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Spin analogues of proteins: scaling of ‘folding’ properties
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Abstract. Reaching a ground state of a spin system is analogous to a protein evolving into its

native state. We study the ‘folding’ times for various random Ising spin systems and determine

characteristic temperatures that relate to the ‘folding’. Under optimal kinetic conditions, the

‘folding’ timescale with the system size as a power law with a non-universal exponent. This

is similar to what happens in model proteins. On the other hand, the scaling behaviour of the

characteristic temperatures is different than in model proteins. Both in the spin systems and in

proteins, the folding properties deteriorate with the system size.

1. Introduction

Recent numerical studies [1,2] indicate that characteristic folding times, tfold, of model proteins

grow with the number of amino acids, N , as a power law with an exponent which is non-

universal—it depends on the class of sequences studied and on the temperature. The resulting

deterioration of the folding properties also manifests itself in the way in which temperatures

that relate to folding scale with N [2]. There are two such characteristic temperatures: Tf

and Tmin. The first of these is a measure of the thermodynamic stability—it can be defined

operationally as a temperature at which the probability of occupying the native (lowest energy)

state passes 1
2
. The second temperature is one at which the folding kinetics is the fastest. At

temperatures, T , below Tmin, glassy effects set in. Amino acid sequences that correspond to

proteins should have a Tf that is larger than Tmin, or at least comparable to Tmin. Otherwise the

sequences are bad folders. Studies [2] of 2D and 3D lattice Go models [3] of proteins suggest

that Tmin grows with N whereas Tf first grows and then it either saturates or it grows at a lower

rate than Tmin. There then exists a characteristic size, Nc, at which Tmin starts exceeding Tf

and for N > Nc the sequences necessarily become bad folders. This suggests the existence of

a size-related limit to physiological functionality of proteins.

The question we ask in this paper is to what extent the scaling behaviour of tfold, Tf , and

Tmin that was found in the lattice Go model of proteins is typical or, in other words, what are

the classes of universality for these quantities. Specifically, we consider Ising spin systems:

uniform ferromagnets (FM), disordered ferromagnets (DFM) and spin glasses (SG). DFM

have recently been shown [4] to have a phase space structure, as described by the so-called

disconnectivity graphs [5–7], quite akin to that characterizing proteins, at least for a small

number of spins, N . SG, on the other hand, have been found to have the phase space structured

as in random sequences of amino acids, which are bad folders. The spin systems do not ‘fold’

but an evolution into their ground states can be considered to be analogous to the folding

process [4, 8] and tfold can be defined as the characteristic time needed to pass through the

ground state for the first time, which generally does not coincide with a relaxation time. Thus
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tfold, Tf , and Tmin can be determined as for the proteins and we may additionally enquire how

do Tf and Tmin relate to the effective critical temperature as determined from the specific heat

and magnetic susceptibility.

Another motivation for considering the ‘folding’ in spin systems is that the analogies

between spin systems and proteins have already permeated the language in which the physics

of proteins is couched. It is not clear, however, to what extent these analogies are accurate

when it comes to actual details. One qualitative concept, in this category, is that of the energy

landscape [9, 10]: SG are said to have energy landscapes with many competing valleys but

proteins should have landscapes which are funnel like. Another such concept is frustration [11]:

the structural frustration in proteins should be ‘minimal’ whereas the frustration in the exchange

couplings leads to the slow kinetics as found in SG. These concepts have been probed, e.g. in

the random energy model [11] which again originated in the context of SG [12].

The basic message of this paper is that the spin–protein analogies are indeed valid but

the details of the behaviour are usually distinct. What is analogous, for instance, is that the

folding times have a characteristic U-shaped dependence on T [13]. Furthermore, the folding

properties are the best for small system sizes and then they deteriorate with N . In particular,

the ‘folding’ times at Tmin in spin systems do grow as a power law with N . On the other hand,

both Tf and Tmin of simple spin systems generally decrease with N and the nature of the phase

transition is not a finite-size version of the first order as is the case with proteins.

The origins of the difference between spin systems and the Go models of proteins in the

behaviour of Tf and Tmin remain to be elucidated. It should be noted that there are no kinematic

constraints on flips of any spin whereas the possible moves in the protein folding process must

preserve the chain connectivity and they have to depend on the actual conformation and thus on

the history. The constrained character of the protein dynamics makes it acquire aspects of the

packing problem, especially so if the native state is maximally compact—such as considered

in the studies of scaling in model proteins. The packing aspects become insignificant when

dealing with longer and longer α-helices [14]. We illustrate this point here by considering a

2D lattice version of the α-helices (H) as described within the Go scheme and show that these

objects indeed behave like spin systems when N becomes larger. Note that the helices have the

monomer–monomer interactions of a local kind. Thus the energy barrier against unfolding es-

sentially does not depend on N , which is not expected of structures with more complex contacts.

Most of this paper, however, will be focused on systems described by the Ising spin

Hamiltonian:

H = −
∑

〈ij〉

JijSiSj (1)

where Si = ±1, and the exchange couplings, Jij , connect nearest neighbours on the square and

cubic lattices with the periodic boundary conditions. There are LD spins in the system where

D denotes the dimensionality and L the linear size of the system. We consider four models

of the exchange couplings: (1) SG in which the Jij are numbers drawn from the Gaussian

probability distribution with a zero mean and a unit dispersion; (2) uniform FM with Jij = 1;

(3) the DFM with Jij chosen as the absolute values of the Gaussian numbers; (4) the weakly

disordered ferromagnets (DFM′) with the Jij being random numbers between 0.9 and 1.1. We

find that it is the latter system which is the most protein-like.

In sections 2 and 3 we discuss the T and N dependences of the ‘folding’ times respectively.

In section 4 we present results on the scaling behaviour of Tf and Tmin in systems SG, FM,

DFM, DFM′, and H. Finally, in section 5, we demonstrate that the temperatures we study are

quite distinct from the critical temperature of the spin systems.
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a)

b)

Figure 1. The temperature dependence of the

characteristic ‘folding’ time for the (a) 2D and (b) 3D

FM, DFM′, DFM and SG Ising systems. Here, L = 10

for the 2D, and 5 for the 3D systems. The number of

starting configurations is equal to 1000.

2. Temperature dependence of ‘folding’ times

The concepts used in this paper are illustrated in figure 1 which shows the temperature

dependence of the characteristic ‘folding’ time in the 2D and 3D Ising spin systems considered.

In each category, data for a representative example system are shown. We obtain tfold by a

standard Monte Carlo process in which one typically starts from 1000 random initial spin

configurations and determines the median time to reach the ground state for the first time.

The spins are updated sequentially and the ‘folding’ times are given in Monte Carlo steps per

spin, i.e. the total number of spin updates divided by the number of spins. In the SG case,

the ground state (or at least its close approximation) is obtained by multiple slow annealing

processes followed by a quenching procedure. The general shape of the T dependence is like in

the protein systems—it corresponds to a U-shaped curve with a minimum at Tmin. The bigger

the disorder, the higher the Tmin—the DFM system has the highest Tmin among the systems

with the ferromagnetic ground state. Figure 1 also shows that the SG system has a lower value

of Tmin than the DFM. However, this does not reflect the degree of disorder since the two

systems are different in nature. The fact that the SG system has a lower value of Tmin than the

corresponding DFM system is related to the fact that local energy barriers against spin flipping

are generally higher in a DFM than in a SG due to a non-zero value of the average exchange

coupling. The phase space structure of the uniform ferromagnet is so simple, containing few

local energy minima, that the low temperature upturn does not develop down to T = 0. In this
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case, we shall attribute a zero value to Tmin. A similar phenomenon has been observed in the

lattice Go model with repulsive non-native contacts [15] for which only a few local minima

are available. The shortest ‘folding’ time, tmin, corresponds to tfold that is determined at Tmin.

The temperature dependence of the folding time on N is also computed for the Go model

of ‘helices’ on the 2D square lattice. A ‘helical’ native state for N = 16 is shown at the top of

figure 2. The meanders shown in the figure become longer and longer when N increases. The

Hamiltonian for the system is given by

H =
∑

i<j

Bij�ij (2)

where �ij is either 1 or 0, depending on whether the monomers i and j are nearest neighbours

on the lattice but not nearest neighbours along the chain, or not. When �ij is non-zero, the

two monomers are said to form a contact. The definition of the Go model is that Bij is 1 for the

native contacts (such as seen in figure 2) and 0 otherwise. Thus the properties of the system

are determined entirely by the native conformation. The dynamics are defined in terms of a

Monte Carlo process which satisfies the detailed balance conditions as explained in [2,16,17].

The lower part of figure 2 shows the characteristic U-shape dependence of tfold on T for

system H. What is different compared to the models of maximally compact proteins is that the

positions of both Tmin and Tf are seen to decrease with N—the point to which we shall come

back in section 4.

3. Scaling properties of folding times at Tmin

In order to study the scaling properties of disordered systems, such as the spin systems with

random exchange couplings, one needs to consider ensembles of samples with properties which

are similar statistically. Thus for each N we have considered up to 50 samples and for each

we have performed simulations of ‘folding’ in the Monte Carlo process. The median folding

times as a function of T have been calculated for each sample separately and we determine

their fastest folding condition. Typically it is done by considering 1000 folding trajectories at

each T . But for the FM and DFM′ systems with a small size, up to 40 000 trajectories at each

T have been used due to the broadness of the minimum. The value of tmin has been determined

at T = Tmin that corresponded to a given sample and only then has the average of tmin over

samples been calculated. Figure 3 shows the scaling of the average tmin for the 2D systems:

FM, DFM′, DFM, SG and H. Figure 4, on the other hand, deals with the 3D Ising systems.

All of the results are consistent with the power law:

〈tmin〉 ∼ Nλ (3)

where the values of λ are shown in table 1. Interestingly, λ for the spin systems depends much

more strongly on the type of the spin system than on its dimensionality. On the other hand,

in the Go models of proteins with the maximally compact native state, the dependence on

dimensionality is strong: it is of order 6 and 3 in 2D and 3D respectively [1, 2].

It should also be noted that for the 2D lattice ‘helices’, λ ≈ 4.59 is substantially smaller

than the exponent found for the Go proteins with the maximally compact native state which

points to the role of the geometry. A recent study by Maritan et al [18] has indicated that

the α-helices fold the fastest among the objects with the same length and compactness. The

presence of secondary motifs has also been shown to be responsible for differences in the

folding behaviour between proteins and random globules [19]. Thus our result is in good

agreement with those observations.

The strong dependence of λ on the choice of the exchange couplings is similar to the lack

of universality found in model proteins [1]. Also in analogy to the models of proteins, the
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Figure 2. The top of the figure shows an example of a

‘helical’ conformation on the 2D lattice used in this paper.

The conformation shown is for N = 16. The lower part

shows the dependence of tfold on T for three indicated

lengths of the ‘helix’. The values of Tf and Tmin are

marked by the arrows.

Figure 3. The scaling of tmin for 2D FM, DFM′, DFM,

SG and the ‘helices’.

Figure 4. Scaling of tmin for 3D FM, DFM′, DFM and

SG.

Figure 5. Scaling of tf for 2D DFM and DFM′

(solid curves) compared to the scaling of tmin (dotted

curves). The effective slope for the last three data points

corresponding to DFM is 3.54.

scaling exponent depends on the temperature. Figure 5 shows that tfold, evaluated not at Tmin

but at Tf , grows with an even bigger exponent or possibly the growth becomes exponential.

This emphasizes the optimality of the kinetics at Tmin. In the DFM′ case tf and tmin merge

together because, as we shall see in the next section, the temperatures Tf and Tmin merge

themselves.
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Table 1. The exponent λ for the 2D and 3D spin systems and for the 2D Go models of helices.

The symbol ‘Go’ in the table refers to the Go models with the maximally compact native states as

studied in [2].

System λ (2D) λ (3D)

FM 0.54 ± 0.01 0.57 ± 0.01

DFM′ 0.79 ± 0.01 0.65 ± 0.02

DFM 1.85 ± 0.05 1.25 ± 0.05

SG 3.73 ± 0.15 3.52 ± 0.25

H 4.59 ± 0.08 —

Go 6.3 ± 0.2 3.1 ± 0.1

The possibility of a power law scaling for the folding time has been proposed theoretically

by Thirumalai [21] (see also [22]) based on scaling concepts from polymer physics combined

with some phenomenological assumptions. In particular, the power law scaling is argued

to be relevant to proteins which fold through direct pathways with a nucleation mechanism.

For indirect pathways, the folding time is determined primarily by activation processes with

barriers which were argued to scale as N1/2. There has also been a number of other studies of

how a typical free-energy barrier, B, in model proteins scales with the number of monomers.

All of these studies are phenomenological in nature and the barrier B is often calculated at

the folding transition temperature Tf . One assumes that the folding time is related to the

barrier B through an Arrhenius-like law: τ ∼ exp(B/kBT ), as it is typically written for the

relaxation time. In the random energy model [11], and also in another mean field approach for

the Go model with a non-specific critical folding nucleus [20] the barrier scales linearly with

N . Recently, Finkelstein and Badredtinov [23], and also Wolynes [24], have proposed a N2/3

law by using a capillarity approximation. Gutin et al ’s and our power laws for tfold obtained

in simulations of the lattice proteins would formally correspond to a logarithmic dependence

of the barrier on N at the temperature of the fastest folding.

It should be noted, however, that the physics of folding coincides with that of equilibration

only in the limit of low temperatures [16]. At high temperatures, for instance, the relaxation

times are short but the folding times are long since the search for the ground state takes place

primarily in the regions of phase space which are energetically remote from the target native

state. Thus the behaviour of the barriers may have little bearing on the folding times at Tmin

which corresponds to the crossover between the physics of folding through equilibration and

the physics of folding through a search for a state that takes place in equilibrium. At low

temperatures, the roughness of the energy landscape becomes more and more significant, and

the changed nature of the local barriers against the reconfiguration is expected to affect the

scaling laws. Understanding the scaling behaviour of the folding time at Tmin and at low

temperatures still needs to be worked out—both in the protein and spin systems. The latter

systems may prove to be easier conceptually and computationally.

4. Scaling properties of Tf and Tmin

We now discuss the scaling of characteristic temperatures. Tmin is determined from the kinetic

data. Tf , on the other hand, is calculated by starting from the ground state and performing a

long run that determines the equilibrium probability of the system staying in the ground state.

The probabilities are determined as a function of T and Tf is obtained by an interpolation

to where the value of 1
2

is passed. For the spin systems, our results are based on up to 200

‘unfolding’ trajectories which last for up to 10 000 Monte Carlo steps per spin.
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Figure 6. Scaling of Tf and Tmin for the 2D

and 3D lattice Go models of proteins. Data

points are taken from [2].

As a point of reference, we first consider the scaling properties of Tf and Tmin which were

found in the 2D and 3D lattice Go models of proteins [2]. The corresponding data points are

now shown, in figure 6, as a function of N on the logarithmic scale. Both Tf and Tmin grow

with N . The data points suggest that Tmin grows indefinitely—the larger the system size, the

higher T is needed to secure the optimal folding conditions. On the other hand, Tf appears

to tend to a saturation value—there is a limit to the thermodynamical stability. This finding is

consistent with an analytical result obtained by Takada and Wolynes [20] for Go-like proteins

studied within a droplet approximation.

Figure 7 shows the scaling of Tf and Tmin for the 2D lattice ‘helix’ system. At N � 8 the

foldability is good but on increasing N , the behaviour is entirely different: the glassy effects

decrease in importance—Tmin decreases—but also the thermodynamic stability becomes more

and more insignificant. The slopes for the N dependence of the two temperatures are somewhat

different and the corresponding plots may cross at some large value of N . Thus it is possible

that good foldability can reappear at some large values of N—but at a very low T .

We now ask what kind of scaling behaviour of Tf and Tmin characterizes the spin systems?

Figures 8–11, for systems FM, DFM′, DFM and SG respectively, demonstrate that in no case

is the scaling like that for the Go lattice models with the maximally compact native state but

in some cases it is akin to the behaviour exhibited by the 2D ‘helix’.

Both for the ‘helix’ and for all of the spin systems studied here, Tf decreases with N

monotonically which is not what happens in the Go models of proteins. This difference in

behaviour can be traced to the following observation. Tf is defined through the equation

PN =
1

1 +
∑′

l exp(−(El − EN )/kBTf )
=

1

2
(4)

where PN is a probability of being in the ground state, EN is the energy of the ground state, El

is the energy of an lth state, and the sum written in the denominator excludes the ground state.
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Figure 7. The same as in figure 6 but for 2D Go models

of the ‘helices’.

Figure 8. The dependence of Tf and Tmin of 2D and 3D

FM on N .
Figure 9. The same as in figure 8 but for the DFM′

systems.

At temperatures which do not exceed Tf , the sum is dominated by the low-energy excitations.

In the spin systems and in the ‘helix’, energies of these excitations do not depend on N . For

instance, in the Ising case they are of order 2zJ , where z is the coordination number and J

denotes a characteristic value of the exchange interactions. It is only the number of terms in

the sum itself that grows with N . This leads to Tf decreasing with N . On the other hand, in

the model proteins, the energies of the excitations typically do depend on N which may have

a competing effect on Tf relative to the impact of the number of states.

We now turn to discussion of the scaling properties of Tmin. From figures 8–11 it is

clear that it has opposite tendencies for proteins and spin systems. For the 2D FM and DFM′

systems one observes an increase followed by saturation. In all other spin systems, instead of
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Figure 10. The same as in figure 8 but for the DFM

systems.

Figure 11. The same as in figure 8 but for the SG systems.

the saturation, one observes a maximum followed by an asymptotic decrease. The difference

may reflect the presence of the kinematic constraints on possible moves in proteins due to

their polymeric nature. Such constraints may cause the emergence of barriers which depend

on N and result in a growing Tmin. In spin systems such kinematic constraints do not exist:

each spin configuration has N possible ways to move out with a cost which does not depend

on N . Such a high number of degrees of freedom gives the spin systems a large flexibility to

cross from local minima to local minima. Thus there is no potential for an indefinite growth

of Tmin. The initial growth, in the random systems, reflects on the role of the growing number

of local energy minima which may form kinetic traps and make the kinetics glassy. Yet the

asymptotic decrease of Tmin suggests that the relevant traps do not need a N -dependent energy

to overcome or points to some entropic effect.

The case of the ‘helix’ system may appear puzzling at first glance since it possesses

polymeric constraints and yet they do not lead to a growing Tmin. Note that, in contrast to

the model proteins with maximally compact native states [2], the Hamiltonian for the ‘helix’

contains terms related only to the local contacts. Thus the chain is much more flexible when it

is not tightly packed in its native state. The energy barriers against escaping from the traps do

not depend on the chain length, and therefore the ‘helix’ exhibits spin-like properties. High

energetic barriers in proteins are often associated with breaking of some tertiary contacts.

5. The specific heat and susceptibility

We now compare Tf and Tmin with the usual critical temperatures that characterize spin systems.

We focus on the properties of the specific heat, C, and susceptibility, χ , defined through

C =
〈E2〉 − 〈E〉2

NT 2
(5)
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Figure 12. The size dependence of TC , Tχ , Ts and Tf for

the 2D DFM′ and SG systems.

and

χ =
〈M2〉 − 〈M〉2

NT
(6)

respectively, where M is the magnetization. The temperatures at which C and χ have a

maximum will be denoted as TC and Tχ , respectively.

In addition, and in analogy to the proteins [25], we study the structural fluctuations

�χs = 〈χ2
s 〉 − 〈χs〉

2 (7)

which are defined in terms of the structural overlap function

χs =
1

N

∣

∣

∣

∣

N
∑

i=1

SiS
(N)
i

∣

∣

∣

∣

(8)

where {S
(N)
i } is the spin configuration in the ground state. (For the FM χs is the same as the

absolute value of the magnetization per spin.) These fluctuations also have a maximum at

some temperature which will be denoted by Ts . It has been suggested [25] that for proteins Ts

should be about Tf and a small difference between Ts and TC is a signature of fast folding.

All of these thermodynamic quantities are averaged over 10 to 20 samples and 100

trajectories for each. In each trajectory, the first 5000 to 10 000 Monte Carlo steps per spin are

spent for equilibration. The trajectories were then further evolved between 20 000 and 50 000

steps per spin. The lower values above refer to the DFM′ system, and the higher to the SG

system.

Figure 12 shows the scaling behaviour of TC , Tχ , and Ts for the 2D DFM′ and SG systems.

In the case of DFM′, the three temperatures converge to one common critical temperature. Note

that none of these temperatures has anything to do with Tf or Tmin. In the SG system, Ts and

Tχ tend to separate asymptotics than TC but again none of these temperatures coincides with

Tf or Tmin. The physics of folding is not related to the critical phenomena. It should be noted

that a phase transition in SG shows as a singularity in the nonlinear susceptibility. In the 2D

SG system, the peak position in the nonlinear susceptibility should be at T = 0 for any system

size [26].
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In summary, we have studied Ising spin systems from the perspective of protein folding.

We have demonstrated that there exist many similarities between the spin and polymeric

systems. In particular, we have shown that both kind of systems have the property of a power

law scaling of the folding time at Tmin as a function of N . We point out that this holds,

independent of whether the system is a good or bad folder and is thus some universal feature

of folding.

Among the random spin systems studied here, the DFM′ systems have the biggest range

of the small N values at which Tf is larger than Tmin, both in 2D and 3D. Thus these small-

sized systems are the best analogues of good folders and can serve as models that mimic the

physics of proteins. SG of any size, on the other hand, do indeed mimic the physics of random

heteropolymers. Asymptotically, though, each random spin system is a bad ‘folder’.
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