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Models of Fractal River Basins
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Two distinct models for self-similar and self-affine river basins are numerically
investigated. They yield fractal aggregation patterns following nontrivial power
laws in experimentally relevant distributions. Previous numerical estimates on
the critical exponents, when existing, are confirmed and superseded. A physical
motivation for both models in the present framework is also discussed.
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I. INTRODUCTION

Experimental analyses of river networks(1) have shown clear examples of
behavior analogous to critical phenomena characterized by the absence
of a single well-defined length scale reflected in a power-law behavior of
various quantities. A fundamental question that arises from these observa-
tions is whether, in analogy with conventional critical phenomena, one
may fruitfully classify this behavior into universality classes that are charac-
terized by different sets of exponents. A related point is whether there exist
scaling relationships between the various exponents of a given universality
class. Another vital issue is the elucidation of simple models amenable to

1 Polish Academy of Science, 02-668 Warsaw, Poland.
2 I N F M Unita di Venezia, Dipartimento di Scienze Ambientali, 1-30123 Venice, Italy.
3 INFM Trieste and International School for Advanced Studies (SISSA), 1-34014 Grignano di

Trieste, Italy.
4 Istituto di Idraulica "G. Poleni," Unversita di Padova, 1-35131 Padua, Italy.
5 Department of Civil Engineering, Texas A&M University, College Station, Texas 77843.
6 Department of Physics and Center for Materials Physics, Pennsylvania State University,

104 Davey Laboratory, University Park, Pennsylvania 16802.

1

0022-4715/98/0400-0001$15.00/0 © 1998 Plenum Publishing Corporation



2 Cieplak et al.

analysis that nevertheless capture some of the features of fractal fluvial
patterns.

Within this framework a theoretical description of the system needs
to address two basic issues.(2-9) First, a careful characterization of the
topological properties of the networks is essential for understanding the
basic transport mechanism in the basin. References 2 and 3 are recent
attempts in this direction. Optimization principles have been exploited both
numerically(4,7) and analytically(5) to explain the tendency of natural
drainage networks to evolve toward an optimal stable topology. General
scaling arguments can be found in ref. 8.

Second, a study of the dynamical evolution of the landscape (on
geological time scales) as a result of interaction with external agents (rain,
wind etc.) would be desirable(6,9)

The present work will address only the first point. We will argue that,
despite much progress in the past few years, the problem is not yet fully
understood and deserves further analysis. To this aim we will discuss, based
on physical arguments, two toy models of river networks. The first model
leads to a self-similar river basin, and is relevant when the erosional
properties of the surface soil are strongly heterogeneous. The second model
considers the homogeneous basin case and results in a self-affine river
network.

Although the overwhelming majority of the observational data are
consistent with a self-affine description (i.e., networks display a privileged
direction), the marked self-similarity of the basins with their own sub-
basins suggests a crossover from a self-similar character above some length
scale. This is one of the reasons for considering models with both characters.
It should also be emphasized that although some of the features of the models
presented here were previously discussed in the literature (see below), we
believe that both the physical motivations and the analysis carried out here
are essentially new.

The plan of the paper is as follows. In the next section few definitions
and scaling relations will be recalled. In Section III results for self-similar
are presented. Section IV is dedicated to the self-affine counterpart. In
Section V few relevant experimental results will be briefly reminded for the
sake of completeness. Section VI will summarize our findings along with
some future perspectives.

II. DEFINITIONS AND SCALING LAWS

We define a river network as a spanning (loopless) tree on a lattice of
linear size L.(10) Each site has exactly one output bond to one of its
neighbors and no restriction on the number of input bonds (three at most
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on a square lattice). In a river basin, the area at any site is defined as the
number of sites upstream of the site connected by the network. From the
computational point of view, it can also be regarded as a measure of the
flow rate if a unit weight is assigned to each source thus simulating a unit
constant precipitation.

The equation for si, the area at a given site i, is

where Wij is 1 if i collects water from its nearest-neighbor (nn) site j and 0
otherwise.

It is experimentally observed(1) and theoretical explained(7,8) that in
river basins the probability density p ( s , L) of a site having area s in a
system of size L, has the scaling form

where F(x) is a scaling function which takes into account finite size effects
and </> is the finite size exponent.

Similarly the distribution of upstream lengths has been also predicted(8)

and confirmed by field observation(11) to display the universal form:

where f(x) is the analogue of F(x) and d1 coincides with the stream fractal
dimension. The upstream length is defined as follows. At a given site the
areas (see Eq. ( 1 ) ) of the nearest-neighbours are checked. The site with the
largest value leads to the outlet. The site with the next-largest value is
defined to be an upstream site—it indicates the longest path towards the
source. If two (or more) equal areas are encountered, one is randomly
selected. Alternatively, a burning algorithm(3) could be also employed.

In natural basins, the drainage area s and the stream length / are
related by Hack's law(12)

The sub-basin from any site defined as all the upstream sites connected
to it is characterized by typical longitudinal and transverse lengths £11

and < ^ _ , _ . For self-affine river networks one defines the Hurst (or wandering)
exponent as £,L~£," with H< 1. Note that for self-similar river networks



4 Cieplak et al.

(in which each rivulet originating from any site and proceeding to the
global outlet is a fractal characterized by the same fractal dimension d l),
the Hurst exponent H=1.

As one might expect the exponents are not independent. For self-
similar networks ( d l > 1, H= 1) dl determines all the other exponents(7,8)

For sel f -af f ine networks ( d l = 1, H < 1) it is H which defines all the other
exponents(5)

Two features of the above relations are worth mentioning. First there
is experimental evidence in the observed data that H< 1 and d l>1. This
apparent contradiction might be explained with the crossover between the
two regimes occurring at some length scale, as mentioned in the introduc-
tion. Secondly it turns out from (5) and (6) that identical values of the
exponents are obtained from both cases if dl = 2/(1 + H). This means that
knowledge of the exponents other than dl and H cannot discriminate the
self-similar or self-affine character of the basin. In this respect a direct
measure of dl and H appears to be crucial for its characterization.

III. SELF-SIMILAR RIVER NETWORK MODEL

We first discuss the model of self-similar river networks. Consider a
network which is a square lattice of size L x L where the links of the rivers
are identified with the bonds of the lattice. Periodic boundary conditions
are assumed in the left-right direction. The bottom side of the square is
defined to be the (fixed) outlet which collects the water that is flowing out.
Independent random numbers in the range (0, 1) are assigned to the different
bonds representing the erodability P'is, of the surface soil of the bond i.

The physical situation we have in mind leads to river network forma-
tion based on an invasion percolation like mechanism.(13) The weakest
erodable link is selected and assumed to be a part of the network. The
second-ranking weakest link is then selected and so on. The process is
iterated in the ensemble of the remaining links until all sites are connected,
i.e., they all have a route to the outlet. Loops are excluded since once a
preferred route is selected, alternative routes formed due to the presence of
a loop would be energetically unfavourable. Operationally, one thus
obtains the network by incorporating the regions in order of increasing
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strength so that no loops are formed, yet all sites on the lattice are connected
to the outlet sites. A variant of the above procedure leading to the same
structure, consists of starting from the links connected to the outlets, selecting
the weakest one and proceeding invasively (i.e., always choosing the new
weakest l ink) in the new ensemble of the interfacial links. This model,
which was originally introduced by Stark(2) was subsequently rediscovered
by Manna and Subramanian.(3) This is a model of headward growth of
streams away from a rift, the weakest bond corresponding to the point
most susceptible to bank failure. The motivations which led the above
authors to the model were however completely different from ours. One
might suspect that a variant of the above model having (statistically)
spherical geometry would lead to a different different universality class. We
checked that this is not the case by starting with a central outlet and
proceeding as above until the whole domain is drained.

A typical river obtained by our procedure is shown in Fig. 1. We have
carried out detailed studies of the scaling properties of the networks. Our
numerical simulations involved sizes up to L= 192 with a typical number

Fig. 1. Typical self-similar river network on a 128 x 128 lattice obtained by our optimization
procedure. Only the largest river is shown. Periodic boundary condition are used only in the
direction transverse to the dominant flow. The size of the circles is a measure of the value
of s.
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of different configurations of the order of 500. A summary of our results is
presented in Table I along with the results of observational data.(1) In
order to get a precise estimate of the r exponent we used two different
methods. The first consists in plotting the local slope (which is trivially
related to T) of the cumulate area distribution (see Fig. 2)

as a function of s. This is reported in Fig. 3. An average over all these
values yields 1 = 1.406 + 0.021. On the other hand we performed a finite
size analysis of the exponent extracted at the various sizes (see Fig. 4). An
extrapolation then yields r = 1.404 + 0.001. The value reported in Table I
is then the arithmetic average of these two values. The exponent ij> can
be determined by plotting the universal function as defined in (2). This is
also shown in Fig. 5. In a similar way we computed the exponent y as
defined in (3) obtaining y= 1.612 + 0.049. In Fig. 6 the universal function
f ( x ) is computed yielding a good collapse for dl= 1.22. The value for dl can
be confirmed by an independent computation of the typical length

Table 1. The Exponents Predicted by the Scaling Arguments, Measured in Our
Simulations and for River Basins"

Self-similar

Scaling predictions
(with dl= 1.21 +0.02)

dl

H

i

h

y
dF

1.21 ±0.02
1

1.395 ±0.01

0.605 ±0.01

1.65 ±0.03
1.21 ±0.02

Measured

1.22 ±0.04
1

1.38 ±0.03
0.62 ±0.02

1.60 ±0.05
1.21 ±0.02

Self-affine

Scaling predictions

(with H=2)

1
§
7

3

5

1

Measured

1

—

1 .40 ± 0.02
—

—
1

River basins

1.1 ±0.2
0.75-0.80

1.43 ±0.02
0.57-0.60

1.8-1.9

—

a dF is the fractal dimension of the river basin boundary. Note the inconsistency in the obser-
vational data — dl is greater than 1 suggesting a self-similar network, whereas H < 1 indi-
cating a self-affine structure.
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Fig. 2. A log-log plot of the cumulate area distribution P(s, L) vs. s, for lengths ranging from
L= 16 to L = 96. The value of the exponent r= 1.395 + 0.01 can be compared with r= 1.33
corresponding to the Scheidegger and r= 1.5 corresponding to the Mean Field model.(14)

Fig. 3. Effective exponent r as computed from the local slope.



8 Cieplak et al.

Fig. 4. Plot of the exponent T as a function of 1/L. The extrapolated value is
r= 1.404 ±0.001 is indicated by a star.

Fig. 5. Collapse of the p(s, L) curves for L = 8 (solid diamonds), 16 (boxes), 32 (solid
hexagons), 64 (stars), and 96 (closed circles) according to Eq. (2), with r= 1.40 and <l> = 2.0.
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Fig. 6. Plot of the universal function f(x) obtained from Eq. (3) for the same values as in
Fig. 5) with y=1.61 and dl= 1.22.

where the averages are referred to the probability distribution density
n(l, L). Using various values of q we found stable values allowing an
estimate as dl= 1.22 + 0.05.

The scaling predictions are found to hold very well. Our exponents
agree with those numerically obtained recently in ref. 3. Specifically they
reported r= 1.392 ±0.010 and y= 1.628 ±0.05, upon using sizes up to
L= 1024 but with a less precise data analysis.

This model may be alternately viewed as an optimization problem that
selects the spanning tree that minimizes £i Pi where Pi denotes the
erodability of the ith bond and the sum over i runs over all the bonds of
the tree.(5,15) Our model then becomes a special case of the recently intro-
duced optimal channel networks(4,7) that are constrained to satisfy a global
minimization of the energy expenditure.(16)

We note that the resulting network is a union of the invasion percola-
tion paths from each of the sites to the outlet.(17) We also note that when
two paths intersect, they coincide the rest of the way to the outlet. This
provides a natural mechanism for aggregation in our model. Also each of the
individual paths corresponds to the optimal path in a strongly disordered
medium that was recently shown(18) to be characterized by dl= 1.21 ±0.02.
Note that this value is somewhat different from the value 1.13 cited by
Stark.(2) That value corresponds to the fractal dimension of the geometrical
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shortest path on a percolation cluster and is different from the fractal
dimension of the loopless strands which correspond to the energetically
shortest path in the sense explained above.

The Hurst exponent H obtained(19) from a box-counting dimension dl

would be 2 -d l and thus in the range 0.77-0.81. With this value of H and
using the scaling relations in the text, we obtain 1 = 1.44 + 0.04, h =
0.56 + 0.01, and y= 1.79 + 0.02 in perfect agreement with the observational
data. Such a crossover might occur at some intermediate length scale
beyond which the rivers are no longer self-similar.

We note that the homogeneous analog of our optimal channel
network (Pi = const) is the random spanning tree problem, in which all
trees occur with equal probability, dl = 5/4 and the other exponents follow
from our scaling relationships.(10) Our model seems to be in a different
universality class presumably due to the distinct weights associated with
the different trees. The possibility that our result of dl ~ 1.21 may crossover
to 5/4 for much larger sizes cannot of course be ruled out from our data.(20)

IV. SELF-AFFINE RIVER NETWORK MODEL

We now turn to the second model leading to self-affine ( H < 1 ) river
networks. This corresponds to the homogeneous version of the first model
where the Pi's are all equal. Now the interfacial links all have an equal
probability of being invaded with the usual constraint that loops are not
formed. This procedure is akin to the well-known Eden growth problem.
A loopless cluster generated in a two-dimensional Eden growth process on
a square lattice with a central seed site is shown in Fig. 7. This model is
not new. Meakin(21) numerically studied the same model although with
different aims. By mapping this problem onto a 1 + 1 Kardar-Parisi-Zhang
equation, Krug and Meakin(22) realized that the value r = 1.40 should be
exact. As argued in refs. 23, the individual rivers are no longer self-similar
but self-affine with a Hurst exponent of 2/3. The Hurst exponent is larger
than the random walk value of \ because the Eden growth process
generates strands that compete with each other(23) and effectively mimic a
quenched disordered environment.(5) The exponents predicted from this
value of H are shown in Table I. Figure 8 shows the log-log plot of P(s, L)
vs. s. The data points analyzed along the same lines as before, are consistent
with the exponent T of 1.40 which agrees with the scaling prediction (see
Table I). It is remarkable that the self-similar and self-affine river network
models yield very close predictions (indeed dl~1.21 whereas 2/( 1 + H) = 6/5)
for all of the scaling exponents even though the underlying mechanisms are
very distinct. We believe this point deserves further investigation.
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Fig. 7. Typical network of self-affine rivers flowing to an outlet in the center. The network
has been obtained by generating an Eden growth process from a central seed and stopping
the growth when the maximal horizontal distance reached is equal to 64 lattice constants. The
size of the circles is a measures of .1. Only sites with s ^ 100 are shown.

Fig. 8. A log-log plot of the cumulate area distribution P(s, L) vs. s for the self-afline model.
The system sizes are L = 32, 64, and 256 as indicated in the figure. The number of samples
for the three cases are 1000, 500, and 200 respectively.
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V. OBSERVATIONAL DATA

In this section we shall review some experimental known results to
provide evidence that the two above toy models, albeit rather primitive, are
in fact relevant in the interpretation of observational data. For a more
exhaustive analysis see ref. 11.

The network associated with a given natural terrain pertaining to a
river basin can be experimentally analyzed by using the so-called Digital
Elevation Map (DEM) technique (see e.g., ref. 1 and references therein). In
its digitized form, the elevation map of a terrain allows the determination
of the soil height of areas (pixels) of order 10- 2 Km2. Thus a fluvial basin
is represented in a objective manner over few (typically 3-4) log scales of
linear size. A flowrate unit is associated with each pixel and the flow con-
tributing to any pixel follows the steepest descent path through drainage
directions. The resulting network (thus defined by the drainage directions)
is therefore a two-dimensional representation of the three-dimensional
landscape.

In Fig. 9 a representative network obtained in this fashion is shown.
This particular network has the exponent r= 1.40 which is in very good
agreement with both the self-similar and the self-affine models.

It is important to stress that the actual values of the critical exponents
do vary from basin to basin. However, within each single river network, all

Fig. 9. The transportation network of the Johns river drainage basin in Kentucky. USA. Its
extension is 984 Km2. The measured exponents arc: i= 1.40, H = 0.67.
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the exponents closely satisfy the scaling relationships that we have derived.
The exponent values for the network of Fig. 9 is in perfect agreement with
our self-affine (Eden-like) model, although other networks often have
slightly higher values of T. ( 1 1 )

The measured values for dl and H ranges between 1.02 and 1.07 and
between 0.75 to 1.00 respectively.(11) The above models then lie at the outer
edge of the observed data in both cases. We believe that although these two
models do represent, at a very schematic level, two physical mechanisms
occurring, at some length scale, in real rivers, our numerical results show
that this is not sufficient and that other effect possibly combine to yield
different numerical exponents.

As mentioned earlier, identical statistics can be obtained by using
either self-similar (d l >1, H=1) or self-affine (d l = 1, H > 1 ) networks,
provided that dl = ( 2 / 1 + H ) . In this respect a direct measure of the
anisotropy of real rivers appears to be crucial.

Finally we remark that although the observational data favour self-
affine rivers, the (statistical) similarity between each basin and its sub-
basins, suggests that river networks are indeed self-similar, although their
actual shape is anisotropic (as expected for a self-affine network).

VI. SUMMARY

We have studied two lattice models of spanning trees that lead
naturally to fractal river networks. We have chosen a self-similar and a self-
affine case on the basis that in nature there are features belonging to both
characters, although it is commonly accepted that natural rivers are self-
affine. The two models have very different physical motivations. The self-
similar model is directly driven by disorder. Our choice of heterogeneities
is spatially uncorrelated, and any degree of spatial correlation would
decrease the small scale tortuosity of disorder-dominated paths. The resulting
spanning tree-like structures exhibit a general similarity to river basins in
overall appearance and very consistent scaling statistics. Our numerical
results are consistent with previous estimates of the same model introduced
on different physical grounds(10) and corrects some misunderstandings pre-
sent in the literature.(2) More generally, our results show that fractal struc-
tures arise from the minimization of a disorder-dominated total energy
functional and reinforce earlier suggestions(4) on the connections of
optimality with fractal growth. On the other hand the self-affine model has
no disorder in the definition but it has buried in it a competition mechanism
which effectively yields quenched disorder. Again our results are in accord
with previous investigations but have broader consequences in our frame-
work of analyzing the effects of heterogeneities on the networks.
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Two recent investigations are pertinent to our work. In ref. 24 the
interplay between quenched disorder and non-linearity in the landscape
evolution was shown to be relevant for the interpretation of the real rivers
field data. On the other hand, a even more recent renormalization group
analysis of a continuum equation(25) suggests that the two disorder-
dominated networks studied here, the unweighted spanning-trees studied in
ref. 3 and the aforementioned landscape model of ref. 24, all belong to
different universality classes albeit with very close exponents. We believe
that this scenario is intriguing and deserves further attention.

ACKNOWLEDGMENTS

We are indebted to Deepak Dhar, S. S. Manna and Joachim Krug for
useful discussions. This work was supported by grants from KBN (grant
number 2P302-127), NASA, NATO and the Center for Academic Computing
at Penn State.

REFERENCES

1. D. G. Tarboton, R. L. Bras, and I. Rodriguez-Iturbe, Water Resour. Res. 24:1317 (1988);
D. Lavallee, S. Lovejoy and D. Schertzer, Fractals in Geography, N. S. Lam and L. De
Cola, eds. (Prentice Hall, Englewood Cliffs, 1993), 159; I. Rodriguez-Iturbe, M. Marani,
R. Rigon, A. Rinaldo, Water Resuur. Res. 30:3531 (1994); D. R. Montgomery and W. E.
Dietrich, Nature 336:232 (1988); Science 255:826 (1992); S. P. Breyer and R. S. Snow,
Geomorphology 5:143 (1992).

2. C. P. Stark, Nature 352:423 (1991).
3. S. S. Manna and B. Subramanian, Phys. Rev. Lett. 76:3460 (1996).
4. I. Rodriguez-Iturbe, A. Rinaldo, R. Rigon, R. L. Bras, E. Ijjasz-Vasquez, A. Marani,

Water Resour. Res. 28:1095 (1992); R. Rigon, A. Rinaldo, I. Rodriguez-Iturbe, E. Ijjasz-
Vasquez, R. L. Bras, Water Resour. Res. 29:1980 (1993); A. Rinaldo, I. Rodriguez-Iturbe,
R. Rigon, E. Ijjasz-Vasquez and R. L. Bras, Phys. Rev. Lett. 70:822 (1993); for earlier
studies linking optimization principles to drainage networks, see A. D. Howard, Water
Res. Res. 7:863 (1971); 26:2107 (1990) and references therein.

5. A. Maritan, F. Colaiori, A. Flammini, M. Cieplak and J. R. Banavar, Science 272:984
(1996); F. Colaiori, A. Flammini, A. Maritan and J. R. Banavar, Phys. Rev. E 55:1298
(1997).

6. Lattice models of river basin evolution are discussed, eg., by S. Kramer and M. Marder,
Phys. Rev. Lett. 68:205 (1992); R. L. Leheny and S. R. Nagel, Phys. Rev. Lett. 71:1470
(1993).

7. T. Sun, P. Meakin and T. J0ssang, Phys. Rev. E 49:4865 (1994); 51:5353 (1995); Water
Res. Res. 30:2599 (1994); P. Meakin, J. Feder and T. J0ssang, Physica A 176:409 (1991) .

8. A. Maritan, A. Rinaldo, R. Rigon, A. Giacometti and I. Rodriguez-Iturbe, Phys. Rev. E
53:1510 (1996).

9. J. R. Banavar, F. Colaiori, A. Flammini, A. Giacometti, A. Maritan and A. Rinaldo, Phys.
Rev. Lett. 78:4522 (1997).



Models of Fractal River Basins 15

10. S. S. Manna, D. Dhar and S. N. Majumdar, Phys. ReV. B 46:4471 (1992).
11. R. Rigon, I. Rodriguez-Iturbe, A. Maritan, A. Giacometti, D. Q. Tarboton and A. Rinaldo,

Water Rexour. Res. 32:3367 (1996).
12. J. T. Hack, U.S. Geol. Sun: Prof. Paper 294:1 (1957).
13. R. Chandler, J. Koplik, Lerman and J. Willemsen, J. Fluid Mech. 119:249 (1982);

R. Lenormand, C. R. Seances, Acad. Sci. Ser. B 291:279 (1980).
14. See e.g., H. Takayasu, M. Takayasu, A. Provata and G. Huber, J. Slat. Phys. 65:725

(1991).
15. A.-L. Barabasi, Phys. Rev. Lett. 76:3750 (1996).
16. An optimal channel network is the spanning tree that minimizes £iPisi where the sum

over i runs over all the bonds of the tree, Pi is the erodability of the i-th bond and si is
defined in Eq. ( 1 ) . Our model corresponds to a heterogeneous basin with non uniform Pi

and y = 0.
17. C. M. Newman and D. L. Stein, Phys. Rev. Lett. 72:2286 (1994).
18. M. Cieplak, A. Maritan and J. R. Banavar, Phys. Rev. Lett. 72:2320 (1994).
19. J. Feder, Fractals (Plenum, New York, 1988).
20. We are grateful to Deepak Dhar for correspondence on this point.
21. P. Meakin, Phys. Scr. 45:69 (1992); P. Meakin, J. Phys. A 20:L1113 (1987).
22. J. Krug and P. Meakin, Phys. Rev. A 40:2064 (1989).
23. M. Cieplak, A. Maritan, and J. R. Banavar, Phys. Rev. Lett. 76:3754 (1996).
24. G. Caldarelli, A. Giacometti, A. Maritan, I. Rodrigues-Iturbe and A. Rinaldo, Phys. Rev. E

55:R4865 (1997); A. Rinaldo, I. Rodrigues-Iturbe, R. Rigon, E. Ijjazs-Vasques and R. L.
Bras, Phys. Rev. Lett. 70:822 (1993).

25. B. Tadic, Phys. Rev. Lett, (in press) (1997).


