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Abstract. Insights about scaling of folding properties of proteins are obtained by studying folding
in heteropolymers described by Go-like Hamiltonians. Both lattice and continuum space models are
considered. In the latter case, the monomer-monomer interactions correspond to the Lennard-Jones
potential. Several statistical ensembles of the two- and three-dimensional target native conforma-
tions are considered. Among them are maximally compact conformations which are confined to a
lattice and those which are obtained either through quenching or annealing of homopolymers to
their compact local energy minima. Characteristic folding times are found to grow as power laws
with the system size. The corresponding exponents are not universal. The size related deterioration
of foldability is found to be consistent with the scaling behavior of the characteristic temperatures:
asymptotically, the folding temperature becomes much lower than the temperature at which glassy
kinetics become important. The helical conformations are found to have the lowest overall scaling
exponent and the best foldability among the classes of conformations studied. The scaling properties
of the Go-like models of the protein conformations stored in the Protein Data Bank suggest that
proteins are not optimized kinetically.
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1. Introduction

Protein sequences found in nature are roughly between 30 and 5000 monomer long.
Figure 1 shows that a randomly sampled distribution of the sequence lengths,N ,
is peaked aroundN = 100 and then it falls down so that there are few proteins
with anN that is larger than 1300. Furthermore, all larger sized proteins are multi-
domained. Why are there no proteins of much bigger sizes, such as, for instance,
corresponding to typical DNA sequences? An answer to this question is related to
a more general issue: how do folding properties of proteins scale withN?

A natural choice of a quantity for studies of scaling is to consider a charac-
teristic folding time,tf old, as discussed by Thirumalai [2].tf old was determined
numerically first by Gutin, Abkevich, and Shakhnovich [3] and then by Zhdanov
[4] and Cieplak, Hoang and Li [5] for several lattice models. In this paper, we
discuss scaling oftf old in off-lattice models.

Values oftf old depend on temperature,T , at which folding takes place. There
are two characteristic temperatures,Tf andTmin, that we focus on here. Studying
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Figure 1. The distribution of polymer lengths among 500 proteins picked randomly from
entries of the SWISS-PROT Protein Sequence Database [1].

their scaling behavior has proved to offer clues about the size related limitations
of the functionality of proteins [5]. The first of these is known as the folding
temperature. It relates to the thermodynamic stability and it may be defined as a
temperature at which the probability to occupy the native state crosses1

2 [6]. The
second temperature corresponds to conditions that make folding optimal [6–8] and
it thus relates only to the kinetics. The significance ofTmin is that on loweringT
belowTmin, the glassy effects become more and more pronounced and at a glass
temperature,Tg, tf old starts to exceed a preassigned large threshold value [6].Tg is
defined through this threshold value which necessarily depends onN . ThusTg is
not sufficiently well suited for studies of scaling.

The relevance ofTf andTmin taken together, is that they define a kinetic cri-
terion according to which a sequence may act as a good folder:Tf should be greater
thanTmin, which often holds for smallN ’s. Our studies of lattice heteropolymers
[5] suggest emergence of scaling to asymptotically bad folding conditions in which
the glassy effects prohibit a substantial occupation of the native state. These con-
ditions correspond toTf being much less thanTmin. It follows that there is a
characteristic value ofN , Nc, that marks an onset of a systematic worsening in
the physiological functionality of proteins. Our lattice based estimate (with certain
Monte Carlo dynamics) was anNc of order 300 and it was obtained by locating a
point at which a monotonically increasingTmin was intersecting with an initially
growing and then saturating dependenee ofTf onN .

Existence of the saturation effect inTf has been illustrated by Takada and
Wolynes [9] in their droplet approximation of protein folding. The indefinite growth
in Tmin with N seems to be related to the necessity of rearranging larger and larger
segments to secure the optimal folding conditions. Such a growth, however, is not
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Figure 2. Native conformations of three proteins of the set studied in this paper. The Protein
Data Bank [13] code name and the numbers of monomers in a sequence are indicated.

a universal feature. It is not observed in the Ising spin system analogs of proteins
[10] where search for a ground state involves flipping spins. It is also not observed
in two-dimensional lattice [10] and three-dimensional off-lattice models of helices
[11] which suggests absence of packing hindrance in the helices. Notice that the
monomer-monomer interactions in helices are only of a local kind (as counted
along the sequence) and thus no natural motion of the system may induce an overall
restructuring.

Essentially all information about the scaling of folding properties of proteins
comes from the studies of lattice models [3, 5] with, necessarily, declared dynam-
ics. In this paper, we turn to continuum space models of proteins and focus specific-
ally on the Go models [12] in which only the native interactions are assumed to play
a primary role in the dynamics of folding. We consider Hamiltonians, described in
details in Section 3, in which these interactions are of the Lennard-Jones form and
the time evolution is obtained by solving Newton’s equations with a Langevin noise
corresponding to a given temperature. For a comparison, some discussion will refer
also to the lattice models in which case the interactions reside in contacts that
are formed by nonconsecutive beads one lattice constant apart and the dynamics
will consist of Monte Carlo single- and double monomer moves. The input to this
modelling is the native conformation in which each aminoacid is coarse-grained
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and becomes a bead located at itsα-carbon position. Some of such conformations
are shown in Figure 2.

We have calculatedtf old, Tf , andTmin for 21 single domain Go-modelled Pro-
tein Data Bank structures [13] withN ranging between 29 and 98. A short account
of a part of the results on the scaling oftf old has been given in Reference [14].
Nine of the selected structures belong to a set of proteins considered by Plaxcoet
al. [15] or are their close homologies. These are: the SH3 domain of 1efn (57),
2ptl (63), 2ci2 (83− 18 = 65; 18 are not resolved), 1csp (67), 1ubq (76), 1hdn
(85), 2abd (86), 1ten (90), and 1aps (98), where the numbers in brackets indicate
the corresponding values ofN . The additional 12 structures are: 1cti (29), 1cmr
(31), 1ce4 (35), 1bba (36), 1erc (40), 1crn (46), 7rxn (52), 5pti (58), 1tap (60),
1aho (64), 1ptx (64), 1erg (70). All of these native conformations were picked
from the low-N end of the size distribution to allow for a thorough equilibrium
and kinetic characterization. Our studies of these structures indicate well defined
overall trends intf old which we shall discuss in Section 4. We demonstrate that
inclusion of additional steric constraints in the Hamiltonian [11] does not alter the
trends in any significant manner. We shall use the notation:

PDB – for models of proteins without the steric constraints,

PDBS – for models of proteins with the steric constraints.

An interpretation of these trends, however, requires making comparison to prop-
erties calculated for various classes of decoy conformations defined in continuum
space. These classes form statistical ensembles in which a given value ofN has
multiple realizations of the native conformation within a similar class of geometry.
Specifically, we consider 5 classes of decoys and all of them are studied only
without an implementation of the steric constraints since this is the case which
involves much less computer time. We describe these structures in Section 2.

The classes of decoys studied here differ in the way they fill space and in their
packing arrangement. Our main finding is that

tf old ∼ Nλ, (1)

and that exponentλ depends on the class of the structures. The values ofλ, when
calculated atTmin, are listed in Table I. In 3 dimensions they range between 1.7 and
3.2. For the PDB and PDBS structures the exponent is about 2.5± 0.2 and 2.7±
0.1 respectively which indicaties that the proteins are not optimized kinetically
[14] even though they might be optimized functionally or geometrically [16]. A
sensitivity ofλ to the class of decoys is consistent with the overall lack of precise
universality found in the lattice models [5, 3].

In Section 5 we focus on the scaling of the characteristic temperatures and
demonstrate the general deterioration-of-folding scenario in the classes of the de-
coy conformations sets in already at quite small values ofN . The largest value
of Nc based on a rough estimate corresponds to the helical conformations which
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Table I. The exponentsλ for the
classes of conformations studied.
Two values ofλ for HB correspond
to the two different slopes shown in
Figure 10

Structure λ

HC 2.2± 0.1

HA 1.7± 0.1

HB 0.9± 0.1, 3.2± 0.1

HQ 2.7± 0.2

CL 2.6± 0.2

CL’ 2.1± 0.1

PDB 2.5± 0.2

PDBS 2.7± 0.1

indicates that they have the best foldability among the classes of conformations
considered. A borderline behavior is found for the PDB. This seems to indicate a
marginal character of behavior that is present already at smallN with Nc even of
order 40. This might reflect on the inadequacies of the Lennard-Jones based Go
model but another possibility is that the borderline behavior is, in fact, real.

2. Classes of the decoy conformations

The classes of decoy conformations that we consider here are as follows.
CL: compact native conformations generated on a grid as a self-avoiding random

walk within a compact box of lattice constant 3.8 Å (the length of a peptide
bond) and then stabilized by appropriate Lennard-Jones interactions. Three
dimensional (3D) examples of such conformations are shown in Figure 3.
The analogous 2D conformations will be denoted by CL’.

HC: conformations obtained through slow homopolymer cooling. The procedure
involves generating a self-avoiding random walk, assigning identical strengths
to all inter-bead interactions, and then annealing to a compact conformation.
Figure 4 shows a sample of such a conformation.

HQ: similar to HC but with a rapid quenching instead of annealing. Examples of
the resulting HQ conformations are shown in Figure 5. These structures are
significantly spread out in space.

HA: similar to HC but theα-helices of various lengths are first built into the initial
states and then kept through the annealing process by assigning much stronger
couplings to the helical secondary structures. Examples of these conforma-
tions are shown in Figure 6.
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Figure 3. Examples of decoy native conformations generated through the compact walks (CL)
procedure. The conformations withN = 36, 64, and 80 are constructed on 3×3×4, 4×4×4
and 4× 4× 5 grids respectively.

HB: similar to HA but the helical segments are replaced byβ-sheet conformations,
as shown in Figure 7. The number of beads in each strand is fixed to be equal
to 8.

We have considered 11 realizations of conformations CL, HQ, HC, and HB, and
5 realizations of HA for eachN .

3. The model

Scaling studies of any complicated system have a chance of success if the model
under consideration becomes sufficiently simplified. The smaller the number of
parameters to vary, the smaller the number of statistical ensemble of representative
systems that are needed to identify any scaling trends. The Go heteropolymers
[12] appear to be the desired minimal coarse grained models of proteins since
much of their properties are defined just by the shape of the native conforma-
tion – with disregard to any unsettled details of the true interactions between the
aminoacids. Despite these simplifications, the Go models may actually behave in a
more realistic way than the models that are more correct atomically [17].

There are several variants of the Go models that are set in the continuum space.
For instance, Zhou and Karplus [18] and Dokholyanet al. [19] have considered
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Figure 4. Examples of decoy native conformations generated through the homopolymer
cooling (HC) procedure.

Figure 5. Examples of decoy native conformations generated through the homopolymer
quenching forN = 81. Note the lack of any compactness.
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Figure 6. Examples of decoy native conformations generated through the homopolymer cool-
ing with α-helices (HA) procedure. The top conformation is a two-helix bundle with 17
monomers in each helical branch. The middle conformation corresponds to a four-helix bundle
where the helices are of 15 monomer’s length. In the bottom conformation there are 6 helices
where the lengths are 15, 14, 15, 15, 15, and 15.

models with a square well potential which allow for a simplified discretized time
evolution. Wolyneset al. [20] have implemented an associative memory Hamilto-
nian in which the contact potentials are assumed to be the Gaussian functions.
Clementiet al. [21], on the other hand, have studied the 12–10 power law poten-
tials. Here, we focus on the Go-like approach based on the Lennard-Jones poten-
tials [22, 23]. A thorough presentation of the methodology and of a list of results
on folding of secondary structures have been given in our previous studies [11]. An
outline of this is as follows.

The target native conformation is represented by beads on a chain. If this is not
a decoy conformation, the coordinates of the beads are taken as positions of the
α-carbons from the Protein Data Bank. The potential energy of the system has the
following form:

Ep({r i}) = V BB + V NAT + V NON + V ST . (2)

The first term represents rigidity of the backbone potential, the second term cor-
responds to interactions in the native contacts and the third term to those in the
non-native contacts. Finally, the last term corresponds to the steric constraints if
these are taken into account. Two monomers are assumed to be in a native contact
if their distance in the native conformation is smaller than some valuednat . For
PDB, HC, HA and HB we usednat = 7.5 Å, whereas for CLdnat = 6 Å. The
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Figure 7. Examples of decoy native conformations generated through the homopolymer cool-
ing withβ-sheets (HB) procedure. The lengths of theβ-strands are fixed to be of 8 monomers.
The numbers of strands in the conformations (from top to bottom) are 4, 8 and 12 respectively.

smallerdnat used for the structures CL is due to the fact that they are much more
compact than the structures in the remaining classes.

The backbone potential takes the form of the sum over harmonic [24] and
anharmonic [25] interactions

V BB =
N−1∑
i=1

[k1(ri,i+1 − d0)
2+ k2(ri,i+1 − d0)

4], (3)

whereri,i+1 = |r i − r i+1| is the distance between two consecutive beads;d0 =
3.8 Å, k1 = ε and k2 = 100ε, whereε is the Lennard-Jones energy parameter
corresponding to a native contact.

The interaction between residues that form a native contact in the target con-
formation is taken to be of the Lennard-Jones form:

V NAT =
NAT∑
i<j

4ε

[(
σij

rij

)12

−
(
σij

rij

)6
]
, (4)

where the sum is over all pairs of residuesi andj (but those which are immediate
neighbors along the chain) which form the native contacts in the given target con-
formation.rij = |r i − r j | is the monomer to monomer distance. The parameters
σij are chosen in a way that each contact in the native conformation is stabilized
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at the minimum of the potential. Essentially,σij = 2−1/6 · dij , wheredij is the
corresponding native contact’s length.

Residues that do not form the native contacts interact via a repulsive soft core
potential. Our potential for non-native contacts, given below, differs from the model
of Iori et al. in that it falls to 0 after some cut-off distance,dcut , which improves
foldability. Restricting the number of interactions has been shown to reduce frus-
tration and lead to an improvement of the folding properties [22]. The purpose of
introducing the cut-off distance is to make sure that the target conformation is in
fact the ground state of the system.

V NON =
NON∑
i<j

V NON
ij , (5)

V NON
ij =

 4ε

[(
σ0
rij

)12−
(
σ0
rij

)6
]
+ ε , rij < dcut

0 , rij ≥ dcut .
(6)

Here,σ0 = 2−1/6 · dcut . For distances shorter thandcut the potential is purely
repulsive. We chosedcut = 〈dij 〉 which is a mean value of the lengths of the
contacts.

The steric constraints can be represented by

V ST = V BA + V DA, (7)

where the terms correspond to the bond angle and dihedral angle potentials respect-
ively.

Following Reference [26], we use the following potentials for the bond and the
dihedral angles

V BA =
N−2∑
i=1

kθ

2
(θi − θ0i)

2 (8)

V DA =
N−3∑
i=1

[A(1+ cosφi)+ B(1+ cos 3φi)] , (9)

wherekθ = 20ε/(rad)2, A = 0ε andB = 0.2ε. Our angle dependent potentials
differ from those used in Reference [26], since in our case we takeθ 0i to be, in
general, site-dependent and equal to the bond angles that appear in the native tar-
gets. Introduction of the steric constraints to the model described by Equation (1)
shifts the native state away from the target conformation because the target need not
correspond to a minimum of the dihedral potentials. However, we have found that
for our choice of the parametersA andB the shift is insignificant. The true native
states are found by a multiple zero-temperature quench procedure from low energy
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conformations generated by MD trajectories that start in the target conformation.
The conformational distances as defined in Reference [11] from the native states to
the targets never exceeded 0.1 Å.

The dynamics of the system are captured by the Langevin equation

mr̈ = −γ ṙ + Fc + 0, (10)

wherer is a generalized coordinate of a bead,m is the monomer’s mass,Fc =
−∇rEp is the conformation force,γ is a friction coefficient and0 is the random
force which is introduced to balance the energy dissipation caused by friction.
Both the friction and the random force represent the effects of the solvent and
they control the temperature [27].0 is assumed to be drawn from the Gaussian
distribution with the standard variance related to temperature by

〈0(0)0(t)〉 = 2γ kBT δ(t), (11)

wherekB is the Boltzmann constant,T is temperature,t is time andδ(t) is the
Dirac delta function.

The Langevin equations are integrated using the fifth order predictor-corrector
scheme [28]. The friction and random force terms are included in the form of a
noise perturbing the Newtonian motion at each integration step. In the case of the
model with the steric constraints, the forces associated with the angle-dependent
potentials are calculated through a numerical determination of the derivatives of
the potential.

In the following, the temperature is measured in the reduced units ofε/kB .
The integration time step is taken to be1t = 0.005τ , whereτ is a characteristic
time unit. At low values of friction,τ coincides with the period of oscillations,τm
near the Lennard-Jones minimum and is equal to

√
ma2/ε, wherea is a Van der

Waals radius of the amino acid residues. The value ofa is chosen to be equal to
5 Å, and this value is roughly equal to〈σij 〉. Our simulations are performed with
γ = 2mτ−1 which is a standard choice in molecular dynamics studies of liquids.
Going into still higher values ofγ , however, has been argued to be more realistic
[26]. In a previous study [11] we have checked that changingγ leads to a change
in the scale of the folding times but does not effect the value ofTmin.

When studying the homopolymer coolings we chose the Lennard-Jonesσ of
5 Å which is a standard value of the Van der Waals radius of the amino acid
residues. Once a chain is generated, it is first warmed up toT = 5 and then
slowly cooled, in 50 temperature steps, toT = O. The duration of a run at each
T varies from 20τ to 50τ depending on the system size. The Lennard-Jones coup-
lings are assigned to all pairs of beads and, in the process of the target formation,
there is no cut-off in the interactions. When generating conformations with the
secondary structures, HA and HB, we increase the amplitude of the Lennard-Jones
potentials by about 10 times in those contacts, which correspond to the hydrogen
bonds within theα-helices and theβ-sheets. This makes these contacts stable
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during annealing. Once a conformation is constructed, we switch over to the Go
Hamiltonian.

4. The folding times

The bigger theN , the longer time is needed to find the native state when start-
ing from a random open conformation. Using arguments from polymer theory
Thirumalai [2] (see also [29]) has argued that a power law scaling fortf old should
characterize proteins which fold through direct pathways with a nucleation mech-
anism. The exponentλ for the two-state folders has been estimated to be between
3.8 and 4.2, and the folding time has been also proposed to depend linearly on
the viscosity of the solvent. For indirect pathways, the folding time is determined
primarily by activation process with barriers which were argued to scale asN1/2.
There have been a number of other theories for the dependence oftf old onN that
were based on arguments regarding some power law dependence of the barrier
heights onN [9, 30, 31] and thus would lead to an exponential law fortf old.

A numerical evidence for the power law, was first provided by Gutin, Abkevich
and Shakhnovich [3] who studied three dimensional(3D) lattice sequences with
N up to 175. For eachN , they considered 5 sequences and selected one that folded
the fastest under its optimal conditions. The corresponding folding time,t 01, was
the quantity that was used in studies of scaling. They discovered thatt 01 grows as
a power law with the system size and the corresponding exponentλ depended on
the kind of distribution of the contact energiesBij in the Hamiltonian

H =
∑
i<j

Bij1ij , (12)

which pointed to the existence of a variety of kinds of the energy landscapes [32]. In
Equation (2),1ij is either 1 or 0 depending on whether the monomersi andj make
a contact or not. For random and designed sequences, with theBij ’s generated from
the data base of Reference [33],λ ≈ 6 and≈ 4, respectively [3]. Finally, for the
Go model, in whichBij = −1 for native contacts and 0 for non-native contacts,
λ ≈ 2.7. The power law scaling has been confirmed by our study [5] which was
dedicated to the two- and three-D lattice Go models and involved larger statistics.

The lattice models studies suggest that the power law dependence oftf old on
N is likely to be found also in continuum space heteropolymers and this is indeed
what we find. Since the precise values of the exponents have been found to depend
on temperature [5], we start by identifyingTmin for each sequence under study.
It should be noted that on increasing the system size the temperature window of
kinetic optimality becomes narrower and narrower – both for the lattice and off-
lattice models. This is illustrated in Figure 8 which compares theT -dependenee of
tf old for two values ofN . The lattice models come with the Monte Carlo dynamics
which consists of the single and two-monomer moves whereas the off-lattice mod-
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Figure 8. The temperature dependence of the median folding time for selected individual Go
sequences in the lattice model withN = 27 and 80 (top panel) and for the HC sequences in
the off-lattice model withN = 25 and 81 (bottom panel). The median has been determined
based on 200 starting conformations. The arrows indicate the corresponding values ofTf and,
together withTmin, illustrate the worsening of the foldability withN .

els evolve according to Newton’s laws. The folding times shown in Figure 9 are
divided there by

tmin = tf old(Tmin), (13)

i.e. by the value oftf old at the bottom of the overall U-shaped dependence onT .
This allows one to focus on the width of the U as a function ofN and, furthermore,
enables to make a more meaningful comparison of the Monte Carlo and molecular
dynamics time scales.

An issue that arises when studying folding in continuum space systems is what
are the criteria to determine whether a particular conformation may be considered
as being sufficiently close to the native state to declare folding. In this paper, we
declare the system to be in its native state if all of its native contacts are established.
A native contact is said to be established if the distance between the two monomers,
say,i-th andj -th, is shorter than 1.5σij , whereσij is the corresponding Lennard-
Jones length parameter. The use of such a criterion has been tested to provide a
correct geometry of the native conformation.

Figures 10 and 11 show the scaling of the folding time atTmin for the off-lattice
classes of the decoy conformations: HC, HA, HB, HQ, CL and CL’. The power
law is observed in all cases, but it becomes of a crossover type in the case of HB.
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Figure 9. The temperature dependenec of the median folding time of a 29-residue trypsin
inhibitor (1cti) and a 65-residue chymotrypsin inhibitor 2 (2ci2) for the Go model without the
steric constraints (top panel) and with the steric constraints (bottom panel). The median has
been determined based on 200 folding trajectories for each temperature. The arrows indicate
the corresponding values ofTf andTmin.

Figure 10. Power law dependence of the median folding times atTmin onN . 11 sequences
have been considered for eachN andTmin was determined separately for each sequence.t1 is
the the median value of the correspondingtmin’s. The corresponding exponents are shown in
Table I. The points for HB are fitted by two different slopes forN < 64 andN ≥ 64.
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Figure 11. Power law dependence of the median folding times atTmin onN for the maximally
compact targets on 3 and 2D lattice. Notice a weak dependence on dimensionality.

The exponents are summarized in Table I. With the exception of HB, the exponents
vary from 1.7 to 2.7. Notice that they are all smaller than the lattice model value of
around 3 (the value of 3 has been also derived in a heuristic lattice model proposed
by Camacho [34]). The most lattice-like conformations CL are characterized by a
λ which is also the closest to the lattice estimates.

The crossover behavior found for HB may have to do with the fact that all of our
β-sheet conformations have a fixed strand’s length of 8 beads and thus too short
chains might not yet be in the proper scalingβ-sheet regime. In fact, the shortβ-
sheet conformations have a much lower compactness level than the long chains.
Notice that an earlier study by Zhdanov [4] has reported a power law scaling for
theβ-sheets within an HP-like model on the lattice withN not exceeding 40.

An interesting issue is that for the continuum space models the exponent seems
to be only weekly sensitive to the dimensionality of the target conformation. This
is illustrated in Figure 11. The Go model for the maximally compact 2D conforma-
tions, CL’, yields the exponentλwhich is close to that of CL provided the dynamics
are still defined in the 3D space. The lattice Monte Carlo simulations [5], on the
other hand, show a strong dependence onD.

Note, however, that the Monte Carlo dynamics are only a poor approximation
of the time evolution of the Newtonian dynamics. In order to illustrate the arbitrary
nature of the standard Monte Carlo dynamics [6], we consider another model of the
Monte Carlo dynamics in which only the single monomer moves are allowed, i.e.
in which the double monomer moves are prohibited [35]. Figure 12 shows that the
change in the allowed moves of the Monte Carlo dynamics results in a substantial
change in the value ofλ. There is thus no reason for which the continuum space
exponent should agree with any of the lattice based estimates.
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Figure 12. The power law dependence of the median folding times onN at Tmin in the Go
lattice systems. The exponents are 3.1±0.1 in 2D and 6.3±0.2 in 3D for RD and 10.2±0.5
in 2D for RD1.

As shown in Table I, the exponentλ sensitively depends on the geometrical
class of the native conformations. The smallest exponents correspond to the HA
conformations whereas the largest – to the HQ and long HB conformations. Con-
formations generated by homopolymer annealing (HC) yield an intermediate value
of λ. We conclude that the native geometry plays an important role in determining
the speed of folding. Native conformations HA and short HB that were obtained
through annealing with the built in secondary structures, have the scaling exponent
which is substantially smaller than the one obtained for the more random conform-
ations – CL, HC and HQ. HA and short HB are more optimal kinetically than CL,
HC and HQ.

The next issue is how does the scaling behavior of proteins, as modelled by
the PDB and PDBS sequences, relate to that of the decoys. Figure 12 shows that
the folding time atTmin scales in an essentially same fashion for both kinds of
sequences. There is, however, one PDB sequence (1aps), for which the folding
time jumps away from the typical trend. This sequence probably suffers from a
large topological frustration and it appears not to be a good folder. Experiments
also have reported that 1aps has a very low folding rate [15]. For the rest of PDB’s
we found the exponentλ to be about 2.5. For PDBS (with fewer sequences) the
exponent is about 2.7, which agrees with that for PDB within the error bars which
indicates small role of the steric constraints in kinetics. The exponentsλ for PDB
i PDBS are found to be comparable to that of CL and HQ. They are noticeably
larger than that obtained for the other decoys, HC, HA and short HB, even if one
takes into account the larger error bars in the PDB data (for eachN we consider
just one PDB conformations). Thus, the realistic protein structures taken from PDB
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appear to be less optimized than those which are artificially generated such as HC,
HA and short HB. Geometrical frustration in PDB might be due to various kind of
loops connecting the secondary elements. The loops, for instance, are optimized in
HA. Note thatλ for HA is smaller than 2 – the scaling exponent suggested by de
Gennes [36] in his analysis of the time scale for the coil to globule transition of a
homopolymer. This indicates the optimality of HA and is consistent with the result
[37] that alpha-helices are optimal folders. The full proteins, however, appear not
to be optimal.

The HQ structures a priori might seem to be models of random sequences of
aminoacids and thus be bad folders as suggested by their spread out shapes. How-
ever, the HQ structures involve primarily local contacts which leads, overall, to a
PDB-like scaling exponent.

The grid CL conformations do not look similar to the PDB ones and yet their
exponentsλ are almost identical. The CL conformations have a low level of kinetic
optimization of the geometry relative to HA and short HB.

5. Scaling properties ofTF and Tmin

We now discuss the scaling of characteristic temperatures.Tmin is determined from
the kinetic data as discussed in the previous section. Instead of characterizing the
kinetics byTmin, one might, following Socci and Onuchic [6], consider the better
known glass transition temperature,Tg, at which tf old starts exceeding a certain
threshold value. However, there are two problems with any studies ofTg. The first
one has been already mentioned: the threshold value oftf old must itself depend on
N . The second problem is that the very notion ofTg presupposes existence of an
equilibrium glassy phase in a finite system. It should be noted that an equilibrium
glassy phase of heteropolymers arises in mean field theories [32, 38] but it is not
expected to arise in systems with a finiteN [7].

Even thoughTmin is conceptually well defined, when it comes to scaling, this
quantity is not without its own problems. One can see from Figures 8 and 9 that
the U-shaped dependence oftf old vs. T is usually broad at the bottom, especially
for low values ofN . Thus temperatures in a broader neighborhood ofTmin are
essentially still optimal for folding and a more sharply defined characteristic tem-
perature would be of more relevance. In order to eliminate the adverse aspects of
the definitions of bothTg andTmin, we introduceTg2: this a temperature belowTmin
at whichtf old becomes twice as large thant1. ThusTg2 delineates the lowT bound
of the temperatures that are optimal kinetically and it is already in the region of a
well identifiable raise intf old . In the following, we show the scaling properties of
Tmin, Tg2, andTf .

The folding temperature is calculated by performing long runs that determine
the equilibrium probability of the system staying in the native state. The probab-
ilities are determined as a function ofT andTf is obtained by an interpolation to
where the value of 1/2 is crossed. The system is said to be in the native state if
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Figure 13. The scaling of the folding time atTmin for the PDB and PDBS conformations.

all the native contacts are present. For eachT we consider 10 to 15 trajectories
that start from the native state. The lengths of the trajectories vary from 15000
to 30000τ depending on the system size. The first 1000 to 2000τ are spent for
an equilibration of the chain and are not taken into account when counting the
probabilities.

We start our discussion of the dependence ofTf , Tmin andTg2 on N in con-
tinuum systems by considering the decoy conformations: CL, HC and HA. Fig-
ure 13 shows that for all of these casesTmin and alsoTg2 grows with the chain length
whereasTf rapidly achieves saturation. The qualitative picture is then similar to the
lattice results [5]. It confirms our previous suggestion that the folding properties of
proteins deteriorate withN due to a larger and larger difference betweenTmin and
Tf . For all cases, except for HC at smallN , we observe thatTf is smaller thanTmin,
which suggests that the models are not very good folders. However, as the border
between good and bad folders is rather broad one may defineNc – the system size
beyond which the sequences are no longer the good folders – as corresponds to the
crossing point whereTg2 starts to become bigger thanTf . Using this definition we
estimate thatNc is roughly equal to equal to 36, 70 and 90 for CL, HC and HA
respectively. The largestNc corresponds to the HC conformations which indicates
that this kind of structures has the best foldability. The poorest foldability belongs
to CL the conformations that are least similar to those of proteins. Again, the impact
of the geometry of the native conformation on the folding properties is evident in
our study.

Figure 14 shows the values ofTmin andTf for the selected sequences PDB and
PDBS. For PDB the values ofTg2 are also shown. For most cases one observe that
Tf is somewhat smaller thanTmin whereasTf andTg2 show a borderline behavior.
Since the fluctuations in the temperature data for the PDB structures are large,
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Figure 14. Scaling ofTf , Tmin andTg2 for the decoy conformations CL, HC, and HA as
indicated.

establishing trends, without larger statistics, is difficult. We propose an interesting
hypothesis that the marginal behavior we observe in our model systems may actu-
ally characterize classes of proteins, especially those which have a short lifetime
in a living cell. It would be interesting to extend these studies with the use of more
realistic potentials.
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