correlations in a
protein data base, and a tool box of other techniques that
work with varying degrees of success. One successful
example of this approach is based on building native
structure-like conformations from protein-like fragments
that are database derived.3,4 This allows for a sensible
narrowing of the conformational search because the num-
ber of preferred conformations for short peptide fragments
is limited.5

From a fundamental point of view, however, it is desir-
able to develop scientific methods that are purely ab initio,
and that are easy to understand.6 One the most interest-
ing, simple, and truly ab initio microscopic models is

LINUS, which was introduced by Srinivasan and Rose.7–9

This model incorporates the most important structural
features of proteins including the backbone representa-
tion, simple descriptors of the side-chain geometry, ex-
cluded volume interactions, interactions between side-
chains, and hydrogen bonding. LINUS has been
demonstrated to be valuable7–9 for protein structure predic-
tion, particularly for determining the propensities of vari-
ous segments to form particular secondary structures.
This determination is done at a fixed moderate tempera-
ture that can be chosen optimally.10 This is because
LINUS embodies an interplay between energy and en-
tropy: helices form as a result of minimizing the energy
whereas strands are favored by the entropy.

In this report, we build on LINUS in the context of ab
initio tertiary structure prediction given a sequence of
amino acids and their secondary structure. We demon-
strate that LINUS has many features that are appealing
for this task. First, based on an appropriate Monte Carlo
dynamics, it is able to fold an extended chain to a globular
form without violating any steric constraints. Second, the
dynamics allow for an efficient exploration of the low-
energy states in a way that singles out the native state
provided one parametrizes the energy functions in a
proper manner. We determine the parameters through a
learning procedure.

As noted earlier, we simplify the task of tertiary struc-
ture prediction by assuming an a priori knowledge of the
location of the secondary structures of the proteins under
study. It should be noted that many of the current methods
of proteins structure prediction rely, to various extents, on
being preceded by prediction of the secondary structures.
Indeed, by using a combination of techniques such as
multiple sequence alignment and neural networks, one
can predict the basic secondary structural features, e.g.,
�-helices and �-strands, with a confidence that exceeds
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70%.11–14 Our simplified task could be thought of as a step
in the ultimate goal of ab initio tertiary structure predic-
tion. As we shall demonstrate, an important attendant
advantage of such a simplified challenge is that it allows
one to glean fundamental insights into the protein folding
problem.

In this study, we adopt a simulated annealing proce-
dure15 to study a LINUS-based model at low tempera-
tures. In order to accommodate this shift in focus from
intermediate to low temperatures, we work with a modi-
fied version of the LINUS model in which the original
simplified interaction potentials are endowed with more
amino acidic specificity. The basic idea of our learning
procedure is to generate low-energy conformations, which
preserve the pre-assigned secondary structure of proteins
with known tertiary structure with a set of carefully
chosen potential energy parameters. These low-energy
conformations are then used as decoy conformations for
carrying out a refinement of the potential energy parame-
ters in order to ensure that the known native state
structure is indeed lower in energy than the decoy confor-
mations. This procedure, when iterated, leads to an estima-
tion of the optimal potential energy parameters. Strik-
ingly, our procedure can be used to assess whether the
form chosen for the potential energy is adequate to the
task of successfully discriminating between the true na-
tive state structure and the realistic competing decoy
conformations.

Our studies lead to the conclusion that the potential
energy parameters for a commonly used pairwise interac-
tion can be optimized to simultaneously ensure that the
native state structures of three distinct proteins can be
successfully discriminated against decoy conformations.
The parameters obtained by learning the three proteins
provide an adequate description of these proteins: the
LINUS native states are very close to the experimentally
determined structures, the energy landscape is funnel
shaped, steric clashes are avoided, and the native state is
kinetically accessible. Furthermore, the parameters are
also found to be adequate for several other proteins.

METHODS
Models

A comprehensive description of LINUS can be found in
the original papers of Srinivasan and Rose7,8 and in our
independent assessment of LINUS,10 which follows the
particular details of reference.8 Briefly, in LINUS, the
atoms are modeled as hard spheres with predefined radii
and they are not allowed to overlap. The coordinates of all
backbone heavy atoms are represented exactly whereas
those of the sidechains are represented in a simplified
manner. Specifically, glycine is effectively considered to
have no sidechain, the sidechains of alanine, valine, serine,
threonine, and cysteine are considered explicitly by their
heavy atoms (no more than three in each case), and the
remaining amino acids are represented by C� and one or
two pseudo C� atoms, depending on whether the sidechain
is branched out or not.

The Hamiltonian contains local and nonlocal terms. The
former correspond to the fixed distance tethering by the
peptide bonds and the torsional energies. The latter corre-
spond to the hydrogen bonds, and to the pairwise contact
interactions. A torsional energy is included to prevent
formation of conformations with positive Ramachandran �
angles by associating a positive cost, εtor, with them. The
exception is glycine for which positive values of � are
rewarded with a negative energy of �εtor.

Hydrogen bonds can be formed between the backbone N
atoms and either the backbone O atoms (backbone-to-
backbone H-bonds) or the sidechains of the amino acids
from the set [Ser, Thr, Asn, Asp, Gln, Glu] (sidechain-to-
backbone H-bonds). The distance between the donor and
acceptor must be smaller than 5 Å and 4 Å for these two
cases, respectively. It is also required that the dihedral
angle between the O(k)ON(l)OC�(l) plane and the
N(l)OC�(l)OC(l � 1) plane should be larger than 140°,
where k and l are the indices of the amino acids involved
along the sequence. The contact interaction arises between
the sidechain atoms of the amino acids. A contact is
declared to be formed if the distance, rij, between the two
atoms, i and j, is smaller than Rc � Ri � Rj � 1.4 Å, where
Ri and Rj are the contact radii8 of the atoms. The energy of
a contact decreases linearly from zero to its minimal value
as the distance between the atoms decreases from Rc to Ri

� Rj and it remains constant at smaller distances. This
constant depends on the specificity of the sidechains. It
should be noted that the contact radii of the atoms are
larger than their hard sphere radii so that atoms can be
fully in contact without steric clashes.

Our implementation of LINUS incorporates two crucial
changes compared to the original formulation.8 The first is
that we distinguish between the short-range backbone-to-
backbone H-bonds that correspond to the H-bonds within
helices and turns and the long-range backbone-to-back-
bone H-bonds (the ones that are further than 4 residues
apart along the sequence). We have found that using a
lower energy (more favorable) score for the long range
H-bonds is essential for the assembly of the �-strands into
a sheet.

The second change is an increase in the variety of the
contract interactions. In the original LINUS, the amino
acids were divided into three categories: hydrophobic,
amphipathic, and polar. The contact interactions were
allowed only between the hydrophobic and the amphi-
pathic amino acids.8 We have verified that the interactions
provided by considering just three kinds of amino acids are
not enough to make the native state the global energy
minimum. Thus, we consider 20 distinct types of amino
acids. Because glycine, as defined above, does not partici-
pate in contact interactions, there are 190 different energy
parameters corresponding to different contacts between
the remaining 19 amino acids. A special case corresponds
to the contact between the S atoms of two cysteines. A
disulfide bond is said to be formed if two such S atoms are
closer than 3.6 Å and the energy of the bond decreases
linearly to its minimal value as the distance decreases to
2.65 Å. This energy remains constant when the distance
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decreases to 2 Å, below which value there is a steric clash.
Since the disulfide bond has a different nature than other
kinds of interactions, we consider its minimal energy to be
5 times lower (more favorable) than the energy of a
short-range backbone-to-backbone H-bond. Each cysteine
is allowed to have no more than one disulfide bridge, so
when it comes to a situation in which several S-S contacts
are formed with a given cysteine, then only the one with
the lowest energy is selected as a disulfide bridge, while
the others are regarded as usual sidechain-sidechain
contacts. Overall, we have 194 adjustable energy parame-
ters: three for hydrogen bonds, 190 for contact interac-
tions, and one for the torsional energy. We attempt to
determine these 194 parameters through learning.

Move Set

Since our goal is to predict the tertiary structure based
on the knowledge of the secondary structure and not the
prediction of the latter, we need to modify the original set
of Monte Carlo moves so the secondary structures are
maintained. We define the local moves in the Ramachand-
ran space of the torsional angles. Specifically, three con-
secutive residues are moved at a time and the changes in
the � and � angles are drawn from a Gaussian distribution
with a zero mean and a dispersion that ranges from 1° to 5°
(the value of the dispersion is chosen in proportion to the
acceptance rate). The residues assigned to �-helices or
�-strands are allowed to have adjustable � and � but the
adjustments are constrained to lie within appropriate
regions in the Ramachandran plot as shown in Figure 1.
Thus, for �-helices � 	 �64 
 7° and � 	 �43 
 7°. For
�-strands � 	 �130 
 15° and � 	 135 
 15°. On the other
hand, the residues in the loops can have arbitrary � and �
values.

The sidechains can be rotated around the C�-C� bond
and the corresponding torsion angle � may take any value.
However, in order to enhance the acceptance rate the
values related to the rotamer positions are chosen with a
higher probability. Thus � is chosen randomly in one of the
three windows: �60 
 20°, 60 
 20°, and 180 
 20° with a
probability of 0.9 and the values outside the windows are
picked with a probability of 0.1. All other angles and bond
lengths are kept fixed during the simulation except that
the torsion angle � about the peptide bond can vary within
180 
 10°, and the N-C�-C bond angle can vary within
110 
 5°.

The simulation starts from an open conformation with
the �-helices and �-strands built in, based on the experi-
mental structure file from the Protein Data Bank (PDB).16

The moves proceed from the N-terminus and a complete
progression to the C-terminus is called a cycle. A new
conformation selected in this way is rejected if it leads to
steric clashes (up to 50 attempts are made to decide on a
move that does not generate steric clashes), otherwise it is
accepted with a probability P 	 min
1, e��E/T�, where �E is
the energy difference compared to the previous conforma-
tion and T is a fictitious temperature.

The low-energy conformations are obtained through an
annealing scheme16 in which the temperature is decreased
in steps according to the formula Tk�1 	 0.97Tk, where k is
a step index. The starting temperature is chosen so that
the acceptance rate, r, is larger than 0.1, and once r falls
below 0.001 we carry out a zero temperature quench. The
typical length of a simulation is between 50,000 and
100,000 cycles.

Perceptron Method for Learning the Interaction
Potentials

The principal requirement for the stability of the native
state is that the native state has a lower energy than any
other viable conformation.17–25 This requirement is also a
necessary condition for the simulated annealing to lead to
the native state from an open conformation. Thus

E��0� � E��D� @ D, (1)

where �0 denotes the native conformation and �D denotes
the conformation of a decoy. We have found that, even with
the secondary structures incorporated in the decoys, the
conditions given in Eq. (1) cannot be satisfied by using
unrefined interactions such as those used in the original
version of LINUS.

The optimal stability perceptron algorithm26 is an itera-
tive procedure that allows one to find a solution that
satisfies a given set of linear inequalities optimally. We
follow one of the several learning schemes discussed in
Dima et al.22 (see also Micheletti et al.23 and, in the
context of determining environmental scores for the amino
acids, Chang et al.24). For a given set of decoys and a
known native conformation, our learning procedure deals
with a set of inequalities of the type

E��D� � E��0�

d��D,�0�
� 0, (2)

Fig. 1. The � and � angles of the residues in the �-helices (solid
squares) and �-sheets (star points) of the ribosomal protein L7 (PDB code
1CTF). The secondary structure assignment for this protein is shown in
Table I. The two rectangles indicate the constraint regions for � and �
secondary structure.
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where d(�D, �0) denotes the root mean square deviation
(rmsd) of the decoy structure from the native state. The
use of the rmsd in the denominator helps to shape the
energy landscape into a funnel and ensures that a confor-
mation with a large rmsd is less preferred than conforma-
tions that are more native-like. Figure 2 illustrates that
our procedure, indeed, leads to the required features.

A brief description of the perceptron method is as
follows. The inequalities (2) can be rewritten in the form

A� k � ε� � 0, k 	 1, 2, . . . , M, (3)

where ε� 	 {ε1, ε2, . . . ε194} is a 194-component vector
defined by the energy parameters to be optimized, A� k is a
vector of the corresponding coefficients of the k-th inequal-
ity, M is the total number of inequalities (the combined
number of decoys for all proteins in the training set), and
the dot denotes a scalar product. For a given training set of
parameters ε�, the stability of the k-th inequality is defined
by Qk 	 A� k � ε�, while the perceptron stability is defined as
Q � Ql with l such that Ql � Qk, @k � l. The stability Q can
be maximized by iteratively replacing ε� by a new vector
given by ε�� 	 ε� � � � A� l , where � is a small number. Each
iteration step is followed by a normalization of ε� so that
�	��iεi

2 remains constant while Q is recomputed. A
convergence is guaranteed to be reached in a finite number
of steps. In our case, this typically takes tens of thousands
of iterations and this number depends on how small the
value of � is. The starting values for ε� can be arbitrary. If
Q � 0, the problem is learnable, which means that there
exists a set of energy parameters such that all of the

inequalities are satisfied. Indeed, if many solutions exist,
the perceptron method selects the best among them.

Generation of LINUS Native Conformation

Since LINUS is an approximate model—it uses idealized
bond angles and bond lengths for the backbone and a
simplified representation of the sidechains—it cannot be
expected to provide a perfect fit to the PDB structures.
However, in order to make use of inequalities (2), in the
learning process we need to find a LINUS-based conforma-
tion that plays the role of the native state. We determine it
by arranging the backbone to have the PDB-derived values
of � and � and then perform moves in order to reduce the
rmsd to the PDB backbone as much as possible. In
practice, we easily arrive at conformations with the back-
bone rmsd as small as 0.1 Å for the small size proteins
considered here. Subsequently, the LINUS sidechains are
built in and the sidechains are rotated in order to elimi-
nate steric clashes. At this stage, the energy is minimized
by the Monte Carlo quenching process without imposing
any constraints on the segments that correspond to the
secondary structures. The energies here are assigned
treating the proteins as homopolymers, i.e., all of the
energy parameters, but the torsional energy, are assumed
to be uniform and negative. The final best native-like
conformation usually has a rmsd of about 0.5–1.0 Å from
the PDB structure.

RESULTS AND DISCUSSION
Learning the Interaction Potentials From Three
Training Proteins

Three proteins have been chosen for learning the energy
parameters: the B1 domain of protein G (the PDB code is
1GB1), ribosomal protein L7 (1CTF), and crambin (1CRN).
They are all �/� proteins and their lengths do not exceed 70
residues. Crambin contains 3 disulfide bonds while the
other two do not contain any cysteines. Their native
conformations are shown in Figure 3 (left). For each
protein, we have generated the LINUS-based native-like
conformations using the fine-tuning procedure described
previously. Their rmsd’s relative to the corresponding PDB
structures are 0.56 Å, 0.68 Å, and 0.72 Å for 1GB1, 1CTF,
and 1CRN, respectively.

The decoys for those proteins are generated with built-in
constraints on the secondary structures. The identification
of the secondary structures is obtained from the PDB files
whenever it is available. For protein G, this kind of
information is not present in the PDB file for 1GB1. In this
case, we take the assignment of the secondary structure
from another file, corresponding to 1PGA, which contains
the X-ray determined coordinates for the same protein.
The residues at the end of the �-helices or �-strands can
sometimes be confused with turns or coils. Because of this,
we have effectively shortened some secondary structure
fragments by one or two residues from their ends. An
example of this situation is the second �-strand of 1CTF
(residues 92–98 according to the PDB assignment), which
is significantly distorted at positions 94, 97, and 98. For
this case, we impose the strand geometry, in the Monte

Fig. 2. The energy vs. rmsd of all the decoys that have been
generated for protein G plotted with the potentials obtained in the final
round of learning. The open circle at a small rmsd denotes the LINUS
conformation (obtained by relaxing the PDB structure) that plays the role
of the native conformation in the learning process. The slope of the
dashed line indicates the perceptron stability, Q.
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Carlo process, only on the residues from site 92 to 96. The
�-helices usually show much smaller irregularities than
the �-strands and the adjustments are much less severe.
In general, adjustments are made in order to accommodate
residues that lie too far from the Ramachandran regions
associated with a given type of secondary structure. Such
assignment changes have been made for 3 proteins in the
learning set and 1 protein in the test set. Table I indicates
all the modifications that we have made in the secondary
structure assignment given in the PDB file. Note that the
PDB information is needed only for �-helices and �-sheets
and the records on turns and other type of secondary
motifs such as the 310-helix are irrelevant for our calcula-
tions. It should be noted that, even with these irregulari-
ties removed, the native values of the � and � angles for
some residues in the secondary structures may still lie
outside the expected regions in the Ramachandran plot
within which they are dynamically constrained. This
situation is illustrated in Figure 1 for the 1CTF protein.
However, we have found that, for most of the proteins
considered here, we can generate conformations within 3 Å

in rmsd from the PDB structures with the constraints
imposed on the secondary structures.

The learning process is implemented in an iterative
manner by starting from some generic potentials (as
derived from Srinivasan and Rose7,8) and generating the
corresponding decoys. We identify decoys that complete
with the native state in that they have energies compa-
rable to or better than the native state energy. We adjust
the energy parameters to destabilize the decoys. At the
next stage, we use the just learned potentials and generate
new corresponding decoys, and so on. The set of decoys
keeps expanding through accumulation and all of them are
used to generate the inequalities. Furthermore, the in-
equalities derived for different proteins are combined
together. Decoys that are found to be within 2 Å from the
PDB structure are discarded because these conformations
are too close to the native state to provide unbiased
inequalities that could properly shape the folding funnel
(the number of such discarded decoys is typically one or
two for a given protein). In total, we have generated
approximately 1,200, 1,200, and 500 decoys for the 1GB1,
1CTF, and crambin proteins, respectively. In the final
rounds of learning, approximately 50 new decoys are
generated for each protein. We stop when the predicted
structures in the training set have a rmsd that is smaller
than 3 Å.

Figure 4 shows the plot of energy vs. rmsd for all the
decoys for 1GB1 using the energy parameters that have
been learned at the final round of learning. It can be seen
that the decoys cluster in a way that suggests an emer-
gence of a funnel-like energy landscape. The energy de-
creases with the rmsd at the lower boundary of the cluster,
as indicated by the dashed line in Figure 4, and the native
state is the global energy minimum. The perceptron
stability Q is the slope of the dashed line. Note that the
bigger the Q, the more funnel-like the energy landscape.
On the other hand, the learning process ought to result in a
systematic decrease of Q because more and more inequali-
ties are taken into account unless convergence is achieved.
This can be seen in Figure 5, which shows Q/� as a
function of the number of decoys where � 	 ��iεi

2, the
square root value of the energy parameters, provides a
normalization. Q/� is seen to decrease with the number of
decoys used for learning. A sharp decrease at around 2,400
decoys corresponds to arriving at a situation at which the
set of decoys is sufficiently large to provide a significant
reduction in the size of the relevant parameter space. After
this decrease, there is a plateau in Q, which suggests a
convergence of the energy parameters.

On optimizing the energy parameters, as described
above, our annealing procedure is able to predict the
tertiary structures for the three proteins that were used in
learning with a very good accuracy. Among about 50
decoys generated for each of the three proteins after the
learning was completed, the lowest energy state is found to
be below 3 Å in rmsd from the PDB structure (see Table I
and Fig. 3). Furthermore, as shown in Figure 4 for 1GB1
and 1CTF, the decoys appear to be in a well-developed
funnel-shaped energy landscape. Figure 3 compares the

Fig. 3. The PDB native conformation and the lowest energy conforma-
tion obtained with optimized potentials for the three proteins that have
been used in the learning procedure. The numbers in Angstroms denote
the rmsd from the native state structure.
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PDB native conformations to the predicted conformations.
Although the rmsds seem to be still somewhat large, e.g.,
2.94 Å in the case of 1CTF, the predicted conformations
exhibit striking similarities to the PDB structures. The
best success in prediction is for 1GB1, for which the rmsd

of the lowest energy decoy is 1.90 Å away from the PDB
structure.

After optimizing the potentials, we rescaled our parame-
ters to set the energy of a short range backbone-backbone
H-bond equal to �1.0. In these units, the energy of a
long-range backbone-backbone H-bond is found to be
�1.4952 and the sidechain-backbone H-bond has a value
of �0.7779. In contrast, the original LINUS parameters
for these two situations were equal to and twice the

Fig. 4. Energy vs. rmsd for decoys generated using the optimized
potentials for 1GB1. The open circle indicates the LINUS conformation
used as the native state in the learning. Inset: A similar plot for 1CTF.

Fig. 5. The perceptron stability, Q, normalized by the square root of
energy parameters, � 	 ��i �i

2, plotted as a function of the number of
decoys, M, used in the learning procedure.

TABLE I. Name, PDB Code, Length, and Class of the Proteins Studied and the rmsds of the Decoys Obtained
by Our Prediction Using the Optimized Potentials

Name
PDB
code Length Class

Lowest
rmsd (Å)

Lowest energy
decoy (Å)

Most tube-like
decoy (Å)

Protein Ga 1GB1 56 �/� 1.90 1.90 4.99
Ribosomal protein L7b 1CTF 68 �/� 2.94 2.94 2.94
Crambinc 1CRN 46 �/� 2.04 2.15 3.68

Zinc-fingerd 1ZAA 28 �/� 2.11 2.98 3.28
Protein Le 1HZ6 62 �/� 4.03 4.03 16.58
Cro repressor 1ORC 64 �/� 4.79 4.79 6.00
Merp 1AFI 72 �/� 4.96 6.83 10.37
E. coli Reca 1AA3 63 �/� 8.17 8.17 10.71
Hyperthermophile Sac7D 1SAP 66 �/� 8.39 11.91 11.58
Chea 1FWP 69 �/� 9.29 12.09 12.29
Cole1 ROP protein 1RPO 61 � 3.37 4.63 4.43
Human P8-MTCP1 1HP8 68 � 4.14 5.74 9.87
Staphylococcal protein Af 1BDD 52 � 3.67 5.85 8.66
Pheromone ER-1 1ERC 40 � 4.38 7.89 8.29
434 repressor 1R69 63 � 4.21 11.31 6.30
aSecondary structure assignment: helix (23–35), strands (1–8, 13–18, 42–46, 51–56).
bSecondary structure assignment: helices (65–75, 81–87, 101–112), strands (54–59, 92–96, 116–120).
cSecondary structure assignment: helices (7–17, 23–30), strands (1–4, 32–35).
dFragment studied: 33–60.
eSecondary structure assignment: helices (26–39, 41–44), strands (4–11, 17–24, 47–52, 57–62).
fFragment studied: 6–57.
†Columns showing the lowest rmsd, the rmsd of the lowest energy decoy, and the rmsd of the decoy were selected by using a
criterion based on the tube picture of protein structures (see text). The first three proteins have been used for learning, and the
prediction is made for the other 12 proteins in the list. The secondary structure assignment is taken as that given in the PDB file
for all proteins, except the ones marked with superscripts a, b, c, and e. The assignments used for these proteins are indicated.
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short-range backbone-backbone H-bond, respectively. The
torsion energy remains positive and the hydrophobic inter-
actions are better differentiated. However, we find that, on
average, the contact energies between groups of sidechains
of different hydrophobicity are in rough accord with the
scale introduced by Srinivasan and Rose.7,8

Prediction of Tertiary Structures Using the
Optimized Potentials

Once the optimized potentials from three training pro-
teins were determined, we carried out prediction of the
tertiary structures for a dozen additional proteins assum-
ing knowledge of the secondary structure. These proteins
are listed in Table I. Seven of them are of the �/� type and
five of the � type. Their lengths vary between 28 and 72.
Fifty decoys are generated for each protein and the one
that was lowest in energy was taken as a representation of
the native state. The results of our simulations are com-
piled in Table I, in which we present the rmsd of the lowest
energy decoy with respect to the PDB target and also the
lowest rmsd among all the decoys obtained through the
simulated annealing. It can be seen that we are able to
predict the tertiary structure with an accuracy of below 6 Å
for half of the new proteins, and in the four best cases the
rmsd of the predicted conformation is below 5 Å. We have
checked that if we use the standard LINUS energy param-
eters without the adjustments obtained through learning
then the predicted structures are further than 8 Å away
from the targets.

Figure 6 compares our predictions to the PDB targets for
three �/�-proteins: the zinc-finger (1ZAA), protein L (1HZ6),
and cro repressor (1ORC). Although the rmsds obtained
are not as good as for the training proteins, the close
similarities between the predicted and targets structures
can be easily recognized. The overall topologies are correct
in all cases. The best prediction in terms of the rmsd
belongs to the zinc-finger, which is also the smallest
protein in the set. However, there are some noticeable
flaws in the predicted structure. The first one is due to the
irregularity of the single helix in the PDB structure. The
N-terminal part of this helix is twisted in a tighter way
than the regular helix. Our procedure fails to reproduce
the correct twist because the Ramachandran regions used
for the helices correspond only to perfect helices. The
second flaw is that the �-hairpin is not as close to the helix
as it should be. This can be due to the presence of a zinc
atom, which is covalently bonded to the sidechains of two
histidines from the helix and two cysteines from the
�-hairpin in the real structure. These bonds stabilize the
structure significantly but they are not taken into account
in our model.

The second best predicted protein in the set is protein L.
Its native topology is close to that of protein G, which has
been used for learning. However, protein L is 6 residues
longer and shares little sequence similarity with protein G
and yet our procedure is able to predict the tertiary
structure with a correct topology and a rmsd of nearly 4 Å.
The cro repressor is also an interesting case. The forma-
tion of the �-sheet and the relative positions of the helices

are very well predicted. The relatively large rmsd of 4.79 Å
is primarily due to poor prediction of the loops at the two
terminals.

The prediction is bad for four �/�-proteins in the set: the
mercuric transport protein (1AFI), the C-terminal domain
of the Escherichia coli reca (1AA3), hyperthermophile
protein (1SAP), and the cheybinding domain of chea
(1FWP). For these proteins, the lowest rmsd and the rmsd
of the lowest energy decoy are all larger than 8 Å from the
PDB targets. This indicates that the learned potentials are
not adequate for those proteins. Another possibility is that
their native conformations depend on the binding cofac-
tors, which are not taken into account in our simulations.
Note that both 1AA3 and 1SAP bind to DNA, whereas
1FWP binds to another substrate.

The predictions for the �-proteins are also reasonably
good even though the potentials were learned using �/�-
proteins. For the ROP protein (1RPO), a two-helix bundle
with a simple topology, we obtained the lowest energy
decoy with a rmsd of 4.63 Å. For the next three-helix
bundles: human P8MTCP1 (1HP8), staphylococcus pro-
tein A (1BDD) and pheromone ER-1 (1ERC), the predicted
rmsds are 5.74 Å, 5.85 Å, and 7.89 Å, respectively. For the

Fig. 6. The structure prediction for three proteins in the test set using
the potentials that were optimized by learning.
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five-helix bundle 434 repressor (1R69), the prediction is a
failure since the lowest energy decoy is 11.31 Å away from
the native state. It should be noted that for all helical
proteins the lowest rmsd obtained is quite low (in the
range from 3.3 Å to 4.4 Å) in comparison to some �/�
proteins. This is due to the fact that the �-helix bundles
are easily accessible dynamically.

It should be noted that the overall rmsd is not the only
measure for the assessment of the predictions. As we have
seen in Figure 6 for Cro repressor, the large rmsd, 4.79 Å,
of the predicted structure primarily arises from the misfold-
ing of the two tails of this protein, while the rest is
correctly formed. Another example is the case of the
hyperthermophile protein (1SAP) shown in Figure 7. For
this protein, in the predicted structure, the helix is mis-
folded and it causes a very large overall rmsd of 11.9 Å. If
one considers only a fragment of this protein, which
excludes the helix, the rmsd of the predicted structure
with respect to the native structure is reduced to 4.89 Å.
For this fragment, the N-terminal �-hairpin and the
central �-sheet with three strands are correctly formed.

In order to assess the quality of our predictions, in
Figure 8 we plot the rmsd vs. length of the best predicted
fragment for all the proteins considered. This kind of plot
is usually seen in CASP assessments. For a given number
of consecutive residues, L, we find a fragment in the
predicted conformation that has the smallest rmsd from
the PDB structure. Typically, the rmsd monotonically
increases with the fragment’s length, L. For the case of
1SAP the increase of rmsd vs. L is relatively small when L
is less than 50. The rapid increase of rmsd after L 	 50
corresponds to the situation when the misfolded helix is
included in the fragment. Figure 8 shows that, for frag-
ments of length 50 or shorter, our procedure can predict
the structure with an accuracy below 4 Å for seven
proteins out of 15, and below 5 Å for 10 proteins out of 15.
These results are encouraging and indicate that our
potential parameters may be useful for proteins other than
in the training set.

We turn now to an examination of the kinetic accessibil-
ity of the low rmsd structures through our annealing
procedure. Figure 9 shows the distributions of the rmsd of
the generated decoys relative to the PDB targets for all of

the proteins studied here. Except for 1CRN, the low rmsd
structures do not correspond to peaks in the histograms.
This suggests that the annealing used here may be too fast
to avoid large rmsd conformations. On comparing the
histograms of different proteins, one finds that for some
proteins, such as 1GB1, 1CRN, 1ZAA, and 1RPO, the
native state or more precisely the low rmsd conformations
are more easily kinetically accessible unlike others such as
1SAP and 1FWP. Poor accessibility to the native state
could arise for different reasons including a poor annealing
scheme, inefficiency of the dynamics, bad energy potential
parametrization, or from factors intrinsic to the geometry
of the native conformation itself. Interestingly, we are able
to obtain low rmsd conformations consistently for �-pro-
teins.

It should be noted that, for each of the three proteins in
the learning set and a large number of the proteins in the
test set, the lowest rsmd we obtain is of the same order as
that found using Baker’s ROSETTA method.4 Note that
ROSETTA uses predicted secondary structures whereas
we use experimentally determined ones. Even though the
total number of decoys generated for each protein in our
study is much smaller than in ROSETTA, we are able to
obtain lower rmsd decoys in several cases. It is interesting
to note that for the two proteins, 1SAP and 1FWP, for
which our scheme performs most poorly, ROSETTA was
also unable to generate decoys with rmsds lower than 6 Å.4

In none of the tested proteins, the native-like LINUS
conformation has the lowest energy compared to the
energies of the decoys. Thus, any poor predictions are not
due to a lack of dynamical accessibility of the native state
but due to its poor thermodynamic stability. One might
expect that one ought to be able to improve the potentials
and, thence, the thermodynamic stability by enlarging the
training set. However, we have found that special care

Fig. 7. The structure prediction for 1SAP. The darker regions show the
first 50 residues for which the rmsd is 4.89 Å. The overall rmsd is 11.91 Å
because the helix is misfolded.

Fig. 8. The rmsd vs. the length of the fragment that was predicted the
best when compared to the PDB target. The solid lines are for the three
proteins that were used in the learning procedure, the dashed lines are for
�/� proteins from the testing set, and the dotted lines are for the �
proteins. The thicker dashed line corresponds to 1SAP.
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should be taken when choosing proteins for learning and
also a good preparation of the LINUS-based native confor-
mation is needed. This is due to the nature of the per-
ceptron learning for which one bad inequality may lead to
a destruction of the entire set of potential energy parame-
ters.

It has been recently pointed out that the protein
backbone in the native state behaves like a tube with a
strikingly uniform radius.27,28 This reflects special prop-
erties of the structural and chemical components of the
protein sequence and the nature of its compact state.
Thus, it is interesting to check whether the decoys
generated by our methods behave like a tube and
whether one can use this criterion to select the structure
that is most protein-like in this respect. Given the C�
backbone of a decoy, the local radius of the tube at
position i is defined by

Ri � min
j,k


Rijk�, (4)

where Rijk is the radius of the circle drawn through 3
points given by the positions of the C� atoms of indices i, j,
and k in the sequence. It has been found that in real
protein structures Ri has a very small fluctuation around
2.7 Å. In order to take this into account we define a tube
parameter, which is given by

R0 	
1
L �

i	1

L

�Ri � 2.7�2, (5)

where L is the number of residues in the protein. The R0

values for protein structures are typically smaller than
0.02. It is found that many of our decoys have R0 signifi-
cantly larger than this PDB value, but the best (lowest

Fig. 9. Histograms of decoys generated using the optimized potentials as functions of the rmsd to the native
state. Approximately 50 decoys have been generated for each protein.
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energy) decoy is found to have a R0 value that is very
reasonable. Figure 10 shows R0 vs. rmsd for the decoys
obtained for 1CTF with the optimized potentials. Interest-
ingly, the lowest rmsd decoy (which is also the lowest
energy decoy for this protein) is also the decoy with the
lowest R0. This indicates that R0 can be used to weed out a
lot of decoys that are not protein-like. In Table I, we show
the rmsd of the decoy selected with the lowest R0 obtained
for the proteins studied. Though they are not as good as
those obtained by using the lowest energy criterion, the
tube-based criterion appears to be quite efficient. One can
see that, in addition to 1CTF, for a number of other
proteins such as 1GB1, 1CRN, 1ZAA, and 1ROP, R0 can be
used to select a structure with a rmsd lower than 5 Å.

A recent study10 analyzed the ability of LINUS to
predict different kinds of secondary structures based on
conformational biases,8 i.e., the propensities of the
chain to form a given kind of secondary motif during a
fixed temperature run. The potentials used in this study
were the unrefined ones given by Srinivasan and Rose.
We have tried to use our optimized potentials obtained
from the present study to predict the secondary struc-
tures of several proteins studied in Hoang et al.10 We
found that the optimal temperature for the prediction is
different from that found in Hoang et al.10 due to
changes in the energy parameters but the rate of
successful prediction at this temperature remains
roughly unaffected. This indicates that the procedure
used to predict the secondary structures is quite robust
against fine-tuning of the interactions. It also confirms
that the sterics play an important role in the formation
of the secondary structures.8

CONCLUSIONS

The approach presented in this study involves both
potential design and folding, and it relies on one of the

most important aspects of protein folding: the belief that
proteins fold to their native conformations by searching for
the global minimum in the energy landscape. With a priori
knowledge of the secondary structures, proper folding is
obtained for all three proteins used in the training set for
which the potentials have been optimized. Despite some
limitations, the transferability of the potentials to other
proteins is shown to work reasonably well.

The energy function that we employed is rather simple
with, basically, only two kinds of non-local interactions:
hydrogen bonding and side-chain contact interactions. The
success of the methods tested here indicates that these
interactions are of primary importance in folding. Our
work demonstrates that it is possible to fold a protein with
pre-formed secondary structures without violating steric
constraints in a well-defined microscopic model. This
supports a scenario for the folding mechanism in which the
secondary structures are formed early during the folding
process.
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