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Coarse grained description of protein folding

Marek Cieplak and Trinh Xuan Hoang
Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland

~Received 30 March 1998!

We consider two- and three-dimensional lattice models of proteins that were characterized previously. We
coarse grain their folding dynamics by reducing it to transitions between effective states. We consider two
methods of selection of the effective states. The first method is based on the steepest descent mapping of states
to underlying local energy minima and the other involves an additional projection to maximally compact
conformations. Both methods generate connectivity patterns that allow one to distinguish between the good
and bad folders. Connectivity graphs corresponding to the folding funnel have few loops and are thus treelike.
The Arrhenius law for the median folding time of a 16-monomer sequence is established and the corresponding
barrier is related to easily identifiable kinetic trap states.@S1063-651X~98!04409-2#

PACS number~s!: 87.15.By, 87.10.1e
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Proteins that are found in nature are special sequence
amino acids that fold rapidly into their native states und
physiological conditions@1#. The native states control func
tionality of proteins and are commonly assumed to coinc
with the ground state conformations. Exploration of the p
tein’s phase space in search of the native state typically ta
milliseconds. This is in contrast to an essentially indefin
search expected for randomly constructed sequence
amino acids—such sequences are generally bad folders.
believed that the well folding biological sequences have
energy landscape with a dominating folding funnel that
stricts the number of visited conformations during foldin
Based on simulations of lattice models, Onuchicet al. @2#
have identified the crucial landmarks in the folding funn
such as the molten globule states and low energy bo
necks. Earlier, Leopoldet al. @3# have studied transition rate
between conformations found in the last stages of fold
and interpreted the resulting trajectories as forming a fold
funnel. In this paper, we focus on ways to define foldi
funnels operationally, in numerical simulations. We consi
two- and three-dimensional lattice models, the dynamics
which are given as a Monte Carlo process with one and
monomer moves.

The point of view that we propose here is that the Mo
Carlo dynamics generates too many states, each of an ov
negligible occupancy, to allow for a convincing and easy
do identification of the funnel without some educated or
nization of the data. Thus some reduction in the descrip
should facilitate the task by an elimination of conformatio
that are less relevant. A valid analogy here is with a so
Understanding properties of a solid can often be reac
from knowledge of the crystal structure in the ground st
without taking into account any phonon states. Stillinger a
Weber@4#, in the context of glasses, and Cieplak and Jaec
@5#, in the context of spin glasses, have accomplished a
ful elimination of such ‘‘phonon’’ states by mapping stat
of a system to underlying local energy minima obtained, i
unique way, through the steepest descent method. The
tion of the system through the phase space could then
viewed as an effective migration between the underly
‘‘valleys.’’ This approach has been subsequently adopted
proteins by Cieplak, Vishveshwara, and Banavar@6# and by
PRE 581063-651X/98/58~3!/3589~8!/$15.00
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Cieplak and Banavar@7#. It has been implemented for two
dimensional 16-monomer lattice models. The procedure c
sisted of a two-stage mapping: first an encountered con
mation was mapped to a local energy minimum~LM !
through the steepest descent method and then the LM
mapped to a nearest maximally compact conformati
called ‘‘cell’’ for short, defined as one that has maximu
energy overlap in common contacts between LM and
cell. If several cells satisfy this criterion, the one with th
lowest total energy is picked.

This particular scheme of coarse graining of the prot
dynamics has been successful since the resulting patter
connectivities between frequently occupied cells was clea
differentiated between the bad and good folders and, in
latter case, showed emergence of a funnel. It has turned
however, that the approach based on cells is difficult
implement for longer polymers, especially in three dime
sions. For instance, for a 27-monomer lattice model, th
are 103 346 maximally compact 33333 cells and it is hard
to find a fast way to tell which of them is the closest to
LM. An alternative to the criterion of maximum energy ove
lap is a mapping to a cell that is the easiest to reach kin
cally but finding a reasonable algorithm for this has turn
out to be even harder. More importantly, as we shall
here, the connectivity patterns usually are not sensi
enough to allow for a detection of truly relevant trappin
states.

In this paper, we discuss a coarse graining scheme th
based on the LM’s instead of the cells. Since the LM’s a
much more abundant than cells it might seem that the te
nical problems compound. What makes the scheme tracta
however, is that we do not consider all LM’s that the syste
is endowed with, but only those that have been encounte
In addition, this allows for a more detailed characterizati
of funnels.

We start, in Sec. II, by considering two 12-monomer s
quences,A andB, the dynamics of which have been recen
studied in two dimensions by an exact solution of the mas
equation@8#. The properties of these sequences are then v
well understood and, in particular, the kinetic traps that g
ern the long time dynamical behavior at low temperatureT
have been identified.A is a good folder whereasB is a bad
3589 © 1998 The American Physical Society
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3590 PRE 58MAREK CIEPLAK AND TRINH XUAN HOANG
one and we demonstrate that the pattern of connectiv
between LM’s into which the states of the system have b
mapped yields a funnel forA but not forB. In Sec. III, we
consider two 16-monomer sequences in two dimensionsR
and DSKS8 of Refs. @6,7#—again the good and bad folde
respectively, and compare the LM-based dynamics to
cell-based dynamics. Finally, in Sec. IV, we present res
for one good folder in three dimensions.

The energy of all of these sequences is given by

E5(
i , j

Bi , jD~ i 2 j !, ~1!

where D( i 2 j ) means that the monomersi and j form a
contact, i.e., they are nearest neighbors on a lattice but
not neighbors along the sequence.Bi , j are the corresponding
contact energies—essentially the numbers generated with
Gaussian probability distribution but with a mean shifted
negative values to provide compactness in the ground s
The equilibrium properties of the sequences may be cha
terized by a folding temperatureTf . Following @9# we define
Tf as theT at which the equilibrium probability of finding
the system in the native state crosses1

2 . A large value ofTf
signifies substantial thermodynamic stability, which go
folders are expected to possess. Temperature scales
characterize dynamics can be determined from the plot of
median folding time t fold versus T: Tmin is where t fold
achieves a minimum andTg , the glass temperature, is a lo
temperature point at whicht fold becomes steep. The defin
tion of Tg depends on adoption of a cutoff time that is co
sidered to be too long whereasTmin , corresponding to the
fastest folding, is criterion independent. For good foldersTf
is comparable toTmin . For bad foldersTf is much smaller
than Tmin and then the system becomes trapped in a n
native state at low temperatures before acquiring any s
stantial stability of the native state. The characterization
the two-dimensional sequences studied here has been g
before and we focus only on the coarse-grained kinetics

The Monte Carlo process starts from a random s
avoiding walk and it has the move sets of Fig. 1~a! and case
~i! of Fig. 1~b! in Ref. @10#. The single monomer moves hav
an a priori probability of 0.2 and two monomer moves ha
a probability of 0.8. This process is performed in such a w
that the detailed balance condition is satisfied@8,10#, i.e.,
besides the energetics, the probability of performing a m
depends on how many kinetic possibilities are allowed i
given conformation, compared to the maximum number
possibilities ofN12, whereN is the number of monomers i
a sequence.

I. 12-MONOMER SEQUENCES IN TWO DIMENSIONS

The N512 sequencesA and B are defined in Ref.@8#.
Both can exist in 15 037 conformations, out of which 31 a
233 cells. SequenceA has the native state, of energ
211.5031, which has the appearance of the letterS. Alto-
gether, the sequence has 495 LM’s, out of which 403 arV
shaped, i.e., any move out of them costs an energy incre
and 92 areU-shaped, i.e., some moves leave the energy
changed. All states in aU-shaped minimum count as one
what follows. SequenceB has a doubly degenerate nativ
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state of energy28.7675—both states count together wh
considering folding; none of the states in the doublet is ma
mally compact. Among the 496 LM’s, 400 areV shaped and
96 areU shaped.Tf andTmin for sequenceA are comparable
since they are around 0.7 and 1, respectively. For the
folder B, on the other hand,Tmin is again around 1 butTf is
0.01. We compare dynamics of the two sequences at
temperatures: 1 and 0.4. For sequenceA, t fold at these two
temperatures is 2052 and 36 022, respectively and for
quenceB it is 2457 and 215 364, as obtained by studyi
500 different trajectories.

Figure 1 shows energy in a segment of a Monte Ca
trajectory forA at T51 and compares it to energies obtain
by the one- and two-stage mapping to the LM’s and ce
respectively. This temperature corresponds to the fas
folding. Naturally, the higher level of coarse graining, th
smoother the dependence of the effective energy on ti
For both methods of coarse graining, the native state app
to have substantial occupancy even though the sequence
not folded yet. It is thus clear that the system moves pre
much in the native valley, which is easy to detect if o
removes the ‘‘spurious’’ states from the description.

Figure 2 showsP0, L0, andC0 versusT for sequenceA.
The first of these parameters is the equilibrium probability
finding the native state. The second is the probability of fin
ing the native state after mapping to the local energy minim
Finally, the third is the probability of finding the native sta
after mapping to the cell states. We see that the cell dyn
ics enhances the role of the native cell much more sign
cantly than the LM-based dynamics and the maximumC0

FIG. 1. Top: Energy of states vs number of the Monte Ca
steps in a 424-step-long segment of one trajectory for sequencA.
Middle: Energy of the local energy minima vs the Monte Ca
time. The minima were obtained by the steepest descent quenc
from the states at the top. The energy spectrum of the minim
shown on the right. Bottom: Energy of the maximally compa
states, obtained by mapping the LM’s from the middle panel, vs
Monte Carlo time. The energy spectrum of the cells is shown on
right.
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PRE 58 3591COARSE GRAINED DESCRIPTION OF PROTEIN FOLDING
for the good folder is about 3 times as large as for the
folder. The maximum inC0 is closer toTf whereas the maxi-
mum in L0 is closer toTmin .

All states of the system, local energy minima or not, c
be enumerated and their occupancies can be monitored.
ure 3 shows occupancies of states found during folding
500 Monte Carlo trajectories for sequenceA and compares

FIG. 2. Probability of finding the native state before any ma
ping P0 after one-stage mappingL0 and two-stage mappingC0, as
explained in the text. The main figure is for sequenceA and the
inset forB. The values ofTmin andTf are indicated.

FIG. 3. Occupancy histograms forA based on 500 Monte Carlo
trajectories that were terminated at folding. The asterisk marks
energy of the native state. The top panels are forT51 and the
bottom panels forT50.4. PL and PNL denote probabilities to find
respectively LM’s and states which are not LM’s in the Mon
Carlo trajectories. The numbers shown indicate integrated p
abilities. PQ denotes the probability of finding an LMafter the
steepest descent quenching. The trap state accounts for about
the total time both before and after mapping to LM’s. For seque
B, the integrated occupancies atT51 are 39% and 61% forPL and
PNL , respectively. AtT50.4 the integratedPL is 77%.
d

n
ig-
n

them to occupancies of LM’s obtained by the one-stage m
ping. At Tmin , local energy minima on the trajectories cou
overall as much as other states. In the low energy part of
spectrum, however, the LM’s dominate heavily. At low tem
peratures, on the other hand, the time spent in states tha
not minima is negligible. Furthermore, certain LM’s becom
heavily populated. The biggest occupancy belongs to
state, denoted as TRAP, which is the most potent kinetic
on the way to folding. This is the same state that has b
identified in Ref. @8# as contributing most heavily to th
eigenmode corresponding to the longest relaxation tim
Thus identification of the kinetic traps does not need to
volve diagonalization of the master equation—this task c
be accomplished by counting occupancies of states enc
tered in the Monte Carlo. The trap state is also substanti
represented after mapping all states to LM’s through
steepest descent procedure.

When the trajectories are not terminated at folding but
continued long enough~of order 13106 steps! to see equi-
librium values ofP0, the occupancy of the trap state dro
from about 25%, atT50.4, to about 3%—both before an
after the mapping,

For sequenceB, local energy minima on the trajectorie
count overall less than forA but, as forA, the proportions in
equilibrium remain similar to those found in the foldin
stage. A trap state for sequenceB, however, has a more
substantial representation in equilibrium: it accounts for 9
on trajectories and 17% after the steepest descent quenc
This trap state has been discussed in Ref.@8#. Here, it is
enough to mention that going from the trap state of seque
B to the native state requires full unfolding so this sta
forms a valley that is competing with the native valley. F
sequenceA, on the other hand, the most important trap is
the native valley and reaching the native state from this t
requires only partial unfolding.

Cell dynamics

We now proceed to the various ways to represent dyn
ics in the coarse grained sense. We begin by discussing
description that is the most economical in presentation
the one that has been proposed in Refs.@6,7#. This is the
description based on the two-stage mapping to cells,
corresponding to the bottom of Fig. 1. When the syst
leaves one cell and arrives at another a connection betw
the two cells is established. We count such connectivitie
500 trajectories, which terminate at folding and average
get connectivities. The connectivities can be represented
matrix form. The matrix is, in principle, 31331 and it is
symmetric. Most of the connectivities are weak or absent
a reduced matrix, by adopting a cutoff, describes the dyn
ics adequately. This is shown in Fig. 4, which compares
dynamical matrix atTmin and at a low temperature. It is see
that the good folder at the most favorable folding conditio
generates a matrix that involves many direct connection
the native cell. The folding funnel, in this description, co
sists of the cells that are connected to the native cell. At l
temperatures, and also for the bad folderB at any tempera-
ture, the matrix looks more like the bottom panel of Fig.
there are much fewer direct connections of the low ene
cells to the native cell, some connections become mult
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3592 PRE 58MAREK CIEPLAK AND TRINH XUAN HOANG
steps, or all connections correspond to higher energy mot
that are not connected to the native cell~this last mode, how-
ever, is not seen in Fig. 4 since the system is too sm!.
Finally, it should be pointed out that the cell dynamics do
not differentiates between the native cell and the trap st
because the cell that is the closest to the trap happen
actually coincide with the native cell for both sequenc
studied here.

Dynamics based on the local energy minima

Consider now the one-stage mapping. The connectivi
are now determined between the LM’s as shown in
middle panel of Fig. 1. A matrix representation of the resu
becomes impractical since too many states are involved
stead we opted for the graphical representation as show
Figs. 5 and 6 for sequencesA andB, respectively. In these
figures, the vertical axis corresponds to energy. The posit
of LM’s in the horizontal direction are chosen according
two criteria: ~1! the lines connecting them must overlap
little as possible,~2! the states corresponding to differe
clusters are shown separately~the cluster analysis depend
on the connectivity cutoff!. Thex-axis coordinate is thus th
conformation numberNc of the local minimum. The labeling
of the minima is well defined and it is based on a compu
generated listing. The graphical horizontal placement of
LM on the figure, however, is subjective and it is arranged
a way that demonstrates the divisions into clusters of c
nectivities. This subjectiveness is due to the fact that
adopt a 2D projection. In a many-dimensional space of
conformation labels, the connectivity lines have an object

FIG. 4. Cell-to-cell connectivities for sequenceA and tempera-
tures indicated. The cell labels correspond to the energy-wise
ordering. Cell number 1 is thus native. The connectivities are n
malized to 1000 and only those larger than 10 are shown.
diagonal terms indicate similarly normalized values of the cell
cupancies.
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FIG. 5. Connectivities between the local energy minima for
quenceA during folding. The connectivities are normalized to 1 a
only those exceeding 0.001 are shown—a full description wo
involve 495 LM’s. ForT51 and 0.4 the connectivities displaye
add up to 24% and 73% of all connectivities. The thickness of
connecting line indicates the magnitude of connectivity. The size
the circle that locates an LM indicates its occupancy af
quenching—an analog of the diagonal element in the matrix in F
4. The small print numbers shown indicate the occupancy of
corresponding LM. NAT indicates the native LM and TRAP ind
cates the low temperature kinetic trap.

FIG. 6. Similar to Fig. 5 but for sequenceB. Respectively, 24%
and 85% of all connectivities forT51 and 0.4 are displayed.
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PRE 58 3593COARSE GRAINED DESCRIPTION OF PROTEIN FOLDING
meaning. The thickness of lines connecting the LM’s is p
portional to the frequency of the appearance of the conn
tion and the symbols corresponding to the LM’s have si
controlled by probability to find these states.

For the good folder, a well developed knot of states c
nected to the native state is seen, in Fig. 5, both at
temperatures and at those that are good for folding. We
terpret this knot as the folding funnel. In addition, oth
knots of relevant intervalley motions are also present—
dynamics is indeed dominated by the funnel but it is n
restricted to it. AtT51, the trap state does not contribute
the effective dynamics. It does contribute atT50.4, how-
ever, but—within the cutoff adopted here—it is not co
nected to the funnel.

The graph of connectivities for the bad folder, shown
Fig. 6, indicates a much smaller knot connected to the na
LM and no connections to the native LM at the lower te
perature. All knots that are present are at elevated en
states. Thus this graphic representation clearly distinguis
between good and bad folders.

Figure 7 is again for the good folder. It shows the gra
of connectivities at conditions of equilibrium, i.e., well pa
folding. Again, the native LM plays the dominant role. Fu
thermore, at lowT’s the dynamics consists primarily of tran
sitions between the native state and a nearby LM, whic
not the state that provides the most of kinetic trapping dur
folding at low T’s.

Figure 8 shows the equilibrium graph of connectivities
sequenceB. It clearly shows two, essentially equivalent b
disconnected knots one related to the native state and
other to the trap state. The system then ‘‘lives’’ essentially
these two valleys, which is consistent with our understand
of the physics characterizing this sequence: for sequencB,

FIG. 7. Similar to Fig. 5, and also for sequenceA, but in
equilibrium—when the trajectories are continued after folding~31%
of connections atT51 and 94% atT50.4). For sequenceB, the
graph in equilibrium is close to the one corresponding to foldin
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the native state can be reached from the trap state
through a full unfolding.

The overall look of the graphs shown in Figs. 5–8 is th
of trees, i.e., the graphs show very few loops. This is not
when one does not map the Monte Carlo states into lo
minima but just monitors connectivities between the origin
states. In this case, many knots with loops develop and
example of this is shown in Fig. 9. This method of monito
ing the dynamics is not practical even for the 12-monom
system due to the shear number of possible connections

II. 16-MONOMER SEQUENCES
IN TWO DIMENSIONS

We now come to more complex sequences. Follow
Refs. @6,7# we consider 16-monomer sequences that h
802 075 conformations, of which 69 are cells. We focus
two sequences:R and DSKS8. The first is a good folder,
constructed by a rank-ordering procedure that assigns e
gies to contacts, and the second is a bad folder that was
studied by Dinneret al. @11#. The values of the Gaussia
contact energies have a mean of about21 in both cases. The
values ofTf and Tmin are 1.15 and 1.2 for sequenceA and
0.195 and 0.8 for DSKS8. The plot of t fold versusT for se-
quenceA is shown in Fig. 10. One reason to display it is th
before no explicit care of the detailed balance condition
been made~which affects the lowT branch of the curve
somewhat!. More importantly, the figure shows that the lo
temperature data agree with the Arrhenius law,t fold
;exp(dE/T) with dE of about 3.7.

The Arrhenius law has been obtained in the numerica
exact studies of the 12-monomer sequences@8#. The barrier
dE in that case has been associated with trajectories ex
from the most effective trap state and ending in the nat
state. What determinesdE is the biggest single step energ
cost on the trajectory with the smallest overall barrier. F
the N516 systemA, we identify the trap state by studyin

FIG. 8. Similar to Fig. 7 but for sequenceB.



em
nt

th
ge
ns

he

’s.

’s

ir
itor

ity
s
by
a
p

nel
-
oth

the

e

tive
any

en
7-

nt

m
f
m

tiv

ra

tra
e
w

ni-
phs

3594 PRE 58MAREK CIEPLAK AND TRINH XUAN HOANG
the biggest occupancies of the local energy minima at t
peratures 0.4 and 0.3. The three most heavily represe
traps~denoted as TRAP 1, TRAP 2, and TRAP 3! are also
shown in Fig. 10, together with their correspondingdE’s. All
three are displayed because the Monte Carlo data yield
occupancies to be of rather comparable values. The big
dE, of 3.6263, is associated with TRAP 1, which explai
the value found by fittingt fold to the Arrhenius law. The

FIG. 9. Graph of connectivities between states on the Mo
Carlo trajectory for sequenceA for the folding stage. The figure is
based on 500 trajectories. There are many clusters and 3 of the
relevant ones are displayed here. The native cluster consists o
states and the second biggest cluster of 15 states. 1000 of the
populated states, out of 15037, were monitored and the connec
cutoff was 0.0002 of all monitored connectivities.

FIG. 10. Median folding time, based on 200 Monte Carlo t
jectories, for the 16-monomer sequenceR ~the solid line!. The dot-
ted line corresponds to the Arrhenius law withdE53.7. The con-
formations shown at the top are the three most relevant kinetic
states. The corresponding values ofdE are written underneath. Th
native conformation is denoted by NAT. The first bead is sho
enlarged.
-
ed

eir
st

other two barriers have similar but smaller values.
We now consider coarse graining of the dynamics. T

results on the cell dynamics have been reported before@6,7#
and here we focus only on the dynamics based on the LM
SequenceR has 9103 LM’s ~out of which 2024 areU
shaped! and sequence DSKS8 – 9424~2253U shaped!. We
generate 200 Monte Carlo trajectories that we map to LM
by the steepest descent method. For eachT we determine
which of these LM’s belong to the top 1000 in terms of the
occupational probability. We then redo the runs and mon
connectivities between the 1000 LM’s.

Figure 11 shows relevant portions of the connectiv
graph for sequenceR at T51.2 and 2.0 whereas Fig. 12 i
for T50.8 and 0.6. The two figures have been obtained
using a cutoff of 0.001 for a single connectivity line with
normalization in which all monitored connectivities add u
to 1. The tree that could be interpreted as the folding fun
is most extended atT51.2, i.e., for the most favorable fold
ing conditions. This tree sheds its branches on going to b
high and low temperatures. The transitions at lowT span
much smaller energies than at higherT’s. Furthermore, the
low T non-native trees are quite elaborate. The looks of
low and highT graphs are quite distinct then and atTmin the
features of the low and highT dynamics combine to generat
an involved funnel of states.

Figure 13 shows the corresponding graphs for DSKS8 at
T51.2 and 0.6. There is no tree of connections to the na
state at any of these temperatures. Instead there are m
disconnected clusters that cover small energy scales.

III. 27-MONOMER SEQUENCE IN THREE DIMENSIONS

The problems of the state monitoring compound wh
working with heteropolymers in three dimensions. For a 2

e

ost
34
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ity

-
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n

FIG. 11. Graph of connectivities for sequenceR at T50.8 and
0.6. The top figure shows 58% of all connectivities that were mo
tored and the bottom figure shows 69%. Other connectivity gra
are not shown. The trap states are indicated.
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PRE 58 3595COARSE GRAINED DESCRIPTION OF PROTEIN FOLDING
monomer chain, such as considered by Saliet al. @12# and
Shrivastavaet al. @13# one cannot even enumerate all loc
energy minima, except for those that are maximally comp
so we need a basis of states that relates only to the s
encountered.

We have constructed a sequence,C, by generating the
156 contact energies from the Gaussian probability distri
tion with the mean of22 and assigning them to the targ
shown in Ref.@12#. The assignment has been done as f
lows: the values of contact energies were rank ordered
the strongest attracting couplings were allocated to the
contacts present in the 33333 target shape. The signs o

FIG. 12. Graph of connectivities for sequenceR at T51.2 and
2. The first shows 19% and the other 9% of the connectivities.

FIG. 13. Graph of connectivities for sequence DSKS8. For T
51.2 18% of the connectivities are shown, whereas forT50.6 71%
are shown.
l
t,
tes

-

l-
nd
8

the remaining non-native contact energies were modified
that 50% of them were attractive and 50% repulsive. T
type of sequence design has been demonstrated@13# as lead-
ing to the fastest folding characteristics. Our Monte Ca
based estimates for sequenceC yield Tf'2.57 andTmin
'2.5. At Tmin , the median folding time is very short, for 3D
sequences—of order 45 000 steps, which minimizes
number of states to deal with.

In order to characterize the dynamics by the LM-bas
connectivity graphs we adopted the following procedu
First, we generated 100 folding trajectories atTmin and se-
lected 30 of them which were the shortest. The steep
descent–based mapping was then applied to the selecte
jectories. For each of them, the number of LM’s did n
exceed 20 000. We worked with a temporary basis of 20 0

FIG. 14. Graph of connectivities for the three dimensional 2
monomer sequenceC. The cutoff adopted here is 0.0005. The ba
of 1000 LM’s used takes into account about 23% of the total Mo
Carlo time.

FIG. 15. Graph of connectivities for sequenceC obtained by
studying overlaps between the trajectories.
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local minima from which low occupancy states were be
removed during the process. The end result was to pick 1
‘‘finalists’’—the LM’s that were populated the most. The 3
runs were repeated again to determine the connectivities
tween the 1000 finalists. These are shown in Fig. 14. T
LM-based dynamics is seen to be very fragmented with li
structure that would be connected to the native state.
possible that delineating a native knot—due to the enorm
number of states—needs much more averaging over tra
tories than the number we could study.

Therefore, we considered another approach in which
do not monitor the strengths of the connectivities but stu
the overlaps between the 30 trajectories, no matter how o
a given link has appeared. The resulting graph of connec
ties is shown in Fig. 15. Here, we show only those links t
have appeared in at least 4 trajectories, which represent
dynamics in terms of 11 knots or clusters~there would be 45
clusters with the cutoff of 2!. The native knot is treelike and
it has a substantial structure. This suggests that when
many states are involved, an overlap method of construc
the linkages may be preferable.

We conclude that the steepest-descent–based dyna
does allow one to distinguish between the good and
folders. It provides a fairly detailed and meaningful repres
.
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tation of the dynamics, especially in the case of small tw
dimensional systems. The connectivity patterns and
emergence of structures that can be identified with the fo
ing funnel in good folders depend on the Hamiltonian, t
adopted dynamics, and on the kind of the lattice used. Me
ods for three-dimensional heteropolymers need to be de
oped further. It is expected that the procedures propose
our paper will be even more useful when applied to o
lattice 3D models. An alternative to the steepest-desce
based projection is to develop coarse graining methods
are not based on the mapping to the local energy minima
instead do statistical analysis of features in the actual tra
tories. For instance, in a recent publication@14#, Du et al.
have proposed to measure kinetic distances between co
mations of heteropolymers in terms of a ‘‘transition coord
nate’’ that is related to the probability to fold from a confo
mation without a preceding unfolding.
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