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Rupture and coalescence in two-dimensional cellular automata fluids
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A two-dimensional, two-color, nonlinear, Galilean invariant, Boltzmann cellular automaton is used to
study rupture and coalescence processes in two fluid systems. A Lyapunov distance is introduced to
characterize the dynamics of rupture, and its dependence on the parameters of the system, such as the
coefficient of the surface tension, is studied. Systematic trends are obtained. A comparison to molecular
dynamics studies is made. Coalescence is studied in the context of a droplet in a background fluid falling
in a gravitagional field to the bottom of a container. Three cases have been studied: a “bare” wall, a
shallow liquid of the same kind as the droplet, and a deeper liquid. In each case, detailed momentum

and density fields are obtained and compared.

PACS number(s): 47.11.+j, 02.70.Ns, 05.50.+q

I. INTRODUCTION

The rupture and coalescence of fluid interfaces are
challenging problems [1] since the phenomena occur at
two disparate length and time scales. While the bulk
fluid is conveniently treated within the framework of con-
tinuum fluid mechanics, the interface is characterized by
lengths measured in molecular diameters and local
motion on time scales below the picosecond range. Re-
cent studies [2,3] using molecular dynamics simulations
have allowed for an attack of such problems and have
yielded detailed microscopic information not easily avail-
able by other means. However, the inherent limitation of
the small sizes of systems accessible with present day
computers has not permitted the determination of mean-
ingful Navier-Stokes fields. The conventional continuum
physics methods, on the other hand, are expected to fail
when the processes considered take place at length scales
that are approaching molecular distances.

In this paper, we describe the results of studies of the
rupture and coalescence of liquid interfaces using a
Boltzmann cellular automata (BCA) technique [4]. It is
well known that the cellular automata model [5,6,14,15]
reproduces hydrodynamical behavior at coarse-grained
length and time scales. The Boltzmann approach incorp-
orates an averaging over many possible simultaneous
configurations, leading to an avoidance of noise problems
commonly associated with Boolean cellular automata [7].
Interfaces are created in BCA by allowing for two fluids
and kinetic rules that lead to phase separation. Indeed,
our BCA has two parameters 3; and B, that allow for
control of the interfacial tension and width, respectively.
Our model is Galilean invariant due to the presence of a
judiciously chosen number, n,, of rest particles is fully
nonlinear, and allows for arbitrary densities and color ra-
tios in the lattice sites. The present studies are all in two
dimensions; an extension to three dimensions is possible
but we have not developed the machinery yet to carry
this out. The interfacial tension in the BCA is created us-
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ing kinetic rules that incorporate like color attraction and
unlike color repulsion. Earlier studies have shown that
many of the features of the interfaces of real fluids are
captured adequately by our model. Further, the
Boltzmann approach provides for a large signal to noise
ratio and allows one to extract meaningful velocity and
density fields. At the very least, our studies provide new
insights into the complex problems of interfacial process-
es within the framework of a toy kinetic model.

This paper is organized as follows. In Sec. II we out-
line the BCA model and the way the interfaces are intro-
duced. In Sec. III we present results of systematic studies
of a thread rupture and validate our approach by molecu-
lar dynamics studies of rupture in two dimensions. Final-
ly, in Sec. IV we discuss the coalescence of a droplet imp-
inging upon a wall.

II. BOLTZMANN CELLULAR AUTOMATA MODEL

In this paper, we use a variant of the BCA technique
for studying a pair of fluids in two dimensions with a
desired degree of miscibility. Our method [4] is closely
related to that of Gunstensen et al. [7]:

(i) Our system is Galilean invariant [8]; the vortex ad-
vection velocity matches the interfacial velocity.

(ii) The method adopts the Boltzmann approach. The
conventional Boolean automata require spacial coarse-
graining and averaging over long periods of time, which
make them hard to use for monitoring dynamical situa-
tions. In the Boltzmann approach the individual event
collision rules correspond to one of the set of rules sug-
gested by Frisch, Hasslacher, and Pomeau [9] (FHP II)
but one considers ensembles of microscopic configura-
tions by ascribing probabilities of occupation to each of
the discrete velocity states.

One difference of our approach from that of Ref. [7] is
that the collision operator of our automaton is fully non-
linear; the kinetic equation that governs the time evolu-
tion of the system does not rely on the linearization in the
density difference away from a steady state. Our
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prescription for having fluids of two colors follows the
approach of Rothman and Keller [6], but it improves on
it by introducing two microscopic parameters 3; and f3,,
which allow for a flexible control of the surface tension
(by half an order of magnitude) and interface thickness,
respectively. The method of Ref. [6] relies on a one-
parameter control of the interface and involves a maximi-
zation of the scalar product of the color gradient with the
color momenta when redistributing the color after a
color-blind collision. In our recoloring scheme the
difference between the densities of the two colors along
the ath direction depends continuously on the angle ¢,
between the a axis and the color gradient.

Our coloring scheme involves two steps, the first of
which is like that in Ref. [7]: we determine the color gra-
dient vector g at each node and increase the total state
density along the axis defined by the color gradient with a
decrease in the density in a direction perpendicular to the
axis,

fa=fatBilg|cos2d, , 1

where f, refers to the initial state density, f, is the den-
sity after the redistribution, and ¢, is the angle between
the ath axis (on a triangular lattice, a takes on one of six
values) and g. Note that f,=r,+b,, where r, and b,
are the red and blue state densities, respectively. Our
second step for the reassignment of colors is according to
the equations

R,
ro= f +B,

[ , 2
@ R,+B, (R, +B )2 costa @
b B, 7 —p R,B, a3

= - cosd,, ,

a R,+Bt a Z(R,+B,)2 ¢a

for the moving states («=1,2,...,6), and

, R,
r, = R,+B, — S0 > (4)
b = B, (5)
° R,+B, f" ’

for the states at rest, where R, and B, refer to the total
red and blue densities at a node (r and b stand for red and
blue, respectively). The parameters 3, and f3, typically
take on values of the order of 0.001 and 0.2. Our
prescription for the introduction of immiscibility avoids
an abrupt interface whose properties would be sensitive
to its orientation with respect to the underlying lattice.

We have determined that the coefficient of the surface
tension, y, is proportional to (3, and substantially in-
dependent of B3,. On the other hand, the interface thick-
ness has been found to be proportional to 8, ! and not to
depend on 3, (for 3,=0.001 and 3,=0.25 it is of the or-
der of three lattice spacings). This two parameter control
of the interface properties is reminiscent of the classical
approach to the interfacial properties of nonuniform sys-
tems [4] (for example, van der Waals fluids).

The introduction of the two color method to study two
fluids also allows one to take into account the wetting
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properties of the system in the vicinity of a wall. Follow-
ing the prescription of Ref. [6] one may obtain desired
wetting properties by setting the color content of the
walls to the appropriate value. As usual, we employ
bounce-back boundary conditions at the wall in order to
impose a no-slip condition. We have found that the con-
tact angle behaves approximately linearly with the rela-
tive color content of the wall. We now proceed to the
studies of rupture and coalescence within our model.

III. RUPTURE

The Rayleigh liquid thread instability can be studied in
the following arrangement. Consider a two-dimensional
box of L XM sites. Due to the hexagonal lattice used in
the FHP II model, the corresponding linear sizes are La
and V'3/2Ma, where a is the lattice constant. Unless
stated otherwise, we take L =64 and M =32. Periodic
boundary conditions are applied in all directions. In the
center of the box we place a “ribbon” of the red colored
fluid parallel to the L axis. The ribbon is w layers thick;
typically w =6. All of the remaining sites are populated
with the blue particles, and each site is thus either totally
red or totally blue. We study the Galilean invariant case
when each velocity state is initially occupied with the
probability f,(r,z)=1 and n,=18 [the density at a site is
(6+ny)/3].

We let the system evolve until, reaching a steady situa-
tion in which the initially abrupt interface develops a
thickness and the familiar hyperbolic tangent, the red
and blue densities are obtained. This happens typically
within 800 time steps. We store the total red, R,(r,0),
and blue, B,(r,0), densities at each site located at r at
time t =0.

The system is then perturbed sinusoidally at the two
lines that were the boundaries of the red color in the ini-
tial state with the abrupt interface. In each state of a site
belonging to the boundary lines the red color densities ac-
quire an additive perturbation S8R = A4 sin(kx), where
k =2m /A, with A usually equal to L, and x is the distance
along the L axis. The blue densities of these sites are per-
turbed by —8R so that the total state probabilities [,
remain unchanged. If the amplitude A is sufficiently
large or A is sufficiently big, the ribbon will evolve to ac-
quire a circular shape in order to minimize the interface.
This entails the thinning of the ribbon and subsequent
rupture of some location x_, followed by an evolution to a
circular shape. As a working criterion of determining the
rupture time 7,, we chose a situation in which along at
least one line, parallel to the M axis, the total red content
on each site was less than 109% of the total density.

In order to monitor the onset of the instability quanti-
tatively we introduce a Lyapunov distance

2 Zel[R,(r,0—R,(r,0)’+[B,(1,1) — B,(r,0)]*}
3 {[R,(r,£)+R,(r,0)]>*+[B,(r,t)+B,(r,0)]*} ’
(6)

where R,(r,¢) and B,(r,t) are the total red and blue densi-
ties at site r at time ¢ as measured from the instant the
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FIG. 1. Logarithm of the square of the Lyapunov distance d?
versus time for L =64, M =32, A=64, and w =6 (solid line) or
4 (dashed line). The dotted line corresponds to L =256 and
w =6 with A remaining at 64. In this case four circles are
formed from a single ribbon. The interface control parameters
are 3,=0.001 and f3,=0.25. The asterisk marks the value of
the rupture time T,. The amplitude A is equal to 0.03. For
w =8 there is no rupture taking place at these values of the pa-
rameters.

perturbation is applied. The normalization used in the
definition of d? is chosen so that in a totally decorrelated
state d% would be of order 1. A growth of d? indicates an
onset of instability, whereas a steady decay to zero signals
stability.

A typical behavior of d? versus time for a perturbation
that leads to instability is shown in Fig. 1. After an ini-
tial transient decay, about 100 time steps long, d? grows
exponentially. Around the rupture time, indicated by the
asterisks, d? undergoes a sudden rise and then levels off,
indicating a new equilibrium with a circle of red liquid
present.

Generally, the larger the ribbon width, the longer the
T,. For A =0.03, A=L=64, T, is 2200 and 8850 for
w =4 and 6, respectively. Changing w to 8 leads to a rap-
id decay of d?, indicating stability (no rupture occurs
within 15 000 time steps, even with 4 =0.06 in this case).

The sensitivity of the rupture process to the amplitude
A is demonstrated in Fig. 2. The growth exponent for d*
is seen to be essentially 4 independent but the amplitude
of the growth law increases with A rapidly. The presence

0 5000

FIG. 2. Sensitivity of d? to the amplitude of the perturbation
for A=L =64, M =32, w =6, and B, and B, as in Fig. 1. The
values of the amplitude are indicated next to the data lines.

4355

2

log;ed

0 5000

FIG. 3. d? versus ¢ plots for various values of the surface ten-
sion as controlled by ;. The values of 3, are indicated next to
the data lines. The values of other parameters are as in Fig. 2
with 4 =0.03.

of the sensitivity to 4 makes it difficult to make systemat-
ic studies of the rupture time dependence on L, since
“equal amounts of perturbation” would have to be
defined first. We just point out, as an example, that for
w =6, 4 =0.03, B,=0.001, B,=0.25 the perturbations
with A=L induce rupture for L larger than or equal to
44, whereas smaller wavelengths do not generate any in-
stability. For w =2 and 4 all A’s larger than or equal to
16 (smaller values were not studied) gave rise to instabili-
ty. On the other hand, for w =8, wavelengths even as
long as 128 still do not yield rupture.

We now consider the dependence of the onset of insta-
bility on the interface control parameters B, and f3,. Fig-
ure 3 shows d? for various values of B, which is propor-
tional to the surface tension coefficient. The growth rate
exponent is roughly linear in 3;: the stronger the surface
tension, the sooner rupture takes place.

Similarly, the wider the interface, the easier it is to in-
duce rupture. Thus the growth rate exponent increases
with Bl_l linearly, as demonstrated in Fig. 4.

A linear stability analysis, in three dimensions, due to
Rayleigh [10] has led to the following expression for the
growth rate of sinusoidal perturbations of wave number k
on a cylinder of diameter d:

w(k)=y[1—(kd /2)*1/3nd , @)

-3 -
7 ,0.19,-0.22

logyed

0 5000

FIG. 4. d? versus ¢ plots for various values of the interface
width as controlled by B; !. The values of B, are indicated next
to the data lines. The values of other parameters are as in Figs.
2 and 3 with 4 =0.03 and 3,=0.001.
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where 7 is viscosity and y is the coefficient of the surface
tension. The criterion indicates that for a given d the
wavelength, which is limited by the system size, must be
big enough to ensure a positive o, i.e., rupture. Our re-
sults agree qualitatively with the existence of a critical
wavelength, with the proportionality of @ to v, and the
lack of the dependence of the growth rate on the ampli-
tude of the perturbation.

In the following we provide quantitative pictures of the
velocity fields and the density patterns in the process of
rupture. We focus on a system with the parameters
A=L =64, M =32, 4=0.03, 3,=0.001, B,=0.25, and
w =6. Periodic boundary conditions are applied in all
directions. Figure 5 shows the time evolution of the sys-
tem in eight representative snapshots. The corresponding
time is indicated at the top of each set of three panels.
The lengths of the arrows are proportional to the mo-
menta, whereas the sizes of the bars are proportional to
the red density. The time is measured in BCA time step
units with the rupture event defined to be at t =0. In this
particular example, the perturbation is applied immedi-
ately after an abrupt interface is set up and not after a
period of equilibration. 7T, is equal to 7279 in this case.
Each set of three panels shows, from top to bottom, the
momentum field of the red (ribbon) fluid, the density field
of the surrounding blue fluid, and the momentum field of

—1000
i
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the blue fluid. Generally, next to the interface, the blue
momentum should be roughly parallel to the red momen-
tum in order to avoid viscous stresses.

The evolution to a steady state lasts for about 9000
time units. The initial configuration corresponds to a rib-
bon in the middle. In the final steady situation the red
density forms a circle. There would be n circles if L were
equal to nA. Even though the Lyapunov distance grows
right from the beginning the noticeable effects of the per-
turbation affecting the system appear only 5000-6000
units later: the red density develops a thinning and, in
another place along the ribbon, the red momentum re-
verts itself. The subsequent actual rupture of the distort-
ed configuration takes place fast—within several hun-
dred steps. The red momentum becomes highly struc-
tured, and it alternates its direction in a steplike fashion.
Furthermore, the red momentum becomes substantial,
even relatively far away from the original location of the
ribbon. By contrast the blue momentum behaves much
smoother and all modifications are restricted to the
rupturing tip. Just after the rupture point a rapid folding
to a circle—through a bean shaped object—takes place.
Again the blue fluid acts more passively than the red one
and the blue momentum is less structured.

Rupture of real fluids may or may not belong to the
“universality class” of the BCA. However, it seems likely

FIG. 5. The dynamics of rupture as described in the text. The numbers at the top of each threefold set of panels indicate time

measured away from the rupture point 7.
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that the overall behavior the two fluids ought to be quali-

tatively as shown in Fig. 5.

Our BCA results are restricted to two dimensions.
Would two-dimensional filaments of real fluids indeed un-
dergo rupture? A positive answer to this question ap-
pears to be suggested by our molecular dynamics studies
of the problem. Rupture in three dimensions in systems
of Lennard-Jones atoms has been studied by Koplik and

Banavar [3].

Here, we follow their general approach but

we confine the atoms to a plane. The confinement is im-
plemented like in Ref. [11], i.e., by placing the atoms next
to an attracting wall, except that we do not take corruga-
tion of the wall potential into account. The potential due
to the wall has a sharp minimum at a position determined
by the wall parameters [12]. The interatomic potential is
of the Lennard-Jones form V(r)=4s[(0/r)12——(cr/r)6].

4357

We consider 200 atoms that emulate krypton, i.e., we
take €/kz =202 K and 0 =3.57. The characteristic time
scale of the atomic motion is t,=V mo?/e=2.5 ps,
where m is the atomic mass. The temperature is taken to
correspond to the liquid nitrogen, which makes the atom-
ic movements essentially two dimensional.

Figure 6 shows what happens to the atomic velocities
after the atoms are arranged in five rows, separated by
1.21 o, to form a “ribbon” of length 48.5=0 (other den-
sities yield a similar behavior). The initial velocities are
randomly directed. The evolution is monitored for 5044
ps- The rupture, analogous to the one observed in Ref.
[3], is taking place almost immediately and a well
developed gap is present already at 252 ps. Thus rupture
does take place. What follows is a steady formation of
two, in this case, irregular globular structures. Obtaining
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this evolution took about a week of CPU on a Sun
workstation, and averaging over hundreds of starting
configurations to determine the Navier-Stokes fields, free
of noise, was clearly impossible, even by working only
with 200 molecules. This indicates the power to harness
from the cellular automata approaches: the fully aver-
aged momentum and density fields corresponding to Fig.
5 were obtained in several hours of CPU on the same
machine.

The major limitation of the BCA method, however, is
that it does not capture the molecular level physics
correctly and at this level the results acquire a merely
qualitative character. A linear stability analysis due to
San Miguel, Grant, and Gunton [13] indicates that hy-
drodynamics does not give rise to the Raleigh stability in
two dimensions. Our BCA studies did not yield any rup-
ture if the width of the filament was too wide, like eight
layers or more, which indicates agreement with the hy-
drodynamic behavior. On the other hand, the molecular
dynamics results indicate a molecular mechanism for the
occurrence of rupture. Thus the BCA results for small
values of w qualitatively agree with the microscopic na-
ture of the phenomenon but no details are expected to be
realistic.

5000

IV. COALESCENCE

We now consider another two-fluid situation in which
a hydrodynamic description must break down at some
point of evolution—that of fluid coalescence. Specifically,
we place a droplet of a red fluid at the top of a rectangu-
lar cavity, as shown in Fig. 7. The system size is 64 X 64
(we have tried a range of sizes and the behavior is qualita-
tively the same). The cavity is filled with a blue fluid, so
the surface tension makes the droplet circular (the radius
is about nine lattice constants). The red fluid is assumed
to be heavier than the blue one so the gravity forces g can
be taken to act exclusively on the red fluid, as an approxi-
mation. The gravity accelerates the droplet down and
the viscous drag saturates the velocity of the fall at a con-
stant and g-dependent value. There is a bottom wall in
the cavity so the droplet must eventually impact normal-
ly on it and, through several stages of transformations,
cease to be an independent droplet. The blue and red
fluids are of the same viscosity and the fluid in the drop-
let and the one at the bottom are of the same kind. On
all walls, bounce-back boundary conditions are imposed.

The effects of gravity are mimicked by adding gy (a) to

the red density r,, where y (a)==1 or 4, depending on

i

3500

o

i

FIG. 7. Coalescence of a red droplet with a shallow red fluid at the bottom of a cavity, as described in the text. The value of g is

0.0005.
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whether the direction « is parallel to the field or at an an-
gle, and the sign is picked depending on whether the ve-
locity state is parallel or antiparallel to the field. We
show results for two values of g: 0.002 and 0.0005.

We consider three situations for the state of the bottom
of the cavity: (a) the bottom wall is red, (b) the bottom
wall is red and is covered by a few layers of red fluid, and
(c) the bottom wall is red and is covered by many layers
of red fluid. It is convenient to start with case (b). What
happens here is shown in Figs. 7 and 8 for g =0.0005 and
0.002, respectively. The sets of panels are now arranged
left to right so that the red momentum is shown on the
left and the blue momentum on the right, with the red
density in the middle. The numbers indicate time elapsed
after the droplet was formed and the gravitational field
applied.

The lower value of g, in Fig. 6, brings the droplet to
the bottom essentially undistorted. In the immediate vi-
cinity of the bottom fluid the shallow red fluid at the bot-
tom first gets distorted, then merges with the droplet
through one connection, and then gradually submerges
further. Eventually, the red fluid at the bottom becomes
flat. Throughout the process, unlike what happens in
rupture, it is the blue momentum that is affected on
longer length scales.

1000
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This effect becomes even more evident for larger values
of g, as shown in Fig. 8. In this case, the droplet gets
gravity-distorted before meeting the bottom fluid; it be-
comes kidney-shaped and the momentum field of the sur-
rounding fluid is affected in a structured and long range
fashion. On the impact, two and not one connecting legs
are formed, which follows from the initial distortion of
the droplet itself. The space between the two legs be-
comes trapped and an isolated bubble of the blue fluid
forms and must now “evaporate.” This is done by first
making a connecting passage at the top and a gradual
filling in of the bubble space.

From now on we consider only g =0.002, since this
case leads to richer structures. Figure 9 refers to situa-
tion (a), no red fluid to the bottom. The physics is similar
to that shown in Fig. 7 but the two legs connect to the
wall directly. The bubble still forms, but as the trapped
space fills in, a much more visible red minidroplet ap-
pears above the interface. Thus this process has some
elements of splashing.

The most spectacular structures appear when the bot-
tom fluid is deep, as shown in Fig. 10. In the first stage,
the bottom fluid is pushed by the droplets momentum
and gets heavily distorted. In the second stage, two nar-
rowly separated legs connect the fluid at the bottom and

1600

FIG. 8. Same as in Fig. 6 but for g =0.002.
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FIG. 10. Coalescence of a red droplet with a deep red fluid at
FIG. 9. The fall of a red droplet on a red wall at g =0.002. g =0.002.



51 RUPTURE AND COALESCENCE IN TWO-DIMENSIONAL . .. 4361

the droplet. Simultaneously, two side channels on the
outsides of the legs are formed. In the next stage, three
bubblelike objects are formed. The side bubbles are not
identical because the initial droplet was placed close to
the center line, and not right on it. Finally, the two side
bubbles evaporate, whereas the central bubble remains at-
tached to the wall.

Finally, we note that if the color of the bottom wall
were changed to blue, bouncing or splashing would be ex-
pected to take place. With the parameters at hand, how-
ever, we could merely produce “levitation” of a kidney-
shaped droplet over the bottom wall: the gravity pulls
the droplet down and the wetting forces keep it up in an
equilibrium fashion. Higher values of g, incidentally,
give rise to a gravitational rupture of the droplet into
subdroplets before impacting on the bottom.

V. CONCLUDING REMARKS

In summary, we have presented systematic studies of
rupture and coalescence in a toy kinetic model. The re-

sults on the density and momentum fields are well above
the noise level and are hard to obtain otherwise. Sys-
tematic trends for the Lyapunov distance in a rupture
process have been obtained. It seems worthwhile to con-
tinue studies of this model and, in particular, to study
droplets falling at an oblique angle, collisions of several
droplets, and possible oscillations of the droplet interface
on approaching a wall.
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