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Folding in two-dimensional off-lattice models of proteins
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Off-lattice proteinlike models are constructed in two dimensions so that their native states are close to an
on-lattice target. The Hamiltonian involves the Lennard-Jones and harmonic interactions. The native states of
these sequences are determined with a high degree of certainty through Monte Carlo processes. The sequences
are characterized thermodynamically and kinetically. It is shown that the rank-ordering-based scheme of the
assignment of contact energies typically fails in off-lattice models even though it generates high stability of
on-lattice sequences. Similar to the on-lattice case, Go-like modeling, in which the interaction potentials are
restricted to the native contacts in a target shape, gives rise to good folding properties. Involving other contacts
deteriorates these properti¢$1063-651X99)05301-5

PACS numbg(s): 87.15.By, 87.10te, 71.28+d, 71.27+a

I. INTRODUCTION assumed to be native is indeed the ground stasein the
paper by Struglid9]).

Understanding of the folding process of proteins is one of Studies of the dynamics of folding require knowing the
the current challenges in molecular biophysics. Many in-precise shape of the native state conformation without which
sights into the nature of folding have been provided bythe folding time cannot be defined. For small scale lattice
studying lattice models in which a protein is represented by &nodels, the ground state may be obtained by an exact enu-
chain of beads on a hupercubic lattisee, for instance, Ref. meration of conformations. This method, however, does not

[1]). A more realistic modeling of proteins, however, re- apply to off-lattice models. Here we present 2D Lennard-

quires considering off-lattice systems. Simple off-lattice sys-JONeS sequences of 16 monomers in which the ground state

tems have been discussed recently by Irbathl. [2] and is known accurately and with a high degree of certainty. We
Klimov and Thirumala{3]. The former authors have studied then provide some basic characterization of these sequences,
a model with two kinds of residues and they have found thantamed through_ the Monte Carlo procedure._ .
very few such sequences give rise to a rapid folding The construction of the model sequences is presented in

In thi f to desian off-latti Sec. Il. We consider the lattice target shown in Fitg)1in
b O ere Boasiical e conaar Qrder o generate a Go-like sequeri@ewe assign thé\;; of

quences that form good folders. Specifically, we consider #he Lennard-Jones potential to be uniform in the native con-
two-dimensional2D) target shape and assign two models ofi, 5 and zero in the non-native contacts, i.e., all pairs of
interaction energies between the beads. The first model is onomers that do not form contacts in the native state inter-
generalization of the Go-like approaph] to off-lattice situ- 5t only through a short-range repulsion. The second model
ations. The second model, on the other hand, is a genera@'equenceR’, is constructed by generating Gausshapand
zation of the rank-ordering-based assignment of the COUadopting the rank-ordering scheme introduced recdstf§]
plings[5,6]. When the beads are constrained to be located ofh the context of lattice models. SequerReis an off-lattice
sites of a lattice, both models provide sequences which argnalog of the sequend®discussed in Ref$5,6]. The prin-
good folders. Here, we demonstrate that this may not be trugiple here is to allocate the most strongly attractive to

for off-lattice models. Namely, an extended character of thehose pairs of monomers which form contacts in the target
interactions, that is necessarily present in off-lattice Hamil-compact lattice conformation. The true ground state of the
tonians, gives rise to differing levels of frustration in the two sequence will necessarily be off lattice but its shape will be
models and leaves only the Go-like sequences as good fol@lose to the lattice target—it can be viewed as a somewhat
ers. This is compatible with the principle of minimum frus- distorted lattice target conformation.

tration proposed by Bryngelson and Wolyri&@s.

We formulate our models in the context of the Hamil- 4
tonian used by lori, Marinari, and Pari{s] (IMP) in which
monomers interact via the Lennard-Jones potential. The am- 6 8 ¢ R’
plitudes of the attractive part between beadmd] of this 5 7
potential,A;; , representing a residue-dependent interaction, 1 o—o—
are quenched random variables. Additionally, the monomers 3 2 9

are tethered sequentially along the chain by means of har-
monic interactions. IMP and Strugl[®] have demonstrated (a) (b)

the existence of a compact phase in a 3D version of the

model. In these studies the dynamics have been defined in FiG. 1. (a) Assigment of nine strongest couplings to native
terms of a Monte Carlo process. The true ground state—theontacts for sequenc®’. The numbers indicate the relative
native state—however, typically is not knowas in IMP) or  strengths of the contacté) The native conformation of sequence
there is a substantial degree of uncertainty whether the state.
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In Sec. Ill we describe the procedure adopted to deterues ofA;; that we shall use here is shown in Table I. Here,
mine the ground state. Basically, we form self-avoidingall of the A;;’s are positive, which corresponds to attraction.
walks (SAW) in continuum space around all of the 69 maxi- Table | also indicates a rank of a given attractive coupling if
mally compact lattice conformations as the starting configuthese are rank ordered from the strongest to the weakest at-
ration of the sequence. We shall denote such starting SAWfaction. In nine of the couplings, the attraction is enhanced
as CSAW to emphasize closeness to compact structures. W making the corresponding; bigger than one. These
then perform Monte Carlo quenches to reach local energwere chosen to coincide with the contacts present in the lat-
minima. The rank-ordered allocation of the couplings en-tice targetR’ shown in Fig. 1a). The strongest attraction
sures that the lowest energy minima will be compact. Fowas assigned to be between beads 1 and 12 and the relative
sequencdk’ we have shown that the lowest energy state isstrengths of other native attractions are indicated in the fig-
obtained from CSAW’s which are near the target structureure. The remaining 111 couplings are assigAgdwith val-

We demonstrate that the use of arbitrary SAW's, i.e., whichues which are smaller than 1. Overall the mean valyds

are not CSAW's, leads to local minima of higher energies.equal to 0.784 and the dispersion to 0.205.

For sequenc& both the SAW’s and CSAW's starting con-  The parameted, corresponding to the equilibrium dis-
figurations easily lead to the native state which has the targeance in the harmonic potential is chosen to be equal to 1.16,
compact shape. Our conclusion is that it is easier to find thevhich is close to the equilibrium position of the average
native state for a good foldéG) compared to a bad folder Lennard-Jones potential, (2ZA,)Y%. The target lattice
(R"). We have found also that only sufficiently large valuesshapes are built on a lattice with this lattice constant. For the
of the spring constank may guarantee the self-avoidance Go-like sequencéG) we setAj;=1 for native contact and 0
properties of the chain. for non-native ones. For this sequence we chafge2S.

We characterize geometries of conformations in terms ofrhe qualitative results do not depend, however, on the choice
a certain distance away from a reference conformation. Ipf d,.
Sec. IV we determine the probability to stay in the basin and
the folding temperature. Both quantities are calculated by
adopting a well defined characteristic basin size as obtained

by the shape distortion approaft0]. In Sec. V we present | order to find spectra of the local energy minima we use
results on the specific heat and structural susceptibility fofhe Monte Carlo procedure with local updating moves.
R’ and G and demonstrate th& is a good folder whereas \Monomers are moved randomly within a cir¢tee radius of
R’ is a bad folder. The bad folding propertiesRf are in  circle varies from 0.002%, to 0.01d,) away from their pre-
sharp contrast to what was found for the lattice sequénce vious positions. Random quenching by starting from a SAW
[5,6] and are due to the presence of many long-ranged colyr a CSAW typically yields a local energy minimum within
plings which impose conflicting constraints. SequeBds a  of order 28 steps. In the minimum, the force acting on any
good folder because there are many fewer constraints to Saif the monomers is at most of order 10in units of the
isfy. characteristic couplingof order 1 divided by (2C/Ay)YS.
Simulated annealing runs of comparable number of steps
Il. MODELS OF INTERACTIONS yielded similar results. The results reported on in this paper
are based on the quenching procedure.
The starting conformations were obtained by placing
monomers within a circle of radius @gaway from a SAW

IIl. LOCAL MINIMA AND NATIVE STATES

Following IMP [8], we consider a self-interacting het-
eropolymer in 2D described by the Hamiltonian given by

A generated on the lattice or away from a maximally compact
H= 2 k(d; ;- do)?s; 1T % , ) conformation on the lattice CSAW. For each of the 69 maxi-
i#] ' ' i diy mally conformations, 50 CSAW'’s were generated and the

) ) i results were compared with those obtained based on 500
wherei andj range from 1 to the number of bead,which  gaw's.

in our model is equal to 16. The distance between the beads, \ye observe that there is a substantial gap, of order 4,

d;;, is defined agr;—r;|, wherer; denotes the position of between the minima obtained from CSAW’s around the tar-
beadi. The harmonic term in the Hamiltonian with the spring get and those obtained from all other starting configurations.
constantk couples the adjacent beads along the chain. The As to the choice of the elastic constdgtwe have found
remaining terms represent the Lennard-Jones potentig8] In thatk=1 is not very physical because the distances between
Ajj is chosen ag\;j=A,+ \/Enij , WwhereA, is constant and consecutive monomers are not kept sufficiently rigid. Fur-
7ij's are Gaussian variables with zero mean and unit varithermore, we have observed that in states which are not local
ance;e controls the strength of the quenched disorder. Theenergy minima, the polymer conformations may become
case of;;=0 andA,=C would correspond to a homopoly- self-intersecting. This phenomenon was also observed in
mer with the standard Lennard-Jones interaction used iRef.[11] for shorter chains. Thus a strondeis needed and
simulations of liquids. We adopt the units in whi€=1 and  we focus onk=25.

considerk to be either equal to 1 or to 25. We have found The energy histograms for tti®’ and G sequences fok

that the first choice, which has been used by INP may =25 are shown in Figs. 2 and 3, respectively. In the case of
lead to local energy minima in which the polymer is self- R’, the SAW configurations happen to yield results compa-
intersecting. rable to the CSAW configurations, but the statistical fre-

For N=16, there are 120 Lennard-Jones possible couquency of success in finding a low energy state favors the
plings between the monomers. The basic choice for the valSAW-based approach. The maximal distance between
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TABLE I. Values of theA;; for sequenc&®’. The rank of a coupling is indicated to the right of its value.

i j Ajj Rank i j Ajj Rank i j Ajj Rank i ] Ajj Rank
1 2 0946554 19 3 5 0581629 105 5 12 0.667698 79 8 15 0.758490 57
1 3 0858677 37 3 6 0598687 101 5 13 0.740622 62 8 16 0.718888 69
1 4 0810776 47 3 7 0.513536 118 5 14 0.661444 83 9 10 0.913366 28
1 5 0949365 17 3 8 0.778139 50 5 15 0.861819 36 9 11 0.741376 61
1 6 0514208 117 3 9 0.746676 59 5 16 0.744776 60 9 12 0.664109 82
1 7 0644279 91 3 10 0.666580 80 6 7 0.767029 54 9 13 0.968419 11
1 8 1.337928 5 3 11 0835338 41 6 8 0.638391 93 9 14 0.822724 45
1 9 0.725085 65 3 12 0.722943 67 6 9 1.375767 4 9 15 0.969623 10
1 10 0.802427 48 3 13 0518711 116 6 10 0.676479 76 9 16 0.850939 39
1 11 0.763514 55 3 14 0.660732 85 6 11 0.567934 109 10 11 0.935812 22
1 12 1.498411 1 3 15 0.852925 38 6 12 0.571524 108 10 12 0.951547 16
1 13 0.899355 30 3 16 1.050544 9 6 13 0.658820 86 10 13 0.521468 114
1 14 1.396376 3 4 5 0878341 33 6 14 0.512926 119 10 14 0.930277 25
1 15 0.723510 66 4 6 0.763190 56 6 15 0.612393 99 10 15 0.889378 31
1 16 0.655780 87 4 7 1.269149 8 6 16 0.628334 95 10 16 0.590144 104
2 3 0720592 68 4 8 0577229 106 7 8 0.670401 78 11 12 0.932459 23
2 4 0541154 112 4 9 0.614099 96 7 9 0.647826 89 11 13 0.528390 113
2 5 0770339 53 4 10 0918839 27 7 10 0.642560 92 11 14 0.921718 26
2 6 0938498 21 4 11 0.597736 102 7 11 0.965115 12 11 15 0.770826 52
2 7 1.291634 7 4 12 0.571611 107 7 12 0.834125 42 11 16 0.955652 14
2 8 0.696944 72 4 13 0561490 110 7 13 0.753538 58 12 13 0.629158 94
2 9 0.603317 100 4 14 0.725428 64 7 14 0.561397 111 12 14 0.884585 32
2 10 0.832387 43 4 15 0.954825 15 7 15 0.712665 70 12 15 0.949139 18
2 11 0.672241 77 4 16 0.511493 120 7 16 0.864981 35 12 16 0.932023 24
2 12 0821738 46 5 6 0687186 74 8 9 0.943903 20 13 14 0.848886 40
2 13 0.644946 90 5 7 0.665046 81 8 10 0.660797 84 13 15 0.613872 97
2 14 0.689698 73 5 8 0686304 75 8 11 1.301709 6 13 16 0.734204 63
2 15 1.409250 2 5 9 0771102 51 8 12 0903380 29 14 15 0.519439 115
2 16 0.655129 88 5 10 0.595747 103 8 13 0.612414 98 14 16 0.963250 13
3 4 0.781090 49 5 11 0.707574 71 8 14 0.825123 44 15 16 0.866528 34

monomers does not excedg by more than 4% in any local R

energy minimum, which demonstrates very good self-

avoiding properties. CSAW

In the case of sequen€s about 25% of CSAW's trajec- -20
tories and 12% of SAW'’s trajectories lead to the native con-
formation. Thus it is easier to find the native state@than
for R'.

The native state conformation of sequeieis shown in
Fig. 1(b). Thex-y coordinates of the beads of this conforma-
tion are listed in Table Il. They are used in the studies of
kinetics and thermodynamics properties. The native state of
sequences has exactly the lattice shape as shown in Fig.
1(a) because it is only the native contact energies here that
one needs to minimize. -32

As we shall show later, several tasks, like the determina-
tion of the folding temperature, are facilitated by introducing
a notion of a geometrical distance between two conforma- P(E) P(E)
tions. A convenient definition of the distanég, between
two conformationsa andb is provided by

ENERGY
2
~

|
M
@

| 1 ] I J
0.000 0.004 0.008 0.00 0.02

FIG. 2. Density of local minima for sequené®¥ and k=25.
The left part corresponds to those obtained from deformed compact

1 N cells as starting conformations, whereas the right part corresponds
&2p=min— >, |ra—rP2, (2)  tothe case when starting conformations are arbitrary self-avoiding
N =1 chains. The energy gap is equal to 0.Y50or k=1 above E

b N o ~ —23.93 the distance between the beads may become bigger than
wherer** denotes the position of monomein conforma-  the equilibrium distance of the Lennard-Jones potential by 10%.
tion a(b). The minimization is performed over translations, This happens in about 1.4% of all conformations.
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FIG. 4. The dependence of the distance to the native state on

FIG. 3. The same as in Fig. 2 but for sequei®eThe gap is  time measured in Monte Carlo stedCS) for sequences at T¢

about 2.9. =0.19. In order to comput(a§2>t we update the monomer positions
randomly within circles of radius of 0.0&he choice of 0.02 yields

rotations, and reflections. In practice, we put chaiover similar resultg. The results are averaged over 400 Monte Carlo
chainb by overlapping the two centers of mass, and then wdrajectories. The basin corresponding to the saturation valdg is
find the optimal rotation ob which minimizess,,. We pick
the optimal angle from 1000 discrete values into which the
360° angle may be divided. %

The distances between the native conformations and their Po= J 0 P(8)ds, ®)
lattice counterparts, as in Fig. 1, are found to be equal to

0.296 ana~0 for sequenceR’ andG, respectively. where é, is a cutoff distance. The folding temperatureis

then defined as the temperature at whiggr 1/2.
IV. THE FOLDING TEMPERATURE The size of the native basif) was estimated by the shape
distortion approach10]. In this approach one starts from the
We now proceed to the equilibrium characterization of thenative state and performs random displacements of invidual
sequences introduced in this paper. The parameter that plapgads in the chain, through a Monte Carlo routine. The dis-
a primary role in determining the folding characteristics istance to the native state is calculated by using(Bgand the
the folding temperatur&; . In the case of lattice model3; results are averaged over many Monte Carlo trajectories. Be-
may be definedl] as the temperature at which the probabil- low some critical temperature which may be interpreted as a
ity of occupying the native state becomes equaj téor the  folding temperaturdl;, the distance to the native state gets
off-lattice model, however, the native state has, strictlysaturated at sufficiently long time scales. The saturation
speaking, zero measure and one should deal with the prolvalue of this distance at the critical temperature can serve as
ability of occupying the native valley. the size of the native basié.. Figure 4 shows the depen-
One may define the folding temperatuFe through the  dence of(2),%2 on the Monte Carlo steps for sequer@e
following procedure. Suppose thatis the distance to the andT;=0.19 above which no saturation regime is seen. It is
native state an@®( ) is the probability for a conformation to found thaté.~0.2 andé.~0.09 forG andR’, respectively
be in this distance away from the native state. Thus the prold-10]. The corresponding values of the folding temperatures
ability to find the system in the immediate vicinity of the obtained in this way are equal ©~0.19 andT;~0.09 for
native state is given by G andR’ [10].

TABLE Il. The x-y coordinates of the native conformation fef andk=25.

Monomer XN YN Monomer XN YN
1 0 0 9 —0.037572 2.225111
2 1.005509 0.573347 10 —1.073118 2.718455
3 2.091357 0.126744 11 —0.992672 1.573907
4 2.009697 1.279681 12 —0.956188 0.436143
5 1.946778 2.424499 13 —0.972265 —0.723659
6 0.845883 2.806329 14 0.116648 —1.062284
7 0.997773 1.647486 15 1.123476 —0.470181
8 —0.035144 1.079819 16 2.154153 —0.984088
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FIG. 5. The dependence 6%, on T for sequenceS andR’. FIG. 7. The temperature dependence of folding time for se-

The arrow indicates the position of the folding temperature which jgdueéncesG andR’. The resuits are obtained using 2050 starting
equal toT;=0.23 for sequenc andT;~0.12 forR’. The results ~configurations.
are averaged over 10 — 40 Monte Carlo trajectories.

ies of the random energy modél,12] and was subsequently

Figure 5 shows the probability of being in the native Va|_tested in n_umerical §imulation§ of lattice mpd_els by Socci

ley versus temperature f@ andR’.P, has been determined and Onuchid13]. Notlcglth'atTf is a charagterlstlc tempera-
by estimating the probability of staying in the native valley lure that relates to equilibrium wherea;, is a characteris-
by starting in the native state and monitoring the system foflc temperature that relates to dynamical properties. Even

5x 10° Monte Carlo stepsthe distance updating is of order though atT =T, folding is the fastest this temperature also
0.0). Doubling the length of the run does not affect the marks the onset of the glassy gffects because they become
results in any visible manner. For sequenGeandR’, we ~ SWONger and stronger on departing frdiy;, towards lower
have foundT;~0.23 andT;~0.12. These values df; are tempera_tures. Thus iF; is s!gnlflcantly less thaff ., a se-
close to those found by the shape distortion metfid. quence is a bad folder. If; is comparable td y,, or pref-
Figure 6 shows the distributioR(5) at different tempera- €rably larger tharl y;,, then the sequence is a good folder
tures for sequenc®’. As the temperature increases the[l3]' It should be noted that as a characteristic temperature

maximum becomes wider and moves toward larger distanc at relates to dynamics one often uses the glass transition
to the native state. temperatureT, [1,13]. T4, however, depends on a cutoff

We now turn to the temperature dependence of the folgvalue of the_time used in calculations. Our p_refere_nc_e_ he_re is
ing timet;,q. At high temperatures, reaching the native state® US€Tmin, instead ofTq, not only because its definition is
takes a long time due to entropic effects. At low tempera-UNique and independent of the value of the cutoff but also
tures, on the other hand, glassy phenomena may set in affcause the two quantities contain the same phyS|cs_: good
make the folding process extremely slow. Thyg plotted olders are sequences in which glassy effects are not impor-
againstT typically shows a minimum at a certain tempera- [@nt around the folding temperature. .
ture T,,,. The idea of the existence of the glassy phase in, !N Order to obtaint,q we start from random configura-
proteins has originated in the Bryngelson and Wolynes studtons a”‘?' evolve Fhem thro_ugh the Mon_te Ca@dC) pro-
cess until the native state is reachégyq is defined as the

median number of MC steps after which the system reaches

the basin of the native state for the first time. The cutoff
I value of MC steps is taken to be 2a0°. The number of

starting configurations varies from 20 to 40 dependingion
Our results are presented in Fig. 7 for sequeriReand G.

0.5

0.4
0.1

o8 We haveT,,,=0.4+ 0.1 andT ;;=0.15+ 0.05 forR’ andG,
E?o.z respectively. SinceT;=0.12 andT;=0.23 for these se-
guences one can see tHit is a bad folder whereaB is a
o1 good one. We emphasize that on-lattice Go and rank-
ordering schemes lead to comparable ratio3 dfT iy -
0.0 S

] ] ] ]
0.0 0.2 0.4 0.6 0.8 1.0

V. THERMODYNAMIC PROPERTIES

We now proceed to a further characterization of the se-
FIG. 6. The probability distribution functio®(s) of finding a ~ quences by considering the thermodynamic quantities such

state which is distancé away from the native state for sequence as the specific hea and the structural susceptibilify [14].

R’. The values ofl are indicated next to the curves. It has been suggestg¢d4—16§ that a small temperature dif-
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ference between the maximum @and the maximum iy
when plotted against indicates good folding properties.
Thus studies of these two quantities may serve as a substitute
for the information about the kinetics of folding.

In the case of an off-lattice model the departures of the
sequence geometry from its native conformation may be des-
ribed through the structural overlap functif®i as

C, 100y

1
=1-— S.—Iri—rND, (4
Xs N2—3N+li¢§¢1 (c=[ri=ryh. 4

wherer;; is the distance between the beadsd] for a given
com‘ormation,ri’\jI is the corresponding distance in the native
conformation, andd(x) is the Heaviside function. Heré,
denotes ’t\lhe size of basin as defined in the preceding section. | |
If |rij—rij_|s_5C the be_ads andj are assume_d_t_o fc_)rm a 0 00 02 04 06 o8
contact within the native valley. The susceptibility-like pa- T

rametery is defined as the thermal fluctuation pf:

FIG. 8. The temperature dependenceyadndC for G andR’.
X(M={xAT))—(xs(T))?, (5  The starting configurations are the native state. The results are av-
o . eraged over ten MC trajectories. The arrows indicate the position of
where the angular brackets indicate a thermodynamic avefr, found from the condition that the probability of staying in the
age. native state is equal to 1/2.

The specific heat is defined in the usual way, i.e., by the
energy fluctuations: confirming bad folding properties &&’. So studies of ther-

modynamics properties and folding kinetics lead to the same
(E®)—(E)? conclusion about folding in our model.

. ()
T VI. CONCLUSIONS

A peak inC may be interpreted as corresponding to the onset In this work we have constructed and studied two off-
of slow kinetics and the peak ig as corresponding to the lattice Lennard-Jones models in two dimensions. The long-
folding temperature. range nature of interactions between amino acids in off-

We calculate the thermodynamic quantities using the nal&tticé models may lead to too much frustration, as in the

tive state as the starting configuration. The results are avefase of sequenc®’, and thus to bad folding properties.
aged over many MC trajectories. The equilibration is Restricting the number of interactions only to the native con-

checked by monitoring the stability of the data against af@Cts as in sequenég may reduce the frustration and bring
least three-times longer runs. We have used16® MC about. good folding properties. We have der_nonstrated Fh|s by
steps as in the studies &%, (the first 2.5< 1¢f steps are not studying both thermodynamic and dynamlcgl properties of
taken into account when averagjnghis number of MCcs the two sequences. The values of the folding temperature
appears to be enough to equilibrate the system in the tenfound from the probability of getting out of the native state

perature interval we use. We have also found that it is harddPUghly agree with those obtained by the shape distortion
to reach the equilibrium using SAW’s as starting configura-2PProach. We have studied the kinetic of folding with a sim-
tions. plified MC dynamics whereas previous works have been fo-

The temperature dependenceyofind C for sequences cused on equilibrium aspects. Similar to the on-lattice mod-
andR’ is shown in Fig. 8. The peak iy almost coincides els, both approaches give the same information about folding

with T;. For G maxima ofy andC are located at the same Properties.

position, suggesting that sequer@eis a good foldef14].
This result agrees with that obtained in the preceding section ACKNOWLEDGMENTS
by studying kinetics of folding. We thank J. R. Banavar for discussions. This work was

For sequenc®’, the peak inC is found to be broad and supported by Komitet Badan NaukowydfPoland under
it is located at a substantially high@rthan the peak iny =~ Grant No. 2P03B-2513.
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