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Folding in two-dimensional off-lattice models of proteins

Mai Suan Li and Marek Cieplak
Institute of Physics, Polish Academy of Sciences, Allja Lotnikow 32/46, 02-668 Warsaw, Poland

~Received 2 March 1998; revised manuscript received 2 June 1998!

Off-lattice proteinlike models are constructed in two dimensions so that their native states are close to an
on-lattice target. The Hamiltonian involves the Lennard-Jones and harmonic interactions. The native states of
these sequences are determined with a high degree of certainty through Monte Carlo processes. The sequences
are characterized thermodynamically and kinetically. It is shown that the rank-ordering-based scheme of the
assignment of contact energies typically fails in off-lattice models even though it generates high stability of
on-lattice sequences. Similar to the on-lattice case, Go-like modeling, in which the interaction potentials are
restricted to the native contacts in a target shape, gives rise to good folding properties. Involving other contacts
deteriorates these properties.@S1063-651X~99!05301-5#

PACS number~s!: 87.15.By, 87.10.1e, 71.28.1d, 71.27.1a
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I. INTRODUCTION

Understanding of the folding process of proteins is one
the current challenges in molecular biophysics. Many
sights into the nature of folding have been provided
studying lattice models in which a protein is represented b
chain of beads on a hupercubic lattice~see, for instance, Ref
@1#!. A more realistic modeling of proteins, however, r
quires considering off-lattice systems. Simple off-lattice s
tems have been discussed recently by Irbacket al. @2# and
Klimov and Thirumalai@3#. The former authors have studie
a model with two kinds of residues and they have found t
very few such sequences give rise to a rapid folding.

In this paper we focus on ways to design off-lattice s
quences that form good folders. Specifically, we conside
two-dimensional~2D! target shape and assign two models
interaction energies between the beads. The first model
generalization of the Go-like approach@4# to off-lattice situ-
ations. The second model, on the other hand, is a gene
zation of the rank-ordering-based assignment of the c
plings@5,6#. When the beads are constrained to be located
sites of a lattice, both models provide sequences which
good folders. Here, we demonstrate that this may not be
for off-lattice models. Namely, an extended character of
interactions, that is necessarily present in off-lattice Ham
tonians, gives rise to differing levels of frustration in the tw
models and leaves only the Go-like sequences as good
ers. This is compatible with the principle of minimum fru
tration proposed by Bryngelson and Wolynes@7#.

We formulate our models in the context of the Ham
tonian used by Iori, Marinari, and Parisi@8# ~IMP! in which
monomers interact via the Lennard-Jones potential. The
plitudes of the attractive part between beadsi and j of this
potential,Ai j , representing a residue-dependent interact
are quenched random variables. Additionally, the monom
are tethered sequentially along the chain by means of
monic interactions. IMP and Struglia@9# have demonstrated
the existence of a compact phase in a 3D version of
model. In these studies the dynamics have been define
terms of a Monte Carlo process. The true ground state—
native state—however, typically is not known~as in IMP! or
there is a substantial degree of uncertainty whether the s
PRE 591063-651X/99/59~1!/970~7!/$15.00
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assumed to be native is indeed the ground state~as in the
paper by Struglia@9#!.

Studies of the dynamics of folding require knowing th
precise shape of the native state conformation without wh
the folding time cannot be defined. For small scale latt
models, the ground state may be obtained by an exact
meration of conformations. This method, however, does
apply to off-lattice models. Here we present 2D Lenna
Jones sequences of 16 monomers in which the ground
is known accurately and with a high degree of certainty. W
then provide some basic characterization of these sequen
obtained through the Monte Carlo procedure.

The construction of the model sequences is presente
Sec. II. We consider the lattice target shown in Fig. 1~a!. In
order to generate a Go-like sequenceG, we assign theAi j of
the Lennard-Jones potential to be uniform in the native c
tacts and zero in the non-native contacts, i.e., all pairs
monomers that do not form contacts in the native state in
act only through a short-range repulsion. The second mo
sequence,R8, is constructed by generating GaussianAi j and
adopting the rank-ordering scheme introduced recently@5,6#
in the context of lattice models. SequenceR8 is an off-lattice
analog of the sequenceR discussed in Refs.@5,6#. The prin-
ciple here is to allocate the most strongly attractiveAi j to
those pairs of monomers which form contacts in the tar
compact lattice conformation. The true ground state of
sequence will necessarily be off lattice but its shape will
close to the lattice target—it can be viewed as a somew
distorted lattice target conformation.

FIG. 1. ~a! Assigment of nine strongest couplingsAi j to native
contacts for sequenceR8. The numbers indicate the relativ
strengths of the contacts.~b! The native conformation of sequenc
R8.
970 ©1999 The American Physical Society
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PRE 59 971FOLDING IN TWO-DIMENSIONAL OFF-LATTICE . . .
In Sec. III we describe the procedure adopted to de
mine the ground state. Basically, we form self-avoidi
walks ~SAW! in continuum space around all of the 69 max
mally compact lattice conformations as the starting confi
ration of the sequence. We shall denote such starting S
as CSAW to emphasize closeness to compact structures
then perform Monte Carlo quenches to reach local ene
minima. The rank-ordered allocation of the couplings e
sures that the lowest energy minima will be compact. F
sequenceR8 we have shown that the lowest energy state
obtained from CSAW’s which are near the target structu
We demonstrate that the use of arbitrary SAW’s, i.e., wh
are not CSAW’s, leads to local minima of higher energi
For sequenceG both the SAW’s and CSAW’s starting con
figurations easily lead to the native state which has the ta
compact shape. Our conclusion is that it is easier to find
native state for a good folder~G! compared to a bad folde
(R8). We have found also that only sufficiently large valu
of the spring constantk may guarantee the self-avoidan
properties of the chain.

We characterize geometries of conformations in terms
a certain distance away from a reference conformation
Sec. IV we determine the probability to stay in the basin a
the folding temperature. Both quantities are calculated
adopting a well defined characteristic basin size as obta
by the shape distortion approach@10#. In Sec. V we presen
results on the specific heat and structural susceptibility
R8 andG and demonstrate thatG is a good folder wherea
R8 is a bad folder. The bad folding properties ofR8 are in
sharp contrast to what was found for the lattice sequencR
@5,6# and are due to the presence of many long-ranged c
plings which impose conflicting constraints. SequenceG is a
good folder because there are many fewer constraints to
isfy.

II. MODELS OF INTERACTIONS

Following IMP @8#, we consider a self-interacting he
eropolymer in 2D described by the Hamiltonian given by

H5(
iÞ j

H k~di , j2d0!2d i , j 1114F C

di , j
12

2
Ai j

di , j
6 G J , ~1!

wherei andj range from 1 to the number of beads,N, which
in our model is equal to 16. The distance between the be
di , j , is defined asurW i2rW j u, whererW i denotes the position o
beadi. The harmonic term in the Hamiltonian with the sprin
constantk couples the adjacent beads along the chain.
remaining terms represent the Lennard-Jones potential. In@8#
Ai j is chosen asAi j 5A01Aeh i j , whereA0 is constant and
h i j ’s are Gaussian variables with zero mean and unit v
ance;e controls the strength of the quenched disorder. T
case ofh i j 50 andA05C would correspond to a homopoly
mer with the standard Lennard-Jones interaction used
simulations of liquids. We adopt the units in whichC51 and
considerk to be either equal to 1 or to 25. We have fou
that the first choice, which has been used by IMP@8#, may
lead to local energy minima in which the polymer is se
intersecting.

For N516, there are 120 Lennard-Jones possible c
plings between the monomers. The basic choice for the
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ues ofAi j that we shall use here is shown in Table I. He
all of the Ai j ’s are positive, which corresponds to attractio
Table I also indicates a rank of a given attractive coupling
these are rank ordered from the strongest to the weakes
traction. In nine of the couplings, the attraction is enhanc
by making the correspondingAi j bigger than one. These
were chosen to coincide with the contacts present in the
tice targetR8 shown in Fig. 1~a!. The strongest attraction
was assigned to be between beads 1 and 12 and the re
strengths of other native attractions are indicated in the
ure. The remaining 111 couplings are assignedAi j with val-
ues which are smaller than 1. Overall the mean valueA0 is
equal to 0.784 and the dispersion to 0.205.

The parameterd0 corresponding to the equilibrium dis
tance in the harmonic potential is chosen to be equal to 1
which is close to the equilibrium position of the avera
Lennard-Jones potential, (2C/A0)1/6. The target lattice
shapes are built on a lattice with this lattice constant. For
Go-like sequence~G! we setAi j 51 for native contact and 0
for non-native ones. For this sequence we choosed0521/6.
The qualitative results do not depend, however, on the ch
of d0 .

III. LOCAL MINIMA AND NATIVE STATES

In order to find spectra of the local energy minima we u
the Monte Carlo procedure with local updating move
Monomers are moved randomly within a circle~the radius of
circle varies from 0.0025d0 to 0.01d0) away from their pre-
vious positions. Random quenching by starting from a SA
or a CSAW typically yields a local energy minimum withi
of order 218 steps. In the minimum, the force acting on a
of the monomers is at most of order 1027 in units of the
characteristic coupling~of order 1! divided by (2C/A0)1/6.
Simulated annealing runs of comparable number of st
yielded similar results. The results reported on in this pa
are based on the quenching procedure.

The starting conformations were obtained by placi
monomers within a circle of radius 0.3d0 away from a SAW
generated on the lattice or away from a maximally comp
conformation on the lattice CSAW. For each of the 69 ma
mally conformations, 50 CSAW’s were generated and
results were compared with those obtained based on
SAW’s.

We observe that there is a substantial gap, of orde
between the minima obtained from CSAW’s around the t
get and those obtained from all other starting configuratio

As to the choice of the elastic constantk, we have found
thatk51 is not very physical because the distances betw
consecutive monomers are not kept sufficiently rigid. F
thermore, we have observed that in states which are not l
energy minima, the polymer conformations may beco
self-intersecting. This phenomenon was also observed
Ref. @11# for shorter chains. Thus a strongerk is needed and
we focus onk525.

The energy histograms for theR8 andG sequences fork
525 are shown in Figs. 2 and 3, respectively. In the case
R8, the SAW configurations happen to yield results comp
rable to the CSAW configurations, but the statistical fr
quency of success in finding a low energy state favors
CSAW-based approach. The maximal distance betw
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TABLE I. Values of theAi j for sequenceR8. The rank of a coupling is indicated to the right of its valu

i j A i j Rank i j A i j Rank i j A i j Rank i j A i j Rank

1 2 0.946554 19 3 5 0.581629 105 5 12 0.667698 79 8 15 0.758490
1 3 0.858677 37 3 6 0.598687 101 5 13 0.740622 62 8 16 0.718888
1 4 0.810776 47 3 7 0.513536 118 5 14 0.661444 83 9 10 0.913366
1 5 0.949365 17 3 8 0.778139 50 5 15 0.861819 36 9 11 0.741376
1 6 0.514208 117 3 9 0.746676 59 5 16 0.744776 60 9 12 0.664109
1 7 0.644279 91 3 10 0.666580 80 6 7 0.767029 54 9 13 0.968419
1 8 1.337928 5 3 11 0.835338 41 6 8 0.638391 93 9 14 0.822724
1 9 0.725085 65 3 12 0.722943 67 6 9 1.375767 4 9 15 0.969623
1 10 0.802427 48 3 13 0.518711 116 6 10 0.676479 76 9 16 0.850939
1 11 0.763514 55 3 14 0.660732 85 6 11 0.567934 109 10 11 0.935812
1 12 1.498411 1 3 15 0.852925 38 6 12 0.571524 108 10 12 0.951547
1 13 0.899355 30 3 16 1.050544 9 6 13 0.658820 86 10 13 0.521468
1 14 1.396376 3 4 5 0.878341 33 6 14 0.512926 119 10 14 0.930277
1 15 0.723510 66 4 6 0.763190 56 6 15 0.612393 99 10 15 0.889378
1 16 0.655780 87 4 7 1.269149 8 6 16 0.628334 95 10 16 0.590144
2 3 0.720592 68 4 8 0.577229 106 7 8 0.670401 78 11 12 0.932459
2 4 0.541154 112 4 9 0.614099 96 7 9 0.647826 89 11 13 0.528390
2 5 0.770339 53 4 10 0.918839 27 7 10 0.642560 92 11 14 0.921718
2 6 0.938498 21 4 11 0.597736 102 7 11 0.965115 12 11 15 0.770826
2 7 1.291634 7 4 12 0.571611 107 7 12 0.834125 42 11 16 0.955652
2 8 0.696944 72 4 13 0.561490 110 7 13 0.753538 58 12 13 0.629158
2 9 0.603317 100 4 14 0.725428 64 7 14 0.561397 111 12 14 0.884585
2 10 0.832387 43 4 15 0.954825 15 7 15 0.712665 70 12 15 0.949139
2 11 0.672241 77 4 16 0.511493 120 7 16 0.864981 35 12 16 0.932023
2 12 0.821738 46 5 6 0.687186 74 8 9 0.943903 20 13 14 0.848886
2 13 0.644946 90 5 7 0.665046 81 8 10 0.660797 84 13 15 0.613872
2 14 0.689698 73 5 8 0.686304 75 8 11 1.301709 6 13 16 0.734204
2 15 1.409250 2 5 9 0.771102 51 8 12 0.903380 29 14 15 0.519439
2 16 0.655129 88 5 10 0.595747 103 8 13 0.612414 98 14 16 0.963250
3 4 0.781090 49 5 11 0.707574 71 8 14 0.825123 44 15 16 0.866528
l
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monomers does not exceedd0 by more than 4% in any loca
energy minimum, which demonstrates very good se
avoiding properties.

In the case of sequenceG, about 25% of CSAW’s trajec-
tories and 12% of SAW’s trajectories lead to the native c
formation. Thus it is easier to find the native state forG than
for R8.

The native state conformation of sequenceR8 is shown in
Fig. 1~b!. Thex-y coordinates of the beads of this conform
tion are listed in Table II. They are used in the studies
kinetics and thermodynamics properties. The native stat
sequenceG has exactly the lattice shape as shown in F
1~a! because it is only the native contact energies here
one needs to minimize.

As we shall show later, several tasks, like the determi
tion of the folding temperature, are facilitated by introduci
a notion of a geometrical distance between two conform
tions. A convenient definition of the distancedab between
two conformationsa andb is provided by

dab
2 5min

1

N (
i 51

N

urW i
a2rW i

bu2, ~2!

whererW i
a,b denotes the position of monomeri in conforma-

tion a(b). The minimization is performed over translation
-

-

f
of
.
at

-

-

FIG. 2. Density of local minima for sequenceR8 and k525.
The left part corresponds to those obtained from deformed com
cells as starting conformations, whereas the right part correspo
to the case when starting conformations are arbitrary self-avoid
chains. The energy gap is equal to 0.15.~For k51 above E
'223.93 the distance between the beads may become bigger
the equilibrium distance of the Lennard-Jones potential by 10
This happens in about 1.4% of all conformations.!
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PRE 59 973FOLDING IN TWO-DIMENSIONAL OFF-LATTICE . . .
rotations, and reflections. In practice, we put chaina over
chainb by overlapping the two centers of mass, and then
find the optimal rotation ofb which minimizesdab . We pick
the optimal angle from 1000 discrete values into which
360° angle may be divided.

The distances between the native conformations and t
lattice counterparts, as in Fig. 1, are found to be equa
0.296 and'0 for sequencesR8 andG, respectively.

IV. THE FOLDING TEMPERATURE

We now proceed to the equilibrium characterization of
sequences introduced in this paper. The parameter that p
a primary role in determining the folding characteristics
the folding temperatureTf . In the case of lattice models,Tf
may be defined@1# as the temperature at which the probab
ity of occupying the native state becomes equal to1

2 . For the
off-lattice model, however, the native state has, stric
speaking, zero measure and one should deal with the p
ability of occupying the native valley.

One may define the folding temperatureTf through the
following procedure. Suppose thatd is the distance to the
native state andP(d) is the probability for a conformation to
be in this distance away from the native state. Thus the p
ability to find the system in the immediate vicinity of th
native state is given by

FIG. 3. The same as in Fig. 2 but for sequenceG. The gap is
about 2.9.
e

e

ir
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e
ys
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b-

P05E
0

dc
P~d!dd, ~3!

wheredc is a cutoff distance. The folding temperatureTf is
then defined as the temperature at whichP051/2.

The size of the native basindc was estimated by the shap
distortion approach@10#. In this approach one starts from th
native state and performs random displacements of invid
beads in the chain, through a Monte Carlo routine. The d
tance to the native state is calculated by using Eq.~2! and the
results are averaged over many Monte Carlo trajectories.
low some critical temperature which may be interpreted a
folding temperatureTf , the distance to the native state ge
saturated at sufficiently long time scales. The saturat
value of this distance at the critical temperature can serv
the size of the native basindc . Figure 4 shows the depen
dence of^d2& t

1/2 on the Monte Carlo steps for sequenceG
andTf50.19 above which no saturation regime is seen. I
found thatdc'0.2 anddc'0.09 forG andR8, respectively
@10#. The corresponding values of the folding temperatu
obtained in this way are equal toTf'0.19 andTf'0.09 for
G andR8 @10#.

FIG. 4. The dependence of the distance to the native state
time measured in Monte Carlo steps~MCS! for sequenceG at Tf

50.19. In order to computêd2& t we update the monomer position
randomly within circles of radius of 0.01~the choice of 0.02 yields
similar results!. The results are averaged over 400 Monte Ca
trajectories. The basin corresponding to the saturation value idc

'0.2.
TABLE II. The x-y coordinates of the native conformation forR8 andk525.

Monomer xN yN Monomer xN yN

1 0 0 9 20.037572 2.225111
2 1.005509 0.573347 10 21.073118 2.718455
3 2.091357 0.126744 11 20.992672 1.573907
4 2.009697 1.279681 12 20.956188 0.436143
5 1.946778 2.424499 13 20.972265 20.723659
6 0.845883 2.806329 14 0.116648 21.062284
7 0.997773 1.647486 15 1.123476 20.470181
8 20.035144 1.079819 16 2.154153 20.984088
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974 PRE 59MAI SUAN LI AND MAREK CIEPLAK
Figure 5 shows the probability of being in the native v
ley versus temperature forG andR8.P0 has been determine
by estimating the probability of staying in the native vall
by starting in the native state and monitoring the system
53106 Monte Carlo steps~the distance updating is of orde
0.01!. Doubling the length of the run does not affect t
results in any visible manner. For sequencesG and R8, we
have foundTf'0.23 andTf'0.12. These values ofTf are
close to those found by the shape distortion method@10#.

Figure 6 shows the distributionP(d) at different tempera-
tures for sequenceR8. As the temperature increases t
maximum becomes wider and moves toward larger distan
to the native stated.

We now turn to the temperature dependence of the fo
ing time t fold . At high temperatures, reaching the native st
takes a long time due to entropic effects. At low tempe
tures, on the other hand, glassy phenomena may set in
make the folding process extremely slow. Thust fold plotted
againstT typically shows a minimum at a certain temper
ture Tmin . The idea of the existence of the glassy phase
proteins has originated in the Bryngelson and Wolynes s

FIG. 5. The dependence ofP0 on T for sequencesG and R8.
The arrow indicates the position of the folding temperature whic
equal toTf50.23 for sequenceG andTf'0.12 forR8. The results
are averaged over 10 – 40 Monte Carlo trajectories.

FIG. 6. The probability distribution functionP(d) of finding a
state which is distanced away from the native state for sequen
R8. The values ofT are indicated next to the curves.
r

es

-
e
-
nd

n
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ies of the random energy model@7,12# and was subsequentl
tested in numerical simulations of lattice models by So
and Onuchic@13#. Notice thatTf is a characteristic tempera
ture that relates to equilibrium whereasTmin is a characteris-
tic temperature that relates to dynamical properties. E
though atT5Tmin folding is the fastest this temperature al
marks the onset of the glassy effects because they bec
stronger and stronger on departing fromTmin towards lower
temperatures. Thus ifTf is significantly less thanTmin a se-
quence is a bad folder. IfTf is comparable toTmin , or pref-
erably larger thanTmin , then the sequence is a good fold
@13#. It should be noted that as a characteristic tempera
that relates to dynamics one often uses the glass trans
temperatureTg @1,13#. Tg , however, depends on a cuto
value of the time used in calculations. Our preference her
to useTmin , instead ofTg , not only because its definition i
unique and independent of the value of the cutoff but a
because the two quantities contain the same physics: g
folders are sequences in which glassy effects are not im
tant around the folding temperature.

In order to obtaint fold we start from random configura
tions and evolve them through the Monte Carlo~MC! pro-
cess until the native state is reached.t fold is defined as the
median number of MC steps after which the system reac
the basin of the native state for the first time. The cut
value of MC steps is taken to be 203106. The number of
starting configurations varies from 20 to 40 depending onT.
Our results are presented in Fig. 7 for sequencesR8 andG.
We haveTmin50.460.1 andTmin50.1560.05 forR8 andG,
respectively. SinceTf50.12 and Tf50.23 for these se-
quences one can see thatR8 is a bad folder whereasG is a
good one. We emphasize that on-lattice Go and ra
ordering schemes lead to comparable ratios ofTf /Tmin .

V. THERMODYNAMIC PROPERTIES

We now proceed to a further characterization of the
quences by considering the thermodynamic quantities s
as the specific heatC and the structural susceptibilityx @14#.
It has been suggested@14–16# that a small temperature dif

s

FIG. 7. The temperature dependence of folding time for
quencesG and R8. The results are obtained using 20–50 starti
configurations.
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PRE 59 975FOLDING IN TWO-DIMENSIONAL OFF-LATTICE . . .
ference between the maximum inC and the maximum inx
when plotted againstT indicates good folding properties
Thus studies of these two quantities may serve as a subs
for the information about the kinetics of folding.

In the case of an off-lattice model the departures of
sequence geometry from its native conformation may be d
ribed through the structural overlap function@3# as

xs512
1

N223N11
(

iÞ j , j 61
Q~dc2ur i j 2r i j

Nu!, ~4!

wherer i j is the distance between the beadsi andj for a given
conformation,r i j

N is the corresponding distance in the nati
conformation, andQ(x) is the Heaviside function. Heredc
denotes the size of basin as defined in the preceding sec
If ur i j 2r i j

Nu<dc the beadsi and j are assumed to form
contact within the native valley. The susceptibility-like p
rameterx is defined as the thermal fluctuation ofxs :

x~T!5^xs
2~T!&2^xs~T!&2, ~5!

where the angular brackets indicate a thermodynamic a
age.

The specific heat is defined in the usual way, i.e., by
energy fluctuations:

C5
^E2&2^E&2

T2
. ~6!

A peak inC may be interpreted as corresponding to the on
of slow kinetics and the peak inx as corresponding to th
folding temperature.

We calculate the thermodynamic quantities using the
tive state as the starting configuration. The results are a
aged over many MC trajectories. The equilibration
checked by monitoring the stability of the data against
least three-times longer runs. We have used 53106 MC
steps as in the studies ofP0 ~the first 2.53106 steps are not
taken into account when averaging!. This number of MCS
appears to be enough to equilibrate the system in the t
perature interval we use. We have also found that it is ha
to reach the equilibrium using SAW’s as starting configu
tions.

The temperature dependence ofx andC for sequencesG
andR8 is shown in Fig. 8. The peak inx almost coincides
with Tf . For G maxima ofx andC are located at the sam
position, suggesting that sequenceG is a good folder@14#.
This result agrees with that obtained in the preceding sec
by studying kinetics of folding.

For sequenceR8, the peak inC is found to be broad and
it is located at a substantially higherT than the peak inx
Sc
ute

e
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e
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-
r-

t

-
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confirming bad folding properties ofR8. So studies of ther-
modynamics properties and folding kinetics lead to the sa
conclusion about folding in our model.

VI. CONCLUSIONS

In this work we have constructed and studied two o
lattice Lennard-Jones models in two dimensions. The lo
range nature of interactions between amino acids in
lattice models may lead to too much frustration, as in
case of sequenceR8, and thus to bad folding properties
Restricting the number of interactions only to the native co
tacts, as in sequenceG, may reduce the frustration and brin
about good folding properties. We have demonstrated this
studying both thermodynamic and dynamical properties
the two sequences. The values of the folding tempera
found from the probability of getting out of the native sta
roughly agree with those obtained by the shape distor
approach. We have studied the kinetic of folding with a si
plified MC dynamics whereas previous works have been
cused on equilibrium aspects. Similar to the on-lattice m
els, both approaches give the same information about fold
properties.
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FIG. 8. The temperature dependence ofx andC for G andR8.
The starting configurations are the native state. The results are
eraged over ten MC trajectories. The arrows indicate the positio
Tf found from the condition that the probability of staying in th
native state is equal to 1/2.
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