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Effects of pore walls and randomness on phase transitions in porous media
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We study spin models within the mean field approximation to elucidate the topology of the phase diagrams
of systems modeling the liquid-vapor transition and the separatiotHet*He mixtures in periodic porous
media. These topologies are found to be identical to those of the corresponding random field and random
anisotropy spin systems with a bimodal distribution of the randomness. Our results suggest that the presence of
walls (periodic or otherwisgare a key factor determining the nature of the phase diagram in porous media.
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I. INTRODUCTION their quite differenfT=0 phase diagrams.
Experimental realizations of the RFIM include dilute an-

Critical phenomena are generally well understood but theéiferromagnets in a uniform fielfll7—2Q and binary liquid
effects of randomness on the nature of the transitions are lessixtures in a porous mediufi21-28. In both these cases,
well studied. This is especially true in the case of phasemany of the expected signatures associated with the RFIM
transitions that take place in porous media where the effectwith a Gaussian distribution of random fields were observed
of quenched randomness are provided by the pore wall$17-2Q (but significant deviations were also found when the
Among the best studied are phase transitions in highly podisorder was correlatgd@0]). However, the sluggish dynam-
rous aerogel$l]—both the liquid-vapor transitiof2] and ics and irreversibility predicted by the thedri0,11,29 pre-
the\ transition of*He[1,3,4] have been found to be remark- cluded accurate measurements of the exponents for binary
ably sharp. Even more interestingly, the topology of theliquids in porous media. Nevertheless, the exponents deter-
phase diagram foPHe-*He mixtures in aerogels has been mined for the dilute Ising antiferromagnet in a uniform field
found to be different from that in the bull,5]. were in accord with the theory.

The simplest theoretical framework for studies of critical A major surprise in this field were the measurements by
phenomena in nonrandom systems is the Ising model. Th€han and his collaboratofg,30] on the liquid-vapor transi-
important role played by multiple length scales at a criticaltion of helium and hydrogen in a variety of porous media.
temperatureT, leads to universalityf6—8]—binary alloys  While the liquid-vapor coexistence region was considerably
which are about to order, binary liquids which are about toshrunk compared to the bulk uniform case, the exponents
phase separate, certain kinds of magnets with uniaxial anisotvere found to be much more akin to those of the uniform
ropy which are about to become magnetized all exhibit thdsing model instead of the RFIM. It has been suggested
same critical behavior as the Ising model. Perhaps the sini31,37 that these features are related to the properties of the
plest extension that incorporates randomness is the randoRFIM with the fields being distributed bimodal{though not
field Ising model(RFIM) wherein a quenched random field necessarily symmetrically
is applied at each si{®—11]. One example of the probability Another surprise was the different shape of the experi-
distribution is the symmetric bimodal distribution which cor- mentally determinei1,5,33 phase diagram of théHe-*He
responds to a situation in which half of the sites experiencenixtures in porous media which allowed for superfluidity at
an up field and the other half, a down field of equal strengthlarge concentrations ofHe. The classical aspects of this
Another example involves fields which are Gaussian distribphase separation are captured by the Blume-Emery-Giriffiths
uted. In both cases, the symmetry between the up and dowiBEG) [34] spin-1 model with an anisotropy. The presence of
directions is not broken by hand and thus provides a scopa porous medium can be modeled by making this anisotropy
for a spontaneous symmetry breaking and a phase transitiosandom with a bimodal distributiof85].
associated with it. In this paper, we focus on the role played by pore walls in

Recent researdi2—16 has led to the result that the two liquid-vapor transitions in porous media, as studied in their
probability distributions may correspond, at least in dimen-corresponding spig- Ising spin systems. There are two as-
sions 3 and larger, to distinct behaviors associated with thpects to the role of walls in a porous medium. First, there is
RFIM. The Gaussian case is governed by=a0 fixed point  a preference for one of the phases over the other in the vi-
while the bimodal model's phase diagram is qualitativelycinity of the walls. This mechanism alone ought to lead to
different. The origins of the two distinct scenarios relate toobservable consequences even when the placement of the
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walls is substantially periodic, i.e., the different phases are a)
connected but there is no inherent randomness. Second, the

random placement of the walls in the porous medium pro-

vides quenched disorder and can induce further changes in

the phase behavior. The principal result of our paper is that

the former aspect is more crucial—indeed, we show that

within the framework of simple models, the phase diagram

does not change on incorporating randomness. This finding b)
is consistent with the analysis by Galam and Aharfa§]

indicating that the mean field results of a ferromagnet in a

random longitudinal field are the same as a uniaxially anis-

tropic antiferromagnet in a uniform field. Our results suggest ® °
that liquid-vapor transitions in designed porous media, with a 1 0 1
periodic geometrical pattef37,38, ought to exhibit behav-

ior quite akin to that observed in random porous media. We ° ° °
demonstrate these findings in simple mean field Ising models 2 1 2
and two distinct values of the local magnetic fields. We then o

generalize these studies to spin-1 Ising models with nonuni- FG- 1. (&) The basic unit of the model used to study the sym-

form anisotropy and show that such systems behave like thr@etric case in which there are as many sites with the local figld
random anisotropy BEG systems with a bimodal distribution?€n°ted by 0, as with the fiel,, denoted by 1. The Os and 1s are
placed on two sublattices in the plane as shown and is periodically

g{_letﬁzean;]S;;;Og;esa[?;]ibnoi;;Isrgsurlit;afifggg\slér;z%t bthteh repeated in both directions in the plane of the paper. The model has
P P P y9 y %nes of 0 and 1 sites, respectively, perpendicular to the plane of the

mere presence of walls in the porous medium and not rar‘Baper. In other words, the pattern shown is repeated in other parallel

domness. lanes(b) The geometry of the model used to study the asymmetric
It should be noted that there have been several recellbse The site denoted by 0 has a fiejand the remaining sites a

mean field studies of phase transitions in random porous Mg h,. As before, there are periodic boundary conditions in the

dia [39—41. One would expect that fluctuations in lower pjane and repeat boundary conditions in the direction perpendicular
dimensiong42] could play a key role in qualitatively modi- o the page.

fying the mean field picture.

- @ e
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corresponding to locations near pore walls and the sites with
II. EEFECTS OF CONEINEMENT IN THE RANDOM field h_1 to the interipr Iocations. The _underlying assumption
FIELD ISING MODEL—THE SYMMETRIC CASE here is th_at the(e is a different environment near the pore
wall than in the interior.

We start by considering the simplest case—that of four The phase diagram is obtained in the three-dimensional
Ising spins located at two kinds of sites, 0 and 1, as shown igpace ofhy, h;, and T and is determined by solving the
Fig. 1(a). Periodic boundary conditions are adopted in thefollowing equations for the magnetizations, andm;:
plane of the figure. Furthermore, it is assumed that above and

below this plane, there are spins which sit in locations that mo=tant (hg+2JImy+4J3my)/kgT], 1)
repeat the pattern shown and allow for a connected string of
nearest neighbor 0 and 1 sites in the direction perpendicular m, =tanf (—h;+4Imy+2Jm;)/kgT], 2

to the plane of the paper. Physically, this geometry corre-
sponds to a periodic arrangements of one-dimensional string(u?sn sites with fieldh, and h, respectively. The solution is

of 0 and 1 arranged on two sublattices. All spins are couple . . ) ) )

by a uniform exchange constadt The magnetic field on obtained in an iterative manner that leads to self-consistency.
; . . . . The form of Egs(1) and(2) reflects the fact that each site of

sites 0 is denoted blgo and it points up. On sites 1, on the a given kind has four neighbors of the other kind and two

other hand, the magnetic field is equaltp and it points - ; ;
down. (The case of a simple ferromagnet with a staggere(!im'ghborS of the same kind—the latter (esultlng from the
out-of-plane connectivity. Once the solutions for the local

field is obtained when periodic boundary conditions are o .
adopted in all directions. One then does not have connect agnetizations are fou.nd, one can determine the free energy,
=U-TS, by calculating the internal energy

strings of O or 1 sites which lead to an inability to sustain
certain phases at nonzero temperatires.

Our objective here is to determine the phase diagram of Y= —2J(MgMg+mym;+4mem;y) —2homg+2h;my
this nonrandom system within the mean field approximation ©)
and compare it to the corresponding mean field results
[31,32,43 of the RFIM in which the probability distribution and the entropy
of the magnetic fields is bimodal: half of the randomly se-
lected sites have an up-pointing fiell, and the other S=2s¢+2sy, (4)
half—a down-pointing fielch;. The RFIM may be thought
of as a modeling porous media with the sites with fiejd  where
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FIG. 3. The temperature dependence of the local magnetizations
mg and m; on crossing the boundary between the and + —
phases ahy,=6J. For temperatures below=2J, there is a coex-
istence of two values ofn; but m, stays essentially fully magne-

[ o" tized up toT=2J.

" A particularly simple case is obtained on fixihg at the
h, /1 : on
a value of &) (corresponding to strong pinning at the pore

wall) and varyingh; andT to map out the coexistence curve
. _ _between thet and+ — phases. In order to cancel the effec-

FIG. 2. The main panel shows the phase diagram correspondinge field introduced by the nearly fully aligned, spins, one
to the symmetric case in a three-dimensional representatiofseaqs to impose a field,=4J (note that each site “1” has
hg-h;-T. The dashed lines correspond to first order '[ransitionsrOur “0" neighbors) and effectively one is left with the bulk
whereas the thick solid lines correspond to the continuous transil-Sing model. Figure 3 shows that the coexistence manifests
tions. The star indicates a tricritical point. The top panels show. )

constant temperature slices of the phase diagram for the temperl's'{-se'f in the presence of two values o, but a unique value

tures indicated. The asterisk on the right hand panel indicates f mo. Of course, a similar scenario takes place when the

critical point and the square on the top left panel is a triple point. oundary between- and + — is crossed. Wh‘_”‘t is quite re-
P a P P pep markable is that the topology of the phase diagram does not

1 change even when randomness is introdui&d32,43 in
Si=—kg5[(1+m))In(1+m;)/2+ (1—my)In(1—m;)/2]. such a way that the symmetry between theand — phases
2 is maintained. Thus within the mean field theory, for the
(5)  symmetric case, the random placement of the walls plays no

) o N role at all. We will show in the rest of the paper that the same
A first-order phase transition is identified by the presence ofesylt holds for more complex situations.

a cusp in the free energy.
It is easy to show that there are three possible phases at
T=0 in this system. We shall denote them by, —, and
+— and their energies b, , E_, andE, _, respectively.
In the first phase, all spins are up and in the second all spins In porous media, the volume of a fluid near the pore walls
are down. In the third phase, on the other hand, the spinig usually much less than the volume of the fluid in the
point in the directions of the local magnetic fields. interior. In the Ising spin model, this translates into an un-
At T=0, the+ and — phases coexist along the diagonal equal number of sites with fields, and h,. In fact, in a
direction in thehg-h, plane(until hy=h;=4J), as shown in random version of the model, W&81] considered a situation
the top left panel of Fig. 2. The- — phase coexists with the in which a fractionp of the sites has a fielti;—the sym-
+ phase alongh;=4J for hy>4J and with the— phase metric case is obtained when-= 3.
alonghy=4J for h;>4J. All of the phase boundaries at In order to study the effects of walls under such asymmet-
=0 are first-order lines denoted by dashed lines. The solidic conditions, we consider, for simplicity, the model shown
lines denote lines of continuous transitions. Two of thesan Fig. 1(b) which is a generalization of Fig.(d). The plane
lines occur close ta@=2J/kg and separate the — phase of the figure shows nine sites. The central site, denoted by O,
from the + and — phases, respectively. The star in the mainhas a local field oh,. The remaining eight sites have a field
phase diagram, where three critical lines come together, is af h; and they are denoted by 1 and 2. Thus § but there
tricritical point. The critical line corresponding to the transi- is no randomness. The distinction between the two classes of
tion betweert- and — starts at 8/kg whenhy andh, tend  sites, 1 and 2, is that the former have site 0 as a neighbor and
to zero and then decreases steadily as the fields are increas#tk latter do not. Again, it is assumed that above and below
In the vicinity of hg=h;=4J, the descent towards the tric- the plane shown there are other planes which repeat the pat-
ritical point is almost vertical. tern of the central plane so that each site has a coordination

Ill. EFFECTS OF CONFINEMENT IN THE RANDOM
FIELD ISING MODEL—THE ASYMMETRIC CASE
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FIG. 5. The temperature dependence of the local magnetiza-
tions,my, my, andm, on crossing the boundary between theand
+ — phases ahy=6J. The coexistence curve fon, is much nar-
rower than form; andm,. There are two coexisting solutions and
the larger value ofm, selects positive values ah; and m,,
whereas the smaller values correspond to negativand m,.

phases coexist alorfiy=4J for h;>J/2. The triple point at
_ _ _which all the three phases coexist isTat 0, hp=4J, and
FIG. 4. The main panel shows the phase diagram correspondlrﬁ _1
to the asymmetric case in a three-dimensional representation1 Tﬁe.emergence of the three phases is the only similarity
ho-h,-T. The dashed lines correspond to first-order transitions,[h(,:lt exists between the svmmetric and the asvmmetric
whereas the thick solid lines correspond to continuous transitions, .y y
T L , model. The way they coexist at nonzero temperatures, for
The pentagon indicates a critical end point. The top panels show . : . . N .
1stance, is quite different. The biggest distinction, shown in

constant temperature slices of the phase diagram for the temperg . | of Fig. 4. is th h h
tures indicated. The asterisk on the right hand panel indicates e main panel of Fig. 4, Is that now the two sheets separat-
g the + phase from thet — and the+ and — phases

critical point, whereas the square on the top left hand panel is N . . ; .
triple point. along the diagonal direction combine together to form one

surface. This surface has a tilt that is clearly visible on the

number of 6. Recall that the boundary conditions along théight top panel of Fig. 4 which shows a section of the phase
two directions within the plane are periodic. diagram atkgT=5.5]. The surface terminates at a critical

The mean field equations for the three magnetizationdn€ which falls very gently fromkgT=6J ath,=0 andh,
read =0 to about 5.3 ath,=8.5] andh;=0.42].
The coexistence surface of theand+ — phases contin-
Mo=tant (hy+2Jmy+4JIm;)/KgT], (6)  ues to be substantially planar with a critical line close fo 2
reflecting the one-dimensional connectivity of the O sites.
my=tant (— hy+ Jmo+3Jmy + 2Jmy)/kgT], (7) This line of c_ritical points intersects t_h_e combined_— and
+,+ — coexistence surface at a critical end pointkaf
=2.05), hy=3.9612, andh;=31J. Quite remarkably, the
topology of this phase diagram is exactly as in the random
case[31].
The coexistence curves fdr,=6J (again mimicking a
strong pore-wall interactigrare shown in Fig. 5. Physically,
the transition corresponds to crossing from a phase in which

m,=tant (—h;+2Jm;+4Im,)/kgT]. (8)
The internal energy of the system is given by

U= —J(mgmg+6m;m;+8m,m,+4mym; +8m;m,)

—homg+4h;m;+4h;m, (9)  the interior of the pore space is filled by liquid to one in

which the liquid coats the walls and the vapor occupies the

and the entropy by interior. Note the unusual geometry of the coexistence curve.
The magnetizationan; and m, have broad coexistence
S=sp+4s;+4s,. (10 curves, similar tan, of Fig. 3 for the symmetric case. On the

other hand, the coexistence curve fog is much narrower
This system continues to have three phase¥-ab as than form; andm, and its nonzero width arises when the
indicated in the top left panel of Fig. 4. The boundaries bevalues ofm; andm, are distinct. Whem,=m,, m, has a
tween the phases, however, are shifted to new locations. Famique value in analogy to the symmetric case. It should be
instance, the+ and — phases coexist along the lir®g, noted that there are just two coexisting solutions—the larger
=8h,, from the origin untilhy=4J. The+ and+ — phases value of m, selects positive values of; andm,, whereas
coexist alongh,=3J for hy>4J whereas the- and + — the smaller values correspond to negativgandm,.
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T T tem opts to phase separate into*de rich region which
becomes superfluid. The coexistence curve of iHe-*He
phase separation is shown as a dashed cu@®RL). Two
interesting features of the phase diagram are the tricritical

" point B, where the superfluid transition line collides with the

>
"/
-

»3
\
\
/

coexistence curve at its critical point and the miscibility gap
/C D\ xe D\ at C—small amounts dHe added to*He do not lead to
o s 0 1 ¥ phase separation, a feature exploited in dilution refrigerators.
(a) (b) Perhaps, the simplest classical model that captures the

topology of this phase diagram is the BEG moj&f] which

is a lattice model populated with spit% that can take on
one of three values 0, -1, or 1. The inétie is represented

by 0 spins andHe is denoted by+ 1 or 1 spin values. An
exchange coupling between the nearest neighbor nonzero
spins, favoring alignment, causes the analog of the superflu-
idity transition with the broken symmetry phase having a
nonzero magnetizatiofi.e., a mismatch in the number of
+1 and 1 spins The Hamiltonian reads

H=—J<Z> SS+2> ASE, (12)
ij i

where A is an anisotropy field which controls the relative
concentrations of the two isotopes. The presencéHsf cor-
responds t® = + 1, superfluidity of*He to the existence of
nonzero magnetization and tiele atoms are represented by
S,=0. The random anisotropy field here does not break the
+ symmetry.

The resulting phase diagraishown in Fig. 6b)] has all
the correct qualitative features, except for the absence of the
miscibility gap atC which is believed to arise from a purely

FIG. 6. Schematic representations of the experimenfphyels quantum me,Chanmal effect. Even though the BEG model is
(@ and (c)] and theoretically determined phase diagrams forpurely_classmal and o_Ioes no_t _have the correct symmetry_of
3He-*He separation as described in more detail in the text. Thdn€ Spins(the superfluid transition has the same characteris-
phase diagram is shown in tiiex plane, whereT is the tempera-  tics of the transition in ay model in which spins lie in a
ture andx is the concentration ofHe. Panelsa and (b) corre-  Plane rather than having up-down symmetiynevertheless
spond to experimental and theoretical results for the bulk case. Akeproduces almost all the qualitative features of the experi-
other panels refer to random situations. Pangetorresponds to the ment correctly.
experiments in aerogels. Pan@) corresponds to the mean field Recent experiments of Chan and co-workielr$,33 on
analysis of the random anisotropy BEG model with a bimodal disthe phase separation dHe-*He mixtures in aerogel in the
tribution of the anisotropies. Pangl® and(f) correspond to theo- vicinity of the superfluid transition have yielded a phase dia-
retical results in whichp, the fraction of randomly chosen sites gram shown in Fig. @). The key features of the phase dia-
corresponding to the pore walls, is smaller or larger than the percoagram are(i) the absence of the tricritical poirthe superfluid

lation threshold, respectively. transition line no longer intersects the coexistence oufii¢
IV. SUPERFLUID PHASES IN 3He-*He MIXTURES IN an enhancemenbf the superfluid transition temperature
AEROGEL compared to the bulk at largéHe concentration(ii) at low

temperaturegbelow the critical point associated with the
We turn now to a discussion of spin systems modeling thghase separatiorand for a range of values of within the

phase separation dfHe-*He mixtures. Figure @ shows a  coexistence curve?He rich and ®He rich regions coexist,
sketch of the experimental phase diagfamthe T-x plane,  both of which are superfluid, an@v) the experimental data,
whereT is the temperature andis the concentration otHe] while restricted to temperatures above 0.35 K, are suggestive
of the bulk3®He-*He mixtures in the vicinity of the super- that the aerogel causes a miscibility gap to open up at large
fluid transition of “He. In the temperature range of interest, value ofx. This is of fundamental importance, if true, since
the superfluid transition involving the pairing 6He atoms the superfluid phase observed is the one in which a small
is not a factor and indeed thi#e atoms can be thought of as quantity of *He in *He does not phase separéas observed
inert, annealedi.e., they are not stuck in space but can movein the bulk), but is yet superfluid and probably represents the
around entities. At low 3He concentrations, on cooling the long sought after dilute Bose gas superfluid phase. Even
system, a superfluid transition denoted by the solid liaBY  more exciting, such a miscibility gap would lead to an ex-
is observed. However at highéHe concentrations, the sys- tremely different situation of two distinct coexisting super-
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fluid phases at low temperatures, the dilute Bose gas phase ahd the point X=1—p; T=0) analogous to the one be-
“He and the superfluid phase #fle. Two factors in support tweenC andD except that the critical temperature is shifted
of the dilute superfluid phase are the followirig). Adding a  down to zero. Thus for concentrations tfle corresponding
small amount of*He to the aerogelin the absence ofHe)  to points betweel and x=1—p; T=0), and temperatures
leads to a superfluid phase whose densigrisancedy the  less than the superfluid transition liA8, the model predicts
addition of ®He. (b) Because a coexistence curve for thethe analog of the dilute Bose gas superfluid phase.

phase separation is found in the phase diagram, it is plausible The superfluid transition temperature smoothly extrapo-
that there iso phase separation in the region betwgeand  lates to the value of the transition temperature of a coated
D [Fig. 6(c)], since it is unlikely to expect phase separationphase of helium atoms residing on the aerogel surface. This

of an already phase separated phase. is dramatically seen in Fig.(B where the transition plunges

to zero atx=1—p whenp s less than the percolation thresh-
old p. and is unable to sustain a phase transition at nonzero
V. THE RANDOM ANISOTROPY BEG MODEL temperatures. Within the context of the BEG model, the su-
erfluid phase is found to be one in which the magnetization
superfluidity arises from the aerogel sites and from the sites
in their vicinity. Indeed, in any classical model with short

In the BEG model the effect of the aerogel is assumed t
be present on a fractiop of the sites, these sites are ran-

domly c_hosen and flxe_(imllke the mobile*He atoms, .the range interactions, the spins yielding a nonzero magnetiza-
aerogel is a manifestation of quenched randomn@$e dis- o must lie on a connected cluster and are thus in an essen-
tribution of the single-site anisotropies is bimodal and giverja|ly phase separated phase. This phase separation, however,
by [35] doesnot preclude a further bulklike phase separation on in-
creasing the concentration 6He atoms. In our BEG model,
P(Aj))==pdo(Ai—Ap)+(1-p)s(Ai—A1). (12  the minimum number ofHe atoms is equal to the number of
aerogel surface sites. A further addition e atoms(in the
The sites with anisotropy\, correspond to the vicinity of absence of*He) causes an increase in the magnetization,
pore walls and for the situation in whictHe prefers to be corresponding to the attachment of some of these atoms to
near the wall,A,<0. The A, anisotropy characterizes the the already existing spanning cluster at the aerogel surface.
pore interior and its value controls the total number’ble ~ Subsequent addition ofHe atoms results in more of
atoms. In a mean field approach, one obtains the phase difl¢ "He atoms going in the cluster, thereby enhancing the
gram shown in Fig. @). Note that this is in accord with the Magnetization, as in the experiment. We have also studied
experimental observatior§) and (iii), but does not repro- the effects of correlation in the selection of aerogel surface
duce(ii) and(iv). The tricritical point(where three phases go SiteS: the probability of a nearest neighbor site of an aerogel
critical simultaneously requires a special symmetry, which SUrface site to be another aerogel surface site is enhanced
is absent when one incorporates the random anisotropy t%ompared to a completely random selection. We find that this

mimic the aerogel. The line of superfluid transitions is, hOW_correla‘uon enhances the superfluid transition temperature

ever, virtually insensitive to the presence of the random angompared to the bglk "?.accord With expirlmen.t. .
In summary, a simplified model fotHe-*He mixtures in

isotropy. The coexistence curve, however, is shifted to lowef’;\erogel reproduces margut not the miscibility gap at low

temperatures and higher effectifide concentration due to . : .
P g 3He concentrationsof the features observed in experiments

the space taken up by the aerogel, thus leading to the topol- i S
ogy shown in Fig. &). and suggests the opening of a miscibility gap at f¥e

In order to investigate whether this lack of Completeconcentration. The analog of the dilute Bose gas phase

agreement arises due to quantum mechanical effects an thin the classical model is the one in which the superflu-

their neglect by the BEG model or due to the inherent sim- ity arises from*He adsorbed on the aerogel. Note that this

plicity of the mean field approach, we have carefully studieodoes not however preclude further phase separqt[qn. Cooling
the BEG model within an improved mean field theory whichthe system to uItranW temperatures in the m|SC|.b|I_|ty gap at
is a generalization of the approach presented in [ef] high *He concentrations should lead to two coexisting super-

; 3 4
The improved method captures features such as a percolatitglt"l“d phases-He and the"He near the aerogel. It would be

threshold and yields better estimates of the transition temy€rY exciting if quantum mechanical effedtsot considered

perature than the mean field theory. here delocalize the*He atoms leading to a dilute Bose gas
The phase diagrams in Figs(eb and &f) are obtained phase at higher temperatures and interpenetratiitg

3 .
depending on whether the fractiprof the sites at which the &nd~He superfluid phases at low temperatures. _
aerogel is present is less than or greater than the percolation 't Should be noted that much of the physics corresponding

thresholdp, . Unlike the porous medium aerogel, which has t0 the scenarios of Fig. 6 has been captured by the renormal-

a strongly correlated, connected interface, our model, in it&ation group analysis of Berker and his collaborafatS—
és]. They considered random and nonrandom models of the

simplest form, consists of randomly chosen interface site : . ;
allowing for a percolation threshold. In the experiment, in2€r09€l and explained the phase diagrams by the connectiv-
ity and tenuousness of the aerogel.

spite of the large porosity, one is always in the fully con-
nected regime. Note the presence of a miscibility gap at high
3He concentrations. Unlike mean field the¢Rig. 6(d)], the
point D is at a concentration less than-{)). Indeed, our In order to study the separate roles of the presence of
calculations suggest a second coexistence curve beteenwalls and randomness itHe-*He separation, we again con-

VI. EFFECTS OF CONFINEMENT IN THE BEG MODEL
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FIG. 7. The phase diagram for the BEG model with a bimodal A,/1

nonrandom distribution of the anisotropies in a three-dimensional

representatiom\ o-A;-T. The broken lines correspond to the first- ~ FIG. 9. Plot of the critical linegthe temperature at which the
order transitions, whereas the solid lines correspond to continuou®agnetization goes to zgras a function ofA, for the indicated
transitions. values ofA,,.

sider the geometry shown in Fig(kd and set up mean field Gi

equations that correspond to the spin-1 problem. These equa- 4 exp— 24, IkgT) — \/m +4 exf— 24, /kBT)(l m )
tions for the magnetizations, i.e., the expectation values of =
S, and for the three parametays, q;, andqg, which are the 4 exp(— 24 /kgT) —

expectation values &, are (16)

The internal energy is given by
M= gotant (2IJmy+4Jm;)/kgT], 13
o= dotantt(2my /e (13 U= —J(mgmg+6m;m; +8m,m,+4mym; +8m;m,)
+AgQo+4A.0,+4A a7
m;=q4tant (Jmy+3JIm;+2Im,)/kgT], (14 oo 1 12
and the entropy by

m,=qtant (2Jm; +4Jm,)/kgT], (15) S=5o+4s,+4s,, (18
where
and 1
5= _ks{(l_Qi)m(l_Qi)*' E(qi'l'mi)ln(qi_l'mi)/z
' k T<0.5] 1 kgT=0.8J
1 ]
: i +(gi—my)In(g; —m;)/2|. (19
4 ] 4 i
Fmmmdea | TRe-- Miing oo
:r - In direct analogy to the random cak#5], there are four
al e o L l posssible phases @t=0.
I - . 1 . (1) Phase 1 in which all threm;s are nonzero.
~ 0 * 0 * (2) Phase 2 in whichmy>0, m;=m,=0.
g (3) Phase 3 in whichmy=0, m;, m,>0.

| kgT=1.2] Kk T=2.0] (4) Phase 4 in whichmy=m;=m,=0. .
In each phaseq;=m; at T=0. The nonzero magnetiza-
tion persists to higher temperatures and its disappearance

_____________ - corresponds to the line for superfluid*He. (Note that our
R A analysis lumps in any inert or dead Iayer4<b{e as belonging
<1 | | | to the pore wal). The analog of the®He concentration is
I F S [ given by
0 4 0 4
Bo/d x=1—(qo+ 40, +40,)/9. (20

FIG. 8. Constant temperature slices of the phase diagram shown The overall topology of the phase diagram is shown in
in Fig. 7 at the temperatures indicated. Fig. 7 and several isothermal slices through it are shown in
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3 - R Y A o L ; . |
L P . 0 0.5 1
"r", \\‘ r |I I
0 o X . (') A‘ /J é FIG. 11. The coexistence curves for the order parantgterthe
1

three sites whem\o=—0.5]. There are two coexisting solutions
and the larger value afj selects larger values a@f; andqs.

FIG. 10. Top left panel: The phase diagram for the uniform
(bulk) anisotropy BEG model in th&-x plane, wherex is the spin
analog of the concentration ofHe. Top right panel: The same . 4 . .
phase diagram but in the-A ; plane.\ indicates the critical line for Wh'_Ch favors He near the pore_walls. Itis seen that/asis
the magnetization and | the first-order transition in therder pa-  Va&ried, thex line becomes disconnected from the phase
rameter. Middle left panel: The phase diagram for the nonuniformS€paration coexistence linebe middle panels The details
(periodig anisotropy BEG model in th&-x plane. The data are for depend on how one moves on thg-A, plane. For instance,
A= —0.5]. Middle right panel: The corresponding phase diagramif one crosses the 1-2 and 2-4 boundaries at an angle, one
in the T-A; plane. The bottom panels: The phase diagramd\fpr  gets the situation depicted in the bottom panels of Fig. 10.
=A4/5. All of these phase diagrams are in accord with the random

anisotropy version of the model except that théne of the

bottom panels of Fig. 10 does not reemerge from
Fig. 8. At low temperatures all four phases exist and theithe *He-*He coexistence region because this region ends at
number goes down on increasing the temperature. The x=1 in this simple model and not at arwhich is less than

=0 boundaries are given by 1. Figure 11 shows the coexistence curves for qrarder
(@) 1-2 coexistence ak,;=32J, Ay<J. parameters foA,= —0.5]. They are remarkably similar to
(b) 1-3 coexistence ahy=5J, A;<itJ. the magnetization coexistence curves of Fig. 6. In particular,
(c) 1-4 coexistencé\ ;=% J—3A,, J<A,<5J. the nonzero width for the coexistence regiongjn reflects
(d) 2-4 coexistence aho=J, A;>2J. inequality ofq; andas.
(e) 3-4 coexistence ak;=73J, Ay>5J. The basic message of our analysis is that the topology of

These first-order boundaries become vertical surfaces ofhe phase diagram changes qualitativéfyaccord with ex-
considering theT axis. The top edges of these Surfacesperimeni when one moves in theAG-A,) plane such
are critical lines. This has as its roof a critical surface atp 5t instead of going directly from phase 1 to the paramag-
which the magnetization disappears. Of course phase 4yvic phase 4, one moves through the intermediate phase 2.
which is paramagnetic, is npt covgr.ed by a roof. T,h's rOOfSomewhat surprisingly and at odds with expectations, one
corresponds to the superflwd transmon‘_‘tbie or the line. finds that the mean field topology of the phase diagram is
The shape of the TOOf is illustrated in Fig. 9 for seve;ral Val'more sensitive to the presence of walls in a porous medium
ues ofAq. In the figure, fordo/J=0.8, the roof continues than to the role played by their random placement. A similar

indefinitely for largeA,, becausen, remains zero at suffi- conclusion has been reached by Pricaupenko and Treiner
ciently low temperatures. However, whexy,/J, the roof L s Aup .
%49] within a nonlocal density functional analysis of

smoothly terminates at the top of the wall separating planes . . . .
y b b an d—|e-4He mixtures in a channel geometry. In particular their

and 4. This is necessitated by the fact that phase 4 has n ) o
roof. analysis shows possibility of the detachment of the super-

Figure 10 illustrates the nature of the phase diagram fofluid line from the coexistence region. It would be interesting
selected values of,. The insets show the transition lines as {0 consider whether fluctuations make a qualitative differ-
a function of A; and the main figures—as a function of ence in the conclusions reached in our simple mean field
x—the analog of théHe concentration. The top two panels analysis.
of Fig. 10 refer to the uniform anisotropy case—whegis We are indebted to Moses Chan for stimulating discus-
equal toA; and confirm that this simple nine-spin model Sions. This work was supported by the Center of Collective
captures the topology of the phase diagram of the unifornPhenomena in Restricted Geometries, the Penn State MR-
BEG model[34]. SEC under NSF Grant No. DMR-0080019, INFM, MURST,

The physically interesting regime is that of negativg ~ and NASA.
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