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Optimal Paths and Domain Walls in the Strong Disorder Limit
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An optimization problem that may be cast in the context of domain walls in ferromagnets and spin
glasses, lattice animals, and percolation is described. Numerical calculations in two and three dimen-
sions show that a new universality class is obtained. In the strong disorder limit interfaces are not self-
affine but fractal. Further, the nontrivial ground state of frustrated spin glasses is straightforwardly ob-

tained in this limit.

PACS numbers: 05.50.-+q

The effect of disorder on critical phenomena has been a
subject of much recent interest. In the limit of weak dis-
order, pinned domain walls in random exchange fer-
romagnets exhibit criticality, governed by a zero temper-
ature (T'=0) fixed point, with an algebraic dependence
of the roughness on the length scale [1]. The geometry of
domain walls in two dimensional weakly disordered fer-
romagnets, directed polymers in two dimensional random
media, and the dynamics of growing interfaces on a one
dimensional substrate as governed by the Kardar-Parisi-
Zhang equation are all related to each other and the
Burgers’ equation in one spatial and one temporal dimen-
sion [1-3]. ,

Additional complexity is present in spin glasses—ran-
dom ferromagnetic and antiferromagnetic couplings lead
to frustration and a rugged energy landscape [4]. Com-
plex systems, such as spin glasses [5] and proteins [6],
and optimization problems, such as the traveling sales-
man problem [7], and computing structures [8], are be-
lieved to have hierarchical structures [9] characterized by
ultrametricity [10].

In this Letter, we consider a strong disorder variant of
the domain wall problem that has novel ramifications in
several contexts including domain walls, fractally rough
surfaces, polymers in random media, the ground state of
spin glasses, percolation, and lattice animals. Our nu-
merical results in two and three dimensions are suggestive
of new nontrivial critical behavior. The pinned domain
walls are in a new universality class. Unlike the weak
disorder limit, there are significant overhanging config-
urations. Even though the frustrated spin glass ground
state has a zero magnetization unlike the fully magnet-
ized ferromagnetic state, spin glasses and random fer-
romagnets behave alike in many respects.

There are several, essentially equivalent, ways of view-
ing the domain wall problem in the strong disorder limit.
We first describe the standard optimization problem that
is entirely equivalent to the Huse-Henley [11 domain wall
in two dimensions (2D) at T=0. Consider a two dimen-
sional square lattice of size L XL with bonds of random
strength. Let us assume that the strength of a bond cor-
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responds to the time taken to traverse it. What is the op-
timal path, say from left to right, that minimizes the total
travel time? In the limit of zero randomness, i.e., when
all bonds have the same strength, the optimal path is a
straight line from left to right. In the limit of weak ran-
domness, one may expect that overhanging configurations
do not play a key role, i.e., the optimal path does not have
a significant number of segments that go “backwards”
(from right to left). Indeed, if one assumes that
overhangs are not allowed, one may numerically solve
this problem using a transfer matrix method and one
reproduces the Huse-Henley result that the optimal path
is self-affine characterized by a width (the root mean
square deviation from its mean position), W, that scales
as L¥3. This last result has also been obtained analyti-
cally by Huse, Henley, and Fisher using a mapping to
Burgers’ equation [11.

We now turn to the strong disorder limit of this optimi-
zation problem. We assume that the bond strengths (or
the traversal times) are so widely distributed that the to-
tal travel time along a path may simply be evaluated by
the value of the largest bond belonging to the path. This
definition is rigorously valid when the time space has an
ultrametric structure [10]: the minimum time for travel-
ing from A to B (an optimal path is chosen between
A and B to minimize the time— further all subpaths
between sites on this optimal path are also optimal),
C(A,B), satisfies the relation C(4,B) < Max(C(4,X),
C(X,B)) for any arbitrary X. We find numerically (the
details are presented toward the end of this Letter) that
the optimal path is no longer self-affine but is a fractal
with fractal dimension Dy. The average length of optimal
paths, 7, spanning a distance L scales as L™,

We now present an alternative definition of the optimal
path in the context of domain walls in spin systems. Con-
sider an Ising system described by the Hamiltonian H
=3 ipJijoic;, where (ij) denotes nearest neighbor in-
teractions and the exchange constants J;; are randomly
positive or negative in a spin glass or all positive in a fer-
romagnet.

We now make an assumption similar to that made in
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connection with the ultrametric time-space in the optimi-
zation problem which enables a simple attack on the
problem of spin glasses, yet leads to nontrivial results.
The sum of the magnitudes of any chosen set of ex-
changes will be approximated by that of the largest ex-
change (in magnitude) in the set. Such an assumption
would be valid for a broad distribution of exchange con-
stants. (For very broad but bounded distributions, the
physics would be expected to cross over to the weak disor-
der limit beyond a certain correlation length.)

Following Ambegaokar, Halperin, and Langer [11], we
may then obtain the ground state of the spin glass in the
following way. First, we rank the exchange constants in
order of decreasing absolute strength. We begin with the
largest IJUI and lock the relative orientation of the spins
so that the exchange interaction is satisfied. We then
proceed with the next highest [J,-jl and repeat the pro-
cedure. When independent clusters coalesce, we make
use of the twofold degeneracy of the clusters (flipping
clusters as a whole is permitted) to satisfy the bonds be-
ing currently considered. Nevertheless, eventually, frus-
tration sets in—the relative orientation of a pair of spins
established previously is found to conflict with the ex-
change interaction coupling them. We finally reach a
stage, before some of the weakest exchange constants are
even considered, when the entire configuration of the
spins is decided. On an average, in the spin glass phase,
one would expect that half of these weak bonds are frus-
trated.

In 12x12 spin glasses with a Gaussian distribution of
exchange couplings, the ground state energy as deter-
mined assuming that the exchanges are widely distributed
is only 1.8% higher than the ground state energy obtained
using transfer matrix methods.

Consider a sample of linear size L in D dimensions with
periodic boundary conditions in all directions. A domain
wall can be introduced into the system by changing the
boundary conditions to antiperiodic in one direction,
while retaining periodic boundary conditions in all the
other directions. The construction of the ground state
with antiperiodic boundary conditions is initially similar
to that with periodic boundary conditions but eventually
there is an energy mismatch. On completing the two con-
structions we compare the ground states and determine
the location of the domain wall. The average length of
the domain wall, I, spanning a lateral distance L scales as
before as L”. The optimal path in 2D may be seen to be
equivalent to the domain wall formed in a disordered fer-
romagnet at zero temperature with the exchange con-
stants corresponding to the travel times. (The domain
wall is in the dual lattice of the spin system.)

Interesting consequences of broad distributions of
physical attributes have been explored in a variety of situ-
ations including transport in amorphous semiconductors
at low temperatures, electrical conduction, and fluid flow
in porous rocks and the magnetic properties of doped
semiconductors [11]. In fact, the optimal path we have

defined is precisely the route of maximum flow of current
when there is a broad range of conductances in an electri-
cal network and therefore provides a measure of the ex-
perimentally accessible scale-dependent tortuosity of such
a strongly disordered medium. While such broad distri-
butions ought to be well defined for systems smaller than
an arbitrary though finite correlation length, the new
universality class is further evidence of the rich behavior
in ultrametric space [12,13] in which our formulations
are exactly valid.

The domain wall in the strong disorder limit and the
travel-time minimization problem invoked broad distribu-
tions or equivalently assumed an ultrametric space. Fur-
ther these problems involved quenched distributions of
exchange constants or travel times. As mentioned previ-
ously, the Huse-Henley domain wall problem may be
mapped into a dynamical Burgers equation involving an-
nealed noise [1]. Can an analogous mapping into an an-
nealed problem be effected in the strong disorder limit?
We show below two distinct ways of doing this related to
lattice animals and percolation. We alert the reader that
these versions of lattice animals and percolation are
different and are not directly related to their conventional
counterparts.

We consider spanning lattice animals [14] with loops.
In a square of linear size L, periodic boundary conditions
are applied in all directions. We denote one of the direc-
tions by z. We select bonds randomly with the following
rules: (i) a bond that provides a connecting path along
the z direction is not allowed, and (ii) the process ter-
minates when only two clusters of selected bonds exist,
i.e., each lattice site belongs to one of two clusters. The
number of absent bonds that would connect the two clus-
ters provides a measure of the interfacial length. This
lattice animal algorithm is operationally identical to the
procedure followed in establishing the ground state of the
spin glass. The key difference is that we do not allude to
broad distributions or ultrametricity here. Further, un-
like the spin glass case, where exchange constants were
assigned from a broad distribution in quenched manner
before determining the interfacial geometry, here the
bonds are picked randomly without any preassignment.
One might understand the exact equivalence of these ap-
proaches by imagining that the bonds were being picked
in decreasing order of magnitude.

An alternative view that leads to a novel form of per-
colation is as follows: Start with all the bonds present on
a square lattice. Consider removing each of the bonds
one at a time in random order. If a bond that breaks the
connectivity from say left to right is selected, an alternate
bond is chosen until a single connecting path remains. In
ordinary percolation [15], one follows this procedure until
the connectivity is just about to be broken for the first
time. Here, one proceeds further essentially removing all
isolated clusters and dead ends and paring down the per-
colation backbone into a topologically one dimensional
path (whose spectral dimension is 1). This is an entirely
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equivalent way of viewing the optimization problem dis-
cussed above in terms of eliminating all bonds which have
a large cost in time.

Within the quenched formulation of the optimal path
problem, travel times were assigned at the outset from a
broad distribution. In the percolation approach, bonds
are randomly removed one at a time ensuring that the
connectivity is not destroyed. The two approaches are
clearly identical if one imagines that the bond removal in
percolation corresponds to discarding bonds starting with
the largest travel time and working downwards in order.
Our percolation algorithm differs from that of invasion
percolation [16] in that the latter invokes a local choice
whereas the former involves a global selection process.

While the percolation and domain wall approaches are
equivalent in two dimensions, in higher dimensions they
are not. For example, in three dimensions, a domain wall
would divide a box into two parts and have fractal dimen-
sion = 2, whereas the percolation path would still be to-
pologically one dimensional.

In three dimensions, the percolation problem analogous
to the domain wall involves the selection of bonds until a
spanning surface made up of plaquettes normal to the
bonds divides the system into two disconnected parts.
This situation is different from the usual bond percolation
in D=3, where one merely requires a connected path
from one surface to the opposite one. Our numerical cal-
culations indicate that the appropriate threshold is == 1
for large systems in D =3.

We have considered an ensemble of systems in D=2
and 3 on a hypercubic lattice. In both D=2 and 3 we
have checked the validity of our results using several
different computer programs designed in the context of
percolation, lattice animals, and spin systems. (As ex-
pected, the results were found to be identically the same
in all the contexts.) We find that Dy=1.210.02 in
D=2 and Dy=2.5+0.05 in D =3 (see Fig. 1).

LOG,(T)

1
LOGyo(L)

FIG. 1. Log-log plot of I versus L. The results are for 2D
and 3D systems. The straight lines have slopes of 1.2 and 2.5,
respectively. The statistical errors are smaller than the size of
the data points.
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In D=2, L ranges between 4 and 80 and the statistics
are based on between 50000 and 5000 realizations. In
3D the largest L studied is 16 and the statistics are simi-
lar. (It is interesting to note that regular spin glasses
characterized by a Gaussian distribution of exchange
couplings have Dy=1.26 =0.03 in D =2. This result was
obtained [17] for systems with L up to 12.) Numerical
studies on a triangular lattice [18] involving site percola-
tion (instead of bond percolation) yield the same value of
Dy as in the square lattice underscoring the universality.

The domain wall in strongly disordered systems is a
fractal (Fig. 2). This result is qualitatively different from
the weak disorder limit where overhangs do not play a
role. In 2D for 60x60 samples fewer than 1% of the
cases did not have overhangs, even though only 3.5% of
the samples of size 4x4 had overhangs. In 3D, for
L =10, more than 95% of the walls had overhanging
configurations.

Note that, even if there is a finite correlation length
beyond which the domain wall is no longer fractal but
self-affine, the roughness exponent should be approxi-
mately equal to 0.8 in D=2, a value distinct from 2/3
—the weak disorder exponent [1}. This follows from our
result for Dy and the analysis in Ref. [19]. The value of
Dy and the construction procedure are the same for fer-
romagnets and spin glasses. This arises from the fact
that spins connected by a frustrated bond in this con-
struction are also connected by a path of stronger bonds

_ which are unfrustrated.

The domain walls in the weak disorder limit do not
have statistically significant overhangs and are related to
the behavior of directed polymers in a random environ-
ment in the strong coupling limit [2]. Our case differs
from this class of problems in two essential ways. First,
overhangs are allowed and the polymers are undirected.

"Second, the metric for the cost of a path between two

FIG. 2. Typical domain wall in D=2 and for L =80. Free
ends are connected by periodic boundary conditions.
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points is not the sum of the costs of the bonds traversed,
but the highest cost bond in the path.

It may be tempting to associate the final path of the
optimization problem with a self-avoiding walk on a per-
colation cluster. However, it is straightforward to show
that the weighting of different connected paths is not the
same for the two cases. Indeed, our numerical estimate
of Dr==1.2£0.02 is not consistent with that for a self-
avoiding walk on a percolation cluster, for which Dy
=1.30:0.01 [20]. Also, while the 3D value of Dy coin-
cides numerically with that of the hull of a percolation
cluster [21], our 2D results for both square and triangu-
lar lattices suggest that this result is not generally true.
Indeed, Dy for the hull of a percolation cluster on a tri-
angular lattice is 7/4, a value quite different from 1.2.

For D=3, there has been considerable effort [22] ex-
pended in seeking algorithms for finding surfaces in three
dimensional space that have a nontrivial fractal dimen-
sion greater than 2. While a self-avoiding walk in D=2
has a nontrivial fractal dimension, the analogous self-
avoiding surface in D =3 belongs to the branched poly-
mer universality class [23] with Dy=2. Similarly, self-
avoiding tethered membranes [22] in D=3 have D,=2.
The domain wall we have considered is a simple example
of a surface with nontrivial geometry in three dimensions.

In summary, we have defined problems in lattice an-
imals, percolation, and domain walls that belong to a new
universality class involving fractally rough interfaces,
overhanging configurations, and novel exponents. Our
simple observation in spin glasses is that when conflicting
instructions leading to frustration are widely separated in
strength, the system’s nontrivial ground state is simply
obtained. An extrapolation from this limit to that of reg-
ular disorder and relevant frustration seems to be an ave-
nue worth exploring.
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Note added.— After submission of this paper, we re-
ceived a preprint by C. M. Newman and D. L. Stein in
which a similar model of spin glasses was shown to have a
multiplicity of ground states above eight dimensions.
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