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Mechanical stretching of self-interacting homopolymers is studied through molecular dynamics simulations
in which the polymers are pulled with constant speed. At temperatures below the compactification temperature,
the force-extension curves show a plateau that corresponds to the situation in which the polymer adopts
“ball-string” configurations. The dependence of rupture distances on contact order and the effects of tempera-
ture are similar to those found in the case of model proteins. The dependence of behavior on the pulling speed
is logarithmic. In the entropic limit, above the compactification temperature, the rupturing of contacts shows a
monotonic decrease of extension with the contact order. The attainment of this limit depends on the system size
and the pulling speed.
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I. INTRODUCTION

Recently, there have been many experimental studies of
mechanical stretching of single biomolecules, such as strands
of DNA [1–3], and of large multidomained proteins[4,5].
The forcesFd–displacementsdd curves of proteins are spe-
cific, intricate, and reproducible so that they can be thought
of as fingerprints of the proteins[6]. In addition, theoretical
studies[7–9] show that the stretching scenarios are complex
and not directly related to the folding scenarios. These sce-
narios can be characterized by diagrams which show an av-
erage displacement at which a contact interaction is ruptured
(or, in the case of folding, an average time needed to estab-
lish a contact) as a function of the contact order, i.e., of the
sequential distance between two amino acids that interact in
the native state. Even though theF-d patterns and the
stretching scenarios show dependence on the pulling speed
and on the stiffness of the pulling device[7], they are gov-
erned primarily by the specific set of interactions that pro-
duce the unique folded structure of the protein.

In this paper, we discuss mechanical stretching of mol-
ecules without specific interactions: single self-associating
homopolymers whose monomers all interact with each other.
One goal is to determine how the behavior of molecules with
nonspecific interactions contrasts with that of proteins. In
addition, self-interacting homopolymers can be considered as
models of DNA strands, which show much less specificity
than any protein. They also model polymeric chains, and the
mechanical properties of PNIPAM[poly(N-isopropyl acryla-
mide] and PEO[poly(ethylene oxide)] have been studied re-
cently using atomic force microscopy[10].

Theoretical studies of homopolymer stretching have be-
gun from simple models that are amenable to analytical treat-
ments, such as the freely jointed chain(FJC) and the worm-
like chain(WLC) [11]. The formula for the force in the WLC
model, derived within the continuous chain approximation
[12], has been widely used to fit experimentalF-d curves for
a variety of biomolecules including DNA[13], RNA [14],
and proteins. Recently, a more general solution[15] of the

WLC model, which takes into account the discreteness of the
chain, has been given. This generalized formula can be used
to fit the experimental data on single and double stranded
DNA in the intermediate and high force regimes, and at the
same time gives extra information on the intrabead distance
along the chain. Furthermore, it predicts the existence of a
crossover force, above which the WLC force approaches the
FJC result[15].

The WLC model ignores self-avoidance and attractive in-
teractions between different segments of the chain. Thus it
can be applied only in the case of stretching under good
solvent conditions, i.e., above theu transition[11] tempera-
tureTu. Under poor solvent conditions, theoretical studies of
homopolymer stretching are usually confined to mean-field
[16,17] or lattice [18–20] models. A common characteristic
of such studies is that at temperatures belowTu they predict
existence of a plateau region associated with a well defined
force in theF-d curve. The collapse-coil transition at this
force is found to be first[16,20,18] and second order[18,19]
in three and two dimensional models, respectively.

The studies described above usually refer only to cases in
which the polymer is being pulled with a fixed force. How-
ever, in typical experimental pulling setups, like in the
atomic force microscope, the conditions correspond to a can-
tilever that has a certain stifness and that moves with a cer-
tain speed. This is neither the fixed force nor the fixed ex-
tension situation. Furthermore, the analytically derived
results adopt equilibrium conditions whereas the speed with
which the cantilever moves may often significantly exceed
the relaxation rate of the system, especially at low tempera-
tures. Thus establishing the theoretical pulling rate depen-
dence of the stretching process is of interest.

Here, we present results that are based on molecular dy-
namics simulations of self-attracting Lennard-Jones ho-
mopolymers which are stretched by a cantilever moving at a
constant speed and at temperatures which can be lower than
Tu. The simulations are similar to our previous studies of
stretching in a Go-like model of proteins[7–9,21]. We show
that the stretching behavior of homopolymers is different
from that of proteins in that there are no characteristic large
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peaks in theF-d curves. Instead, variations in the pattern are
more regular, of a smaller scale, and thus more akin to the
features found when stretching model secondary structures
of proteins[7,21]. This bland behavior arises primarily be-
cause, in homopolymers, interactions of all contact orders
are present through most of the pulling process. However,
the changes brought about by increasing temperature are
analogous to those occurring in proteins: theF-d curves
gradually lose whatever mild features they had asT rises.

An interesting feature of the force-displacement curves is
a pronounced plateau. The plateau grows in extent with in-
creasing chain length and is similar to that observed in an
experimental study of PNIPAM[10]. Direct spatial analysis
shows that the homopolymer is in a “ball-string” configura-
tion. Such a configuration has already been observed by
Maurice and Matthai[22] in molecular-dynamics studies of a
homopolymer with the Morse-potential-based interactions
under poor solvent conditions and by Kreitmeieret al. [23]
in Monte Carlo studies of a Lennard-Jones system. The pla-
teau force corresponds to that needed to pull a monomer out
of a compact molten globule into an extended chain. It is
thus related to the surface tension of the polymer droplet and
decreases slowly as the droplet shrinks. It also decreases with
increasing temperature, and disappears above a characteristic
unfolding temperature.

We also study the unraveling scenarios by monitoring the
distances at which each contact breaks for the last time. We
show that the scenario diagrams shift logarithmically with
pulling rate and they become increasingly simplified as the
temperature is raised. In the entropic limit[9] the rupture
distances become strictly monotonic as a function of the con-
tact order so that the longest ranged contacts break first. This
limiting high temperature behavior is very similar to that
found for proteins[9].

The following section describes the model interactions
and geometry used in our simulations. Section III presents
results for thermal unfolding, force-extension curves, and
stretching scenarios. We conclude that despite the lack of
specificity, the qualitative stretching behavior of self-
interacting homopolymers is similar to that of proteins.

II. MODEL

We consider a linear chain ofN beads of massm. The
beads are tethered together by stiff harmonic potentials with
minima located at a proteinlike distance of 3.8 Å. Nonspe-
cific Lennard-Jones 6-12 potentials provide attraction be-
tween all nonconsecutive beads. The energy and length pa-
rameters of the Lennard-Jones potential are denoted bye and
s, respectively. Note that there are two distance scales in this
model, the tethering length and the attraction range. We
chooses=5 Å so that both distances are typical of proteins,
and present our results with lengths in units of Å. The main
difference from Go-like models of proteins is that we include
attractive interactions between all beads, rather than only at
native contacts.

The simulation method is similar to our previous
molecular-dynamics(MD) studies of proteins[7–9,24–27].
In particular, the equations of motion are integrated using a

fifth order predictor-corrector algorithm[28]. The time step
is 0.005t, wheret;Îms2/e is the characteristic time for
the Lennard-Jones potential. The effective temperature is

given by the ratioT̃;kBT/e, whereT is the temperature and
kB is Boltzmann’s constant. Constant temperature is main-
tained with a Langevin thermostat[29]. The damping rate,
g=2m/t, is chosen to be large enough to produce the over-
damped dynamics typical of chain molecules in a solution,
without slowing the dynamics unnecessarily.

The initial compact state of the homopolymer is obtained
by annealing the system at progressively lower temperatures.
While this state is only one of many local energy minima, it
is used for all runs at a givenN in order to minimize fluc-
tuations due to initial conditions. Examples of such states are
shown in Fig. 1. The terminal beads are more likely to lie at
the surface of the initial state for entropic reasons, and were
always at the surface in the clusters considered here.

The polymer is stretched by attaching both ends of the
polymer to harmonic springs of spring constantk. The other
end of one spring is held fixed. The outer end of the other is
pulled at constant speedvp in the direction of the initial
end-to-end vector of the polymer. The displacement of the
pulled end of the spring is denoted byd. The net force acting
on the bead attached to the moving end is denoted byF and
is measured from the extension of the pulling spring. The
force on the other end bead is nearly the same, indicating
that the system is quasistatic from the point of view of stress
transfer.F is averaged over a time interval of 100t which,
for a typical pulling speed of 0.005 Å/t, corresponds to a
displacement of 0.5 Å. The averaging is performed in order
to reduce thermal noise without substantially affecting the
spatial resolution. We consider two values of stiffness of the
pulling springs. The stiff spring case corresponds tok
=100e /Å2. The contrasting soft spring case corresponds to
k=0.1e /Å2.

FIG. 1. Examples of folded homopolymer conformations as ob-
tained by annealing. The system sizes are indicated.
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The unfolding scenario is specified by the unbinding or
breaking distancedu for all contacts. A contact between
beadsi and j is considered ruptured if the distance between
them exceeds 1.5s. Note that at a finite temperature the con-
tact may break and reform several times anddu is taken to be
associated with the final rupture.

III. RESULTS

A. Thermal unfolding

In the limit of infinite chain length there is a sharp tran-
sition in the scaling behavior of associating polymers at the
theta temperatureTu. Below this temperature the polymer
has a compact, globular structure at large scales with the
radius of gyrationRg scaling asN1/3. AboveTu the polymer
has the statistics of a self-avoiding random walk withRg
,N0.588. At Tu , the polymer follows simple random walk
statistics:Rg,N1/2. The transition atTu is often referred to as
the globule-coil transition.

Graessleyet al. [30] have considered a model similar to
ours, but with the Lennard-Jones interaction truncated at
2.5 s. From the scaling behavior forNù200 they deter-

mined T̃u=3.18. We expect that the untruncated interactions

considered here should lead to an increase inT̃u. However,
we focus on the much shorter chain lengths typical of pro-
teins, where finite size may also produce significant shifts in
the characteristic temperature.

Figure 2 shows the radius of gyration as a function of
temperature for three different chain lengths. We identify a

characteristic unfolding temperatureT̃u for eachN with the
point of inflection of the corresponding curve. The value of

T̃u increases from about 2.8 to 3.4 to 4.0 asN increases from

40 to 80 to 120. This suggests, as expected, thatT̃u is higher
than that obtained for truncated interactions[30].

For the chain lengths considered here, we find thatT̃u
correlates with changes in the thermal and mechanical re-
sponse. Figure 2 also shows the specific heat of the polymer

as a function ofT̃. Note that there is a small bump at theN
dependent value ofTu. The transition at this temperature can
be viewed as analogous to a liquid-vapor transition where the
polymer expands from one disordered state to another of
lower density. The maximum in the specific heat occurs at a

much lower temperatureT̃max<0.26. Examination of the
polymer dynamics shows that this corresponds to something
like the glass transition temperature. The polymer is trapped

in local energy minima for long periods of time forT, T̃max
and moves freely between configurations at higher tempera-
tures.

Previous work for a homopolymer with attractive square-

well potentials[31] also foundT̃max! T̃u. It is interesting to
note that proteins show very different behavior. Due to a
high synchronology between the collapse and folding transi-

tions T̃u is generally close toT̃max. In some theoretical works

it has actually been assumed thatT̃max exactly coincides with
the u transition in proteins[32].

B. Force-displacement curves

Figure 3 shows examples of single trajectoryF-d curves
corresponding to unraveling of theN=40 homopolymer. We

consider temperatures below and aboveT̃max and two values
of the cantilever spring, the stiff and the soft cases defined in
Sec. II.

At low temperaturesF-d curves show regions of constant
upward slope where the polymer is trapped in a local free
energy minimum, followed by rapid drops where individual
bonds break. The sawtooth structure is more pronounced for
the soft cantilever. The slope of the upward ramps is just the
combined effective stiffness of the springs and polymer. The
softer the cantilever, the longer the distance needed to reach
the force where bonds break. The extension required for the
force to decrease is also larger. As a result, bonds that break
sequentially with a stiff spring all break in the same event
when a soft spring is used.

The pattern ofF-d curves is a fingerprint for the initial
conformation, since the sequence of broken bonds depends
on the initial structure and the direction of pulling. Unlike
proteins, the initial conformation of homopolymers is not
unique, and different random initial configurations lead to
very different patterns. In proteins, one also typically ob-
serves larger and more well-defined peaks[4,5,8,9,33–35].
The cooperative nature of the bonds results in an unusually

FIG. 2. The temperature dependence of the heat capacityC and
the averaged radius of gyrationkRgl for the homopolymers of sizes
that are indicated.(C for N=120 is not shown to avoid overcrowd-
ing of the figure.) The error bars are of the order of the thickness of
the lines. The square symbols show the unfolding temperatureTu.
The data shown are obtained by averaging overnt annealing trajec-
tories wherent=50, 50, and 25 forN=40, 80, and 120, respectively.
Each trajectory starts from a random open conformation and the

reduced temperatureT̃ is decreased in steps of 0.1. After an equili-
bration time of 1000t the energy and the radius of gyration are
averaged over a time between 2000 and 10 000t depending on the
temperature.
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deep metastable free energy minimum for the native state.
This in turn leads to more simultaneous bond breaking and
larger forces. For example, when the same Lennard-Jones
potential is used to couple native contacts in a model of a
domain of titin sN=89d [8,21], the peak force is an order of
magnitude largers4e /Åd than for homopolymers. Of all the
model proteins considered[7,9,21], only simple secondary
structures, which are known to have less inhomogeneity in
binding forces, produce peak forces that are almost as small
as those in Fig. 3.

When the temperature increases beyondT̃max the ho-
mopolymer can sample many conformations during unfold-
ing. Thus the curves atT̃=0.5 show no clear peaks, just
thermal fluctuations that do not correlate with the initial
state. Force-displacement curves for proteins also show a

general loss of structure with increasingT̃ [9,21]. However,
the specific interactions of proteins lead to much higher val-

ues ofT̃max s,1d even for the same interaction energies[21].
This reflects the unusually deep binding energy of the native
state.

For all temperatures the force curves in Fig. 3 show a
general tendency to increase and then drop before a final
rapid rise. On increasingd from 0, there is a gradual buildup
in the force. The weakest bonds tend to break first, although
their location relative to the pulling force is also important
[21]. The forces later decrease because there are fewer re-
maining bonds to hold the globular portion of the polymer
together. Eventually, all the Lennard-Jones bonds are rup-
tured, and the polymer is fully extended. The pulling force
then acts exclusively to stretch the harmonic tethering forces,
producing the final rapid rise in force.

Figure 4 shows how the force curves evolve asN is in-
creased from 40 to 160. The increased length leads to many
more metastable states. As a result the force curves atT̃=0
show a roughly four-fold increase in the number of peaks for
each value of the spring constant. Peaks are still evident at
T̃=0.2, which is slightly belowT̃max=0.26. However, ther-
mal fluctuations reduce the force needed to rupture bonds

and remove some of the metastable states. Curves forT̃

=0.5@ T̃max show only thermal fluctuations superimposed on
a broad plateau followed by a final rapid rise. As forN=40,
there is a gradual drop in the force along the plateau that is
related to a gradual decrease in the number of bonds. Figure
5 shows that both the length of the plateau and the plateau

force gradually decrease with increasing temperature. ByT̃

=4< T̃u there is little evidence of a plateau and the entire
curve can be fit to a monotonically increasing WLC force.

The origins of the plateau and its temperature dependence
can be determined by examining the conformation of the
polymer. Examples of conformational changes during

stretching at four values ofT̃ are shown in Fig. 6. In each
case the polymer contains linear regions on either side of a
compact globule.(We have not seen configurations with
multiple globules, which would have higher surface energy.)
As the polymer is extended, monomers are pulled out of the
globule and into the linear regions. The required force drops
as the globule shrinks because the increase in curvature
leads, on average, to fewer bonds to other monomers.

For T̃. T̃max there are rapid rearrangements of bonds
within the globule, indicating that it is in a molten state.

Some mobility is also observed atT̃=0.2, but the degree of

mobility decreases with further decreases inT̃. The linear
regions in Fig. 6 become more crooked with increasing tem-

FIG. 3. TheF-d curves for anN=40 homopolymer system. The

values of T̃ are indicated. The pulling speed is 0.005 Å/t. The
upper panel shows pulling with a stiff cantileverskc=100e /Å2d
whereas the lower panel corresponds to the soft cantileverskc

=0.1e /Å2d.

FIG. 4. Similar to Fig. 3 but for anN=160 homopolymer
system.
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perature as their entropy becomes more important. This also
increases the amount of polymer in the linear region at a
given extension, leading to a decrease in globule size with

increasingT̃ in Fig. 6. The interface of the globule also be-

comes more diffuse with increasingT̃. This reflects a drop in
surface tension that corresponds to the drop in plateau force
needed to extend the linear region.

Plateau forces have also been observed in recent atomic
force microscopy(AFM) studies of PNIPAM and PEO poly-
mers under poor solvent conditions[10]. These authors pro-
posed that the mechanism for the observed plateau is analo-
gous to the Rayleigh instability, which can lead to a “ball-
spring” configuration like those shown in Fig. 6. In their
experimental setup, however, the ball-spring configuration is
not attained. Instead a stretched configuration is found be-
tween two globules which are bound to the AFM tip and a
flat surface. Although the analogy is presumably correct,
they did not consider the possible change in force with de-
creasing droplet size that we find in our simulations.

The existence of a plateau in theF-d curve has been pre-
dicted in several theoretical studies[16,18–20] when the
polymer is stretched under the strictly fixed force conditions.
Our results show that the plateau can be also observed under
constant speed conditions. Pulling with a cantilever can be
considered as intermediate between the fixed force and fixed
stretch cases, approaching a fixed force for a soft cantilever
and a fixed stretch for a stiff cantilever. Note that the plateau
is not observed in the case of proteins when they are pulled
with a constant speed[8,21]. Thus even though there is a
general difference between the fixed force and fixed stretch
ensembles[36], this difference seems to be much smaller in
the case of homopolymers than in the case of proteins.

C. Stretching scenarios

We now consider the succession of unraveling events in a
homopolymer. The contact order of a bond between theith
and j th monomer along the homopolymer is given by the
sequential separationu j − i u. The unfolding scenario is repre-
sented as a plot of the displacement of the pulling springdu
at which the bond ruptures for the last time against contact

order. In proteins atT̃=0 such plots form complex patterns in
the du, u j − i u plane [8,9]. In most cases the long range con-
tacts tend to break first and the short range contacts break
throughout the process. There are generally pronounced
striations where clusters of bonds in different secondary
structures unravel. This type of structure is absent in the
results for homopolymers shown in the top left panel of Fig.
7. Instead the points fill a whole triangular region. This
means that there is no correlation between the contact order
and du. Note that the number of bonds in proteins is much
smaller, leading to sparser scenario diagrams.

As T̃ increases, the scenarios occupy progressively
smaller regions of thedu, u j − i u plane. In the high temperature
limit, the plots collapse onto a line withdu decreasing mono-
tonically with increasingu j − i u. In this limit the initial con-
formation of the polymer is irrelevant and the stretching sce-
nario is governed entirely by the contact order. Studies at
different temperatures indicate that for homopolymers this
entropic behavior sets in near the unfolding temperatureTu
(Fig. 1), at least at sufficiently slow pulling rates.

The results in Fig. 7 are forvp=0.005 Å/t. Figure 8

shows du, u j − i u patterns forN=40 homopolymers atT̃=2
with vp: 0.0005, 0.005, and 0.05 Å/t. Figure 9 shows data
corresponding to two lower velocities values: 0.001 and
0.01 Å/t but averaged over contacts of two fixed sequence

FIG. 5. Examples of theF-d curves obtained atT̃ of 2 and 4 for
the N=160 system pulled by a soft spring. Inset: the force vs the

end-to-end distanced1,N at T̃=4 is fitted by the WLC equation,F

=sT̃/4pdfs1−d1,N/Ld−2−1+4d1,N/Lg, using the contour lengthL
=840 Å and the persistence lengthp=12.3 Å. The finite persistence
length is due to local steric repulsion in the chain. The end-to-end
distance was computed asd1,N=d+d0−F /k, whered0 is the initial
end-to-end distance andk is the cantilever spring constant.

FIG. 6. Snapshots of aN=160 system stretched by distances of
100 and 200 Å are shown in the left and right hand panels, respec-
tively. The pulling springs are soft and the pulling speedvp

=0.005 Å/t. The value ofT̃ is 0, 0.2, 0.5, and 2.0 as one goes from
top to bottom.
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distances of 10 and 20. Figures 8 and 9 combined together
indicate a logarithmic dependence of the pattern onvp in the
entropic limit. It is interesting to note that the amplitude of
the logarithmic dependence is a nonmonotonic function of

u j − i u, as indicated in the inset of Fig. 9. ForN of 40, there is
a maximal sensitivity tovp aroundu j − i u of 10 and essentially
no sensitivity around the terminal values ofu j − i u. Figure 10
implies that the location of the maximum moves up on in-
creasing the system size.

The logarithmic dependence onvp can be explained in the
following way. We note that the upper bound of the triangu-
lar regions shown in Figs. 7 and 8 is a straight line,du=N
− u j − i u, that corresponds to a situation in which the polymer
is perfectly straight on either side of a given contact. For a
randomly fluctuating polymer, however, this is an extremely
unlikely situation. At sufficiently high temperatures, the sam-
pling of conformations takes place with equal probablity and
the lower the pulling speed, the longer time to sample con-
formations. One can expect that getting to states near the

FIG. 7. Scenarios of mechanical unfolding averaged over 20
homopolymers withN=40 for the temperatures indicated. For each
homopolymer, one stretching trajectory is considered. The pulling
speed is 0.005 Å/t.

FIG. 8. Scenarios of mechanical unfolding of theN=40 ho-
mopolymers at three indicated values of the pulling speed. The
crosses, black circles, and open squares correspond tovp of 0.0005,
0.005, and 0.05 Å/t, respectively.

FIG. 9. The logarithmic dependence ofdu on vp for N=40. The
results corresponding to a given value ofu j − i u are averaged along
the chain, i.e., averaged along the vertical lines in Fig. 8. The lines
have slopess that are indicated. The inset shows the absolute values
of the slope for selected values ofu j − i u.

FIG. 10. Scenarios of mechanical unfolding for the three indi-

cated system sizes and at a fixed value ofT̃ of 2.

CIEPLAK, HOANG, AND ROBBINS PHYSICAL REVIEW E70, 011917(2004)

011917-6



upper bound is exponentially unlikely. In other words the
time to achieve the upper bound will be exponentially long.
Let X denote the distance moved toward the upper bound.
Then the probability of finding a state with that distance
would beP~exps−X/Cd, whereC is a constant that varies
along the upper bound. The probability of sampling of con-
formations is proportional to 1/vp. This means thatP
~exps−X/Cd~vp

−1. ThusX~ lnsvpd, where the coefficient of
proportionality depends onu j − i u.

We now demonstrate that the attainment of the entropic
limit for a given vp depends on the system size. This is
illustrated in Figs. 10–12 which correspond tovp

=0.005Å/t. Figure 10 considersT̃=2 for which theN=40
stretching scenario is almost perfectly monotonic. Increasing

N at the fixed value ofT̃ results in a gradual blurring of the
monotonic pattern. This blurring, or broadening, of the pat-

tern can be countered by considering still higher values ofT̃
as shown in Fig. 11. It is expected that a similar effect can be
achieved by reducing the pulling speeds.

It should be noted that the entropic limit corresponds to
sampling of all conformations of the chain. Thus the longer
the chain, the longer time is needed to probe the conforma-
tions. In order to observe the entropic behavior during
stretching,vp must be small enough to allow for sampling of
the ensemble over a small fraction of the stretching time.
Thus longer chains reach the entropic limit at lowervp for a

given T̃ or higherT̃ for a givenvp.
A scaled version[9] of the data shown in Fig. 11 is shown

in Fig. 12. It is seen that the order of the scenario lines is

inverted compared to the order found in Fig. 11. For eachN,

T̃ is large enough to limit the scatter of points around a
monotonically decreasing curve. However, the curves move
farther from the limiting straight linedu=N− u j − i u as N in-
creases, because such rare fluctuations are more unlikely for
longer chains.

In conclusion, we have computedE−d curves and unfold-
ing scenarios for homopolymers over a wide range of rates,
chain lengths, and effective temperatures. Trends with these
parameters are similar to those found for model proteins
[7–9], but the greater specificity of protein structures leads to
larger unbinding forces and temperatures. The substantially
greater statistics of bonds in homopolymers facilitates stud-
ies of the logarithmic rate dependence of unfolding and the
sensitivity to chain length. Homopolymers exhibit a clear
force plateau that is related to partial unfolding into a ball-
string structure. It is normally assumed that once proteins
start to unfold they lose all internal structure. The persistence
of a ball-string structure in homopolymers suggests that pro-
tein unfolding need not have an all or nothing character.
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