Rotational spectroscopy at IFPAN

PROSPE database

Links





Data files for selected investigations carried out at the IFPAN laboratory
(either completely or with our participation)

Quick access:  sorted  by type of fitby sum formula  or  by date


This repository is being created ( February 2011)  in order to make accessible the primary data files for selected past investigations from this laboratory. There are several reasons for this:
  • The work may have been carried out prior to the advent of electronic deposition so that the primary data is not available to the community, while it is being requested from the authors
  • The data may have been deposited electronically but only in some abbreviated form that is not directly usable
  • A varied collection like this should provide worked examples/test data for a broad range of problems
The entries are roughly in the order of publication date and, when necessary, the data files have been updated to the current format for their fitting programs.



Abbreviation
File type



PAR
 = 
parameters file for SPFIT
LIN
 = 
lines file for SPFIT
ASF
 = 
data file for ASFIT (this can be converted to .LIN and .PAR files for SPFIT  by using an export feature built into ASFIT)
IN
=
input file for ERHAM
INP
=
input file for RAM36
QS
=
input file for QSTARK
KRA
=
input file for KRA
EVA
=
input file for EVAL
STF
=
input file for STRFIT
RES
 = 
1/ results file as written by ASFIT
2/ reformatted version of the .FIT file from SPFIT with reformatting carried out with PIFORM
3/ reformatted output from ERHAM produced by ERHRES
4/ reformatted version of the output from RAM36 program, with reformatting carried out by VIFORM.
5/ abbreviated results file from QSTARK where intermediate iterations have been deleted
OUT
=
Results files from  STRFIT, KRA or EVAL.
CAT =
predictions file from SPCAT
XI
=
input file for XIAM
XO
=
output file from XIAM
NOTE
= additional notes (TXT file)




Quick access according to the type of fit:



Asymmetric rotor




high-J, type-II bands
Cl-benzene    type-II+   type-II- and overview   S(CN)2   



Interacting vibrational states




two states
fluorobenzene      phenylacetylene     benzonitrile   ClONO2_I     ClONO2_II     glycolic acid     quinoline     2,2-dichloropropane     diethyl ether   




inversion/tunneling doublet
cyanamide    isotopic_cyanamide    1,3-benzodioxole    phenol    glycinamide




three states
symmetric:  Cl3CCH3
asymmetric:  n-propanol    S(CN)2    glycolic acid    ClONO2    2,2-dichloropropane




four states
S(CN)2   acrylonitrile  

with Fermi terms
ClONO2   



Nuclear quadrupole hyperfine coupling




one nucleus
I=1 (14N or D):  Ar...HCCCN    tBuCN   isoquinoline    salicyl aldehyde        
I=3/2 symmetric rotor:    tBuCl    tBuBr  
I=3/2 asymmetric rotor:   Br-benzene    Cl-benzene 
I=5/2 symmetric rotor:   tBuI  
I=5/2 asymmetric rotor:   CHF2I   I-benzene

two nuclei
two I=5/2:   CH2I2   CD2I2  
two I=3/2:  CH2Cl2   H2C=CCl2    CBrClF2  
I=1 and I=3/2:  H2C=CClCN
two I=1:  pyrimidine 

three nuclei
three I=3/2, symmetric:  CF3CCl3    CHBr3   CHCl3  Cl3CCH3 
three I=3/2 asymmetric:  Cl2C=CHCl   CF3CCl3   CHBr3   CHCl3 
two I=1 and I=3/2:  N2...HCl 

hyperfine perturbations
H2C=CClCN ( χab for 14N)
CH2CHF...HCl  ( χab for 35Cl)
CHBr3 (axial rotational constant C in an oblate symmetric top) 
CF3Cl3 (axial rotational constant A in a prolate symmetric top)



Global fits




rotational+infrared S(CN)2   Quinoline   Acrylonitrile  

with and w/o hyperfine halogenobenzenes  3-chlorobenzonitrile  1,2-dichlorobenzene



Dipole moment determination




μa
symmetric rotors: tertiary butyl molecules   Ar3...HX
asymmetric rotors: halogenobenzenes

μb acetone   Ar2...HF  

μa+μb anisole+benzaldehyde   salicyl aldehyde  

μa+μc c-C3H5CN 

μa+μb+μc Camphor   n-propanol

field calibration
using CH3CN and CH3I (Ar)   using CH3CN and CH3I (Ne)



Internal rotation




SPFIT
pyruvic acid    pyruvonitrile

ERHAM
pyruvic acid    pyruvonitrile

XIAM
pyruvic acid    pyruvonitrile

RAM36
toluene_I    toluene_II



Structure determination




rs with KRA and EVAL
camphor    salicyl aldehyde  

r0 with STRFIT
camphor    acrylonitrile  

rm(1)
camphor    acrylonitrile  

reSE with STRFIT
cyanamide    acrylonitrile   salicyl aldehyde  


Quick access (ordered by sum formula):

ArClH
1998
Ar...HCl cluster
Ar2BrH 2001 2002 Ar2...HBr cluster
Ar2ClH 2001 Ar2...HCl cluster
Ar3ClH 2001 Ar3...HCl cluster
Ar2FH 2001 Ar2...HF cluster
Ar3FH 2001 Ar3...HF cluster
BrHN2 2002 N2...HBr cluster
BrH5O2 2000 2003 (H2O)2HBr cluster
CBrClF2 1996 1997 Chlorobromodifluoromethane, CBrClF2, halon BCF
CHClF2 1995 1996 1997 Chlorodifluoromethane, CHF2Cl, freon HCFC-22
CHBr3 2009
Bromoform
CHCl3 2006
Chloroform
CHF2I 2010
Difluoroiodomethane
CH2Cl2 1997 Dichloromethane, methylene chloride, CH2Cl2
CH2I2 1996 1998 2000 diiodomethane, methylene iodide, CH2I2
CH2N2 2011 2013 Cyanamide, H2NCN
CH4N2O
2022 Urea, (NH2)2CO
C2F3Cl3 2018 1,1,1-trichloro-2,2,2-trifluoroethane, CF3CCl3, freon CFC-113a
C2HCl3 1996 1998 Trichloroethylene, Cl2C=CHCl
C2H2ClN
1993
Chloroacetonitrile, H2ClCCN
C2H2ClF3 2017
1-choro-2,2,2-trifluoroethane, CF3CH2Cl, freon HCFC-133a
C2H2Cl2 1995 1998
1,1-dichloroethylene, H2C=CCl2
C2H3Cl3 1997 1998 2008
1,1,1-trichloroethane, Cl3CCH3
C2H4ClF 1990
CH2CHF...HCl cluster, vinyl fluoride...HCl
C2H4O2 2007 Acetic acid, CH3COOH
C2H4O3 2016 Glycolic acid, CH2OHCOOH
C2H6N2O 2022 Glycinamide, NH2CH2C(O)NH2
C2H6O3 2023 Glycolaldehyde-(H2O)
C2H8O4 2023 Glycolaldehyde-(H2O)2
C2H10O5 2023 Glycolaldehyde-(H2O)3
C2H12O6 2023 Glycolaldehyde-(H2O)4
C2H14O7 2023 Glycolaldehyde-(H2O)5
C2H16O8 2023 Glycolaldehyde-(H2O)6
C2N2S 2007 2013 Sulfur dicyanide: S(CN)2
C3HArN 2003 Ar...HCCCN cluster
C3H2ClN 1994 1997 2-chloroacrylonitrile, H2C=CClCN
C3H3N 2009 2011 2011 2012 2014 2015 Vinyl cyanide, acrylonitrile, H2CCHCN
C3H3NO 2010 Pyruvonitrile, CH3COCN
C3H4O3 2007 Pyruvic acid, CH3COCOOH
C3H5Cl 2017 2-chloropropene, CH3CCl=CH2
C3H5N 2011 2020 Propionitrile, ethyl cyanide, CH3CH2CN
C3H6Cl2 2015
2,2-dichloropropane, (CH3)2CCl2
C3H6O 2007
Acetone, (CH3)2CO
C3H6O3 2005 Lactic acid, CH3CH(OH)COOH
C3H8O 2010 2023 n-propanol, n-CH3CH2CH2OH
C4H4N2 1999 Pyrimidine
C4H5N 2008
Cyclopropyl cyanide, c-C3H5CN
C4H9Br 2001 Tertiary butyl bromide, (CH3)3CBr
C4H9Cl 2001 Tertiary butyl chloride, (CH3)3CCl
C4H9F 2001 Tertiary butyl fluoride, (CH3)3CF
C4H9I 2001 Tertiary butyl iodide, (CH3)3CI
C4H10O 2003 2004 2005 Diethyl ether, C2H5OC2H5
C4H10O 2023 n-butanol
C5H6N2 2021 2-aminopyridine
C5H8N2O 2021 2-aminopyridine...H2O cluster
C5H9N 2001 Tertiary butyl cyanide, (CH3)3CCN
C5H9N 2001 Tertiary butyl isocyanide, (CH3)3CNC
C5H9N 2023 n-butyl cyanide, valeronitrile
C6H4Cl2 2020 1,2-dichlorobenzene
C6H5Br 2007 Bromobenzene, C6H5Br
C6H5Cl 1990 2007 Chlorobenzene, C6H5Cl
C6H5F 2005 2019 Fluorobenzene, C6H5F
C6H5I 2007 Iodobenzene, C6H5I
C6H6O 2022 Phenol, C6H5OH
C7H4ClN 2006 3-chlorobenzonitrile, C6H4ClCN
C7H5N 2018 Benzonitrile, C6H5CN
C7H6O 2005 Benzaldehyde
C7H6O2 2004
1,3-benzodioxole, C6H4O2CH2
C7H6O2 2017 Salicyl aldehyde
C7H8 2004 2010 2017 Toluene, C6H5CH3
C7H8O 2005 Anisole
C8H6 2010 2019 Phenylacetylene, C6H5CCH
C9H7N 2003 2015 Quinoline
C9H7N 2003 Isoquinoline
C10H16O 2003
Camphor,  1,7,7-trimethylbicyclo[2.2.1]hepta-2-one
ClHN2 1997 N2...HCl cluster
ClH5O2 2000 2000 (H2O)2HCl cluster
ClNO3 2007 2007 2009
Chlorine nitrate, ClONO2
Cl2H4O 2011
(HCl)2H2O cluster
H3N 2021 Ammonia: but only the NH2D and ND2H isotopic species


Quick access (ordered by date of the first paper for the given molecule):

1990 2007 Chlorobenzene, C6H5Cl
1990 CH2CHF...HCl cluster, vinyl fluoride...HCl
1993
Chloroacetonitrile, H2ClCCN
1994 1997
2-chloroacrylonitrile, H2C=CClCN
1995 1996 1997 Chlorodifluoromethane, CHF2Cl, freon HCFC-22
1995 1998
1,1-dichloroethylene, H2C=CCl2
1996 1998
Trichloroethylene, Cl2C=CHCl
1996 1998 2000 Diiodomethane, methylene iodide, CH2I2
1996 1997
Chlorobromodifluoromethane, CBrClF2, halon BCF
1997
Dichloromethane, methylene chloride, CH2Cl2
1997 1998 2008
1,1,1-trichloroethane, Cl3CCH3
1997 N2...HCl cluster
1998 Ar...HCl cluster
1999
Pyrimidine
2000 (H2O)2HCl cluster
2000 (H2O)2HCl and (H2O)2HBr clusters (dipole moments)
2001 Ar2...HBr, Ar2...HCl, Ar2...HF, Ar3...HCl, Ar3...HF clusters
2001 Tertiary butyl molecules  tBuX, X= F, Cl, Br, I, CN, and NC
2002 Ar2...HBr cluster
2002 N2...HBr cluster
2003 Camphor, C10H16O
2003 Quinoline and Isoquinoline, C9H7N
2003 Ar...HCCCN cluster
2003 (H2O)2HBr cluster
2003 2004 2005 Diethyl ether, C2H5OC2H5
2004 1,3-benzodioxole, C6H4O2CH2
2004 2010 2017 Toluene, C6H5CH3
2005 2019 Fluorobenzene, C6H5F
2005 Lactic acid, CH3CH(OH)COOH
2005 Anisole and Benzaldehyde
2006 Chloroform, CHCl3
2006 3-chlorobenzonitrile, C6H4ClCN
2007 Acetic acid and Acetone
2007
Pyruvic acid, CH3COCOOH
2007 Bromobenzene, C6H5Br and Iodobenzene, C6H5I
2007 2007 2009 Chlorine nitrate, ClONO2
2007 2013 Sulfur dicyanide: S(CN)2
2008 Cyclopropyl cyanide, c-C3H5CN
2009 2011 2011 2012 2014 2015 Vinyl cyanide, acrylonitrile, H2CCHCN
2009
Bromoform, CHBr3
2010 Pyruvonitrile, CH3COCN
2010 2019 Phenylacetylene, C6H5CCH
2010 n-propanol, n-CH3CH2CH2OH
2010 Difluoroiodomethane, CHF2I
2011 2013 Cyanamide, H2NCN
2011 2020 Propionitrile, ethyl cyanide, CH3CH2CN
2011 (H2O)2HCl cluster
2015 Quinoline
2015 2,2-dichloropropane, (CH3)2CCl2
2016 Glycolic acid, CH2OHCOOH
2017 1-choro-2,2,2-trifluoroethane, HCFC-133a, freon CF3CH2Cl
2017 2-chloropropene, CH3CCl=CH2
2017 Salicyl aldehyde, C7H6O2 
2018 Benzonitrile, C6H5CN
2018 1,1,1-trichloro-2,2,2-trifluoroethane, CF3CCl3, freon CFC-113a
2020 1,2-dichlorobenzene, C6H4Cl2
2022 Glycinamide, NH2CH2C(O)NH2
2021 Ammonia: but only the NH2D and ND2H isotopic species
2022 Glycinamide, NH2CH2C(O)NH2
2022 Phenol, C6H5OH
2022 Urea, (NH2)2CO
2023 n-propanol, n-butanol, n-butyl cyanide
2023 glycolaldehyde-(H2O)n, n=1,6






Z.Kisiel,

"The Millimeter-Wave Rotational Spectrum of Chlorobenzene: Analysis of Centrifugal Distortion and of Conditions for Oblate-Type Bandhead Formation",

J.Mol.Spectrosc
. 144, 381-388 (1990).
  [doi]





ASF RES

35Cl ground state
ASF RES

37Cl ground state











Z.Kisiel, P.W.Fowler, A.C.Legon,

"Rotational spectrum, structure, and chlorine nuclear quadrupole tensor of the vinyl fluoride-HCl dimer",

J.Chem.Phys
. 93, 3054-3062 (1990).
  [doi]





Q2S RES

CH2CHF...H35Cl: input and results files for the Q2FIT program.  The deviations on fitted parameters are slightly higher than in Table II of the paper due to a bug in the program, only eliminated in 2001.
PAR LIN RES
CH2CHF...H35Cl: the same fit as above in the form of input files for SPFIT and results reformatted with PIFORM.  The numerical values of the fitted parameters and their uncertainties are identical.

This is a small data set so the differences between the use of the total number of lines and of the degrees of freedom between programs become apparent.  Thus deviations of fit in the two outputs are in the ratio 1.777/1.681=sqrt(95/85)
PAR LIN RES
CH2CHF...H37Cl
PAR LIN RES
CH2CHF...D35Cl












Z.Kisiel, L.Pszczolkowski,

"The millimeter-wave rotational spectrum of chloroacetonitrile",

J.Mol.Spectrosc
. 158, 318-327 (1993).
  [doi]





ASF
RES


H235ClCCN ground state, S-reduction
ASF RES

H237ClCCN ground state, S-reduction












Z.Kisiel and L.Pszczolkowski,

"The millimeter-wave rotational spectrum of 2-chloroacrylonitrile",

J.Mol.Spectrosc. 166, 32-40 (1994).
  [doi]





ASF RES

H2ClCC35ClCN ground state, as in Tables I and III
ASF RES

H2ClCC37ClCN ground state, as in Tables II and III
ASF RES

H2ClCC35ClCN v10=1, as in Table IV
ASF RES

H2ClCC35ClCN v11=1
ASF RES

H2ClCC35ClCN v11=2
ASF RES

H2ClCC35ClCN v15=1












Z.Kisiel and L.Pszczolkowski,

"Nuclear quadrupole coupling in 2-chloroacrylonitrile: inertial and principal quadrupole tensor components for Cl and N",

J.Mol.Spectrosc. 184, 215-220 (1997).
  [doi]





PAR LIN RES
H2ClCC35ClCN ground state hyperfine structure, Fit II, Table 2.  Note the perturbation enhanced precision in χab for the nitrogen nucleus.
PAR LIN RES
H2ClCC37ClCN ground state hyperfine structure, Fit II, Table 2












Z.Kisiel, L.Pszczolkowski, G.Cazzoli, and G.Cotti,

"The millimeter-wave rotational spectrum and Coriolis interaction in the two lowest excited vibrational states of CHClF2",

J.Mol.Spectrosc
. 173, 477-487 (1995).
  [doi]





PAR LIN
RES

CHF235Cl (v6=1,v9=1) Coriolis coupled pair in a two state declaration containing only the MMW data


Notes:

A fit with added FTIR data was published in I.Merke et al., J.Mol.Spectrosc. 173, 463-476 (1995), but there were some misprints, which were corrected in J.Mol.Spectrosc. 184, 150-155 (1997)












G.Klatt, G.Graner, S.Klee, G.Mellau, Z.Kisiel, L.Pszczolkowski, J.L.Alonso, and J.C.Lopez,

"Analysis of the high-resolution FT-IR and millimeter-wave spectra of the v5=1 state of CHF2Cl",

J.Mol.Spectrosc
. 178, 108-112 (1996).
  [doi]





PAR LIN
RES

CHF235Cl v5=1 in a two state declaration with the (fixed) ground state, using MMW and FTIR data. 


Notes:

These files may not be the final data as published but are fairly close to that data set.












Z.Kisiel, J.L.Alonso, S.Blanco, G.Cazzoli, J.M.Colmont, G.Cotti, G.Graner, J.C.Lopez, I.Merke, and L.Pszczolkowski,

"Spectroscopic constants for HCFC-22 from rotational and high-resolution vibration spectra: CHF237Cl and 13CHF235Cl isotopomers",

J.Mol.Spectrosc
. 184, 150-155 (1997).
  [doi]





ASF RES
  
CHF237Cl ground state
ASF RES

13CHF235Cl ground state
PAR LIN RES 
CHF237Cl (v6=1,v9=1) Coriolis coupled pair in a three state declaration inclusive of the (fixed) ground state


Notes:
Data set combining MMW and FTIR measurements












Z.Kisiel and L.Pszczolkowski,

"The high-frequency rotational spectrum of 1,1-dichloroethylene",

Z.Naturforsch
. 50A, 347-351 (1995).
  [doi]





ASF RES

H2CC35Cl2 ground state
ASF RES

H2CC37Cl35Cl ground state












Z.Kisiel and L.Pszczolkowski,

"Assignment and analysis of the mm-wave rotational spectrum of trichloroethylene: observation of a new, extended b.R-band and an overview of high-J, R-type bands",

J.Mol.Spectrosc. 177, 125-137 (1996).
  [doi]





ASF RES

ground state of the parent isotopic species 35Cl2C=C35ClH
ASF RES

ground state of 1-37Clc-trichloroethylene (c is relative to H)
ASF RES

ground state of 1-37Clt-trichloroethylene (t is relative to H)
ASF RES

ground state of 2-37Cl-trichloroethylene
ASF RES

ground state of 1-37Clc,1-37Clt-trichloroethylene
ASF RES

ground state of 1-37Clc,2-37Cl-trichloroethylene (35Cl is t is relative to H)
ASF RES

ground state of 1-37Clt,2-37Cl-trichloroethylene (35Cl is c is relative to H)
ASF RES

v12=1 of the parent isotopic species
ASF RES

v8=1 of the parent isotopic species
ASF RES

v9=1 of the parent isotopic species
ASF RES

v9=2 of the parent isotopic species












Z.Kisiel, E.Bialkowska-Jaworska, and L.Pszczolkowski,

"Nuclear quadrupole coupling in Cl2C=CHCl and Cl2C=CH2; "Evidence for systematic differences in orientation between internuclear and field gradient axes for terminal quadrupolar nuclei",

J.Chem.Phys
. 109, 10263-10272 (1998).
  [doi]





PAR LIN RES
Cl2C=CHCl: triple 35Cl hyperfine coupling
PAR LIN RES
Cl2C=CH2: double 35Cl hyperfine coupling












Z.Kisiel, L.Pszczolkowski, W.Caminati, and P.G.Favero,

"First assignment of the rotational spectrum of a molecule containing two iodine nuclei: spectroscopic constants and structure of CH2I2",

J.Chem.Phys
. 105, 1778-1785 (1996).
  [doi]





ASF RES

CH2I2 ground state, fit to hyperfine-free transitions
PAR LIN
RES

CH2I2 ground state, fit to hyperfine components












Z.Kisiel, L.Pszczolkowski, L.B.Favero, and W.Caminati,

"Rotational spectrum of
CD2I2 An isotopomer of the first molecule containing two iodine nuclei investigated by microwave spectroscopy",

J.Mol.Spectrosc. 189, 283-290 (1998).
  [doi]





ASF RES

CD2I2 ground state, fit to hyperfine-free transitions
PAR
LIN
RES

CD2I2 ground state, fit to hyperfine components












Z.Kisiel, E.Bialkowska-Jaworska, L.Pszczolkowski,

"The <ICI bending satellites in the millimeter-wave rotational spectra of CH2I2 and CD2I2",

J.Mol.Spectrosc
. 199, 5-12 (2000).
  [doi]





ASF RES

CH2I2 ground state, S-reduction, as in Table 3
ASF RES

CH2I2 v4=1
ASF RES

CH2I2 v4=2
ASF RES

CH2I2 v4=3
ASF RES

CH2I2 v4=4
ASF RES

CD2I2 ground state, S-reduction, as in Table 4
ASF RES

CD2I2 v4=1
ASF RES

CD2I2 v4=2
ASF RES

CD2I2 v4=3
ASF RES

CD2I2 v4=4












Z.Kisiel, E.Bialkowska-Jaworska, L.Pszczolkowski,

"The mm-wave rotational spectrum of CBrClF
2 (halon BCF): observation of a new R-type band and generalization of conditions for oblate-type band formation",

J.Mol.Spectrosc
. 177, 240-250 (1996).
  [doi]





ASF
RES


C79Br35ClF2 ground state, S-reduction
ASF RES

C81Br35ClF2 ground state, S-reduction
ASF RES

C79Br37ClF2 ground state, S-reduction
ASF RES

C81Br37ClF2 ground state, S-reduction












Z.Kisiel, E.Bialkowska-Jaworska, L.Pszczolkowski,

"The rotational spectrum of CBrClF
2 (halon BCF); II. The lowest excited vibrational states and nuclear quadrupole coupling tensors",

J.Mol.Spectrosc
. 185, 71-78 (1997).
  [doi]





PAR LIN RES
C79Br35ClF2, (v9=1,v5=1) Coriolis coupling, S-reduction
PAR LIN RES
C81Br35ClF2, (v9=1,v5=1) Coriolis coupling, S-reduction
PAR
LIN
RES

C79Br35ClF2 ground state, 79Br+35Cl hyperfine coupling
PAR LIN RES
C81Br35ClF2 ground state, 81Br+35Cl hyperfine coupling












Z.Kisiel, J.Kosarzewski, and L.Pszczolkowski,

"Nuclear quadrupole coupling tensor of CH2Cl2: Comparison of quadrupolar and structural angles in methylene halides",

Acta Physica Polonica A
92, 507-516 (1997).
  [doi]   Reprint





PAR
LIN
RES

CH235Cl2 ground state hyperfine structure in supersonic expansion












Z.Kisiel and L.Pszczolkowski,

"Millimeter wave rotational spectra of the
37Cl species of 1,1,1-trichloroethane",

J.Mol.Spectrosc
. 181, 48-55 (1997).
  [doi]





ASF RES

35Cl237ClCCH3 ground state III.r: ASFIT could fit the more conventional III.l so that this fit differs in the signs of  the off-diagonal centrifugal distortion constants. Current ASFIT also catches some line duplications missed in the original data set.
PAR LIN RES
35Cl237ClCCH3 ground state III.l: reproduced with SPFIT after automatic conversion from ASFIT data and proper treatment of blends.
ASF RES

35Cl37Cl2CCH3 ground state, III.r
PAR LIN RES
35Cl37Cl2CCH3 ground state, III.l
SYM RES

37Cl3CCH3 ground state: the data and results files for this symmetric top species are for the SYMF program












L.Dore and Z.Kisiel,

"Nuclear quadrupole coupling in 1,1,1-Trichloroethane: Inertial and principal tensors for
35Cl and 37Cl",

J.Mol.Spectrosc. 189, 228-234 (1998).
  [doi]





PAR LIN RES
35Cl3CCH3 ground state hyperfine structure
PAR LIN RES
35Cl237ClCCH3 ground state hyperfine structure











Z.Kisiel, L.Pszczolkowski, G.Cazzoli, L.Dore,

"Strong Coriolis coupling between v5 and v14 states of CH3CCl
3 studied by millimeter-wave spectroscopy",

J.Mol.Spectrosc. 251, 235-240 (2008).  [doi]





PAR LIN RES
Coupling between the lowest E-symmetry and A-symmetry vibrational states in an oblate molecule using a three-state declaration












Z.Kisiel, L.Pszczolkowski, P.W.Fowler, A.C.Legon,

"Rotational spectrum of
14N2...H35Cl and 14N2...H37Cl: electric field gradients at the nitrogen nuclei",

Chem.Phys.Lett. 276, 202-299 (1997).
  [doi]





PAR LIN RES
14N2...H35Cl: hyperfine structure from three quadrupolar nuclei
CAT



PAR LIN RES
14N2...H37Cl
CAT














Z.Kisiel, L.Pszczolkowski,

"Rotational spectrum and spectroscopic constants of
36Ar...H35Cl and 40Ar...HCl",

Chem.Phys.Lett. 291, 190-196 (1998).
  [doi]





PAR LIN RES
40Ar...H35Cl (it appears that in Table 2 the rms value was reported instead of σfit)
PAR LIN RES
40Ar...H37Cl
PAR LIN RES
36Ar...H35Cl












Z.Kisiel, L.Pszczolkowski, J.C.Lopez, J.L.Alonso, A.Maris, and W.Caminati,

"Investigation of the rotational spectrum of pyrimidine from 3 to 337 GHz: Molecular structure, nuclear quadrupole coupling, and vibrational satellites",

J.Mol.Spectrosc. 195, 332-339 (1999).
  [doi]





PAR
LIN RES
Ground state double nitrogen hyperfine structure
PAR LIN RES
Ground state, A,I.r fit using SPFIT
ASF
RES


Ground state, A,I.r fit using ASFIT.
The two fits above allow various intercomparisons on how a given problem is declared in these two schemes. Also note the presence of the various subtleties concerning the listed deviations, as discussed in the crib-sheet.
PAR LIN RES
Ground state, S,III.l fit
ASF
RES


Satellite A, S,IIIr (note that this is NOT III.l as it differs in the sign of  d1)
ASF RES

Satellite B, S,IIIr
ASF RES

Satellite C, S,IIIr
PAR LIN RES
13C(2) species, ground state, S, III.
PAR LIN RES
13C(4) species, ground state, S, III.l
PAR LIN RES
13C(5) species, ground state, S, III.l
PAR LIN RES
15N species, ground state, S, III.l











Z.Kisiel, E.Bialkowska-Jaworska, L.Pszczolkowski, A.Milet, C.Struniewicz, R.Moszynski, J.Sadlej,

"Structure and properties of the weakly bound cluster
(H2O)2HCl observed by rotational spectroscopy",

J.Chem.Phys. 112, 5767-5776 (2000).
  [doi]





PAR LIN RES
The W state (ground state) for the parent species
PAR LIN RES
The S state for the parent species
PAR LIN RES
The W state (ground state) for the 37Cl species
PAR LIN RES
The S state for the 37Cl species











Z.Kisiel, J.Kosarzewski, B.A.Pietrewicz, L.Pszczolkowski,

"Electric dipole moments of the cyclic trimers
(H2O)2HCl and (H2O)2HBr from Stark effects in their rotational spectra",

Chem.Phys.Lett. 325, 523-530 (2000).
  [doi]





QS RES

Dipole moment determination for (H2O)2H35Cl
QS RES

Dipole moment determination for (H2O)2H79Br











Z.Kisiel, B.A.Pietrewicz, O.Desyatnyk, L.Pszczolkowski, I.Struniewicz, J.Sadlej,

"Structure and properties of the weakly bound cyclic trimer
(H2O)2HBr observed by rotational spectroscopy",

J.Chem.Phys. 119, 5907-5917 (2003).
  [doi]









Table I:
PAR LIN RES
W' substate of (H2O)2H79Br
PAR LIN RES
W substate of (H2O)2H79Br
PAR LIN RES
S' substate of (H2O)2H79Br
PAR LIN RES
S substate of (H2O)2H79Br
PAR LIN RES
W substate of (H2O)2H81Br
PAR LIN RES
S substate of (H2O)2H81Br




Table II:
PAR LIN RES
S substate of (H216O-D16OH)H79Br
PAR LIN RES
S substate of (H216O-H18OH)H79Br
PAR LIN RES
S substate of (H216O-H18OH)H81Br
PAR LIN RES
S substate of (H218O-H16OH)H79Br
PAR LIN RES
S substate of (H218O-H16OH)H81Br




Table III:
PAR LIN RES
W substate of (H216O-D16OH)H79Br
PAR LIN RES
W substate of (H216O-H18OH)H79Br
PAR LIN RES
W substate of (H216O-H18OH)H81Br
PAR LIN RES
W substate of (H218O-H16OH)H79Br
PAR LIN RES
W substate of (H218O-H16OH)H81Br




Structure and dipole:
STF OUT

Fit of the least-squares r0 geometry (input and output for STRFIT)
STF OUT

Fit of the least-squares rz geometry (input and output for STRFIT)
STF OUT

Fit of the least-squares rm(1L) geometry (input and output for STRFIT)
QS RES

Dipole moment determination with QSTARK for the S substate of (H2O)2H79Br











Z.Kisiel, B.A.Pietrewicz, L.Pszczolkowski,

"The experimental electric dipole moments of the ArnHX van der Waals clusters
",

Chem.Phys.Lett. 333, 381-386 (2001).
  [doi]









Ar2...HF:
PAR LIN RES
Refit of the literature data with SPFIT in order to derive parameter values to be used in the dipole determination
ASF RES

Refit as above but with ASFIT in an early demonstration of the equivalence of the two programs
QS RES

Dipole moment determination with QSTARK




Ar3...HF:
QS RES

Dipole moment determination with QSTARK




Ar2...H35Cl:
PAR LIN RES
Refit of the literature data for parameter values to be used in the dipole determination
QS RES

Dipole moment determination with QSTARK




Ar3...H35Cl:
QS RES

Dipole moment determination with QSTARK




Ar2...H79Br:
PAR LIN RES
Derivation of parameter values to be used in the dipole determination (prior to a separate publication on Ar2HBr)
QS RES

Dipole moment determination with QSTARK











Z.Kisiel, E.Bialkowska-Jaworska, O.Desyatnyk, B.A.Pietrewicz and L.Pszczolkowski,

"The Gas-Phase Electric Dipole Moments of the Symmetric Top Tertiary Butyl Molecules 
  tBuX, X= F, Cl, Br, I, CN, and NC",

J. Mol. Spectrosc.
208, 113-120 (2001).
  [doi]









Tertiary Butyl Fluoride:
SYM RES

Ground state refit with the SYMF program
PAR LIN RES
Equivalent fit to the above with SPFIT
QS RES

Dipole moment determination with QSTARK 




Tertiary Butyl Chloride:
PAR LIN RES
Refit of literature data for (CH3)3C35Cl
QS RES

Dipole moment determination with QSTARK




Tertiary Butyl Bromide:
QS RES

Refit of the available field free data for (CH3)3C79Br to determine splitting parameters
QS RES

Dipole moment determination for (CH3)3C79Br
QS RES

Refit of the available field free data for (CH3)3C81Br to determine splitting parameters
QS RES

Dipole moment determination for (CH3)3C81Br




Tertiary Butyl Iodide:
PAR LIN RES
Refit of field free data to determine splitting parameters
QS RES

Dipole moment determination




Tertiary Butyl Cyanide:
PAR LIN RES
Redetermination of the hyperfine splitting constant for use in the dipole determination
QS RES

Dipole moment determination




Tertiary Butyl Isocyanide:
PAR LIN RES
Redetermination of the hyperfine splitting constant for use in the dipole determination
QS RES

Dipole moment determination from the K=0 transitions
QS RES

Dipole moment determination from the K=1 transitions (after a separate low field calibration)




Calibration of Stark electrode separation (Ar carrier gas):
QS RES

Calibration with methyl cyanide
QS RES

Calibration with methyl iodide











Z.Kisiel, B.A.Pietrewicz and L.Pszczolkowski,

"The observation and characterization by rotational spectroscopy of the weakly bound dimer Ar
2HBr",

J. Chem. Phys.
117, 8248-8255 (2002).
  [doi]





PAR LIN RES
The ground state of 40Ar2H79Br
PAR LIN RES
The ground state of 40Ar2H81Br
QS RES

Dipole moment determination for 40Ar2H79Br with QSTARK (cited back to and numerically identical with the earlier paper, but here is a differently constructed QS file)











Z.Kisiel, B.A.Pietrewicz and L.Pszczolkowski,

"Rotational Spectrum of the Most Abundant Isotopomers of the Van der Waals Dimer N
2...HBr",

Acta Physica Polonica A
101, 231-242 (2002).
  [doi]  Reprint





PAR LIN RES
14N2...H79Br
PAR LIN RES
14N2...H81Br


Notes:
The 3σ cutoff was used in order to derive reliable values for the limited number of relevant spectroscopic parameters.  This resulted in rejection of a significant number of confidently measured lines from the fits and the reason for that has not yet been rationalised.












Z.Kisiel, O.Desyatnyk, E.Bialkowska-Jaworska and L.Pszczolkowski,

"The structure and electric dipole moment of camphor determined by rotational spectroscopy
",

Phys. Chem. Chem. Phys.
5, 820-826 (2003).
  [doi]





ASF RES

The ground state of the parent isotopologue (FTMW+MMW data)
ASF RES

13C1 isotopologue
ASF RES

13C2 isotopologue
ASF RES

13C3 isotopologue
ASF RES

13C4 isotopologue
ASF RES

13C5 isotopologue
ASF RES

13C6 isotopologue
ASF RES

13C7 isotopologue
ASF RES

13C8 isotopologue
ASF RES

13C9 isotopologue
ASF RES

13C10 isotopologue
ASF RES

18O isotopologue
QS RES

Dipole moment determination: the data and results files for QSTARK
KRA OUT

Substitution Cartesian coordinates (input and output for KRA)
EVA OUT

Substitution internals (input and output for EVAL)
STF OUT

Fit of the least-squares r0 geometry (input and output for STRFIT)
STF OUT

Fit of the least-squares rm(1) geometry (input and output for STRFIT)











Z.Kisiel, O.Desyatnyk, L.Pszczolkowski, S.B.Charnley, P.Ehrenfreund,

"Rotational spectra of quinoline and of isoquinoline: spectroscopic constants and electric dipole moments
",

J.Mol.Spectrosc. 217, 115-122 (2003).
  [doi]









Quinoline:
ASF RES

Fit to hyperfine unresolved lines (MMW and reduced FTMW)
PAR LIN RES
Fit to hyperfine resolved FTMW measurements
QS RES

Dipole moment determination (data and results files for QSTARK)




Isoquinoline:
ASF RES

Fit to hyperfine unresolved lines (MMW and reduced FTMW)
PAR LIN RES
Fit to hyperfine resolved FTMW measurements
QS RES

Dipole moment determination (data and results files for QSTARK)











O.Pirali, Z.Kisiel, M.Goubet, S.Gruet, M.A.Martin-Drumel, A.Cuisset, F.Hindle, G.Mouret,

"Rotational-vibration interactions in the spectra of polycyclic aromatic hydrocarbons: Quinoline as a test-case species
",

J.Chem.Phys 142, 104310:1-11 (2015).
  [doi]





PAR LIN RES
Fit I in the nomenclature of Table II = hyperfine removed frequencies only and fit of A,B,C for all states
PAR LIN RES
Fit II in the nomenclature of Table II = global fit using hyperfine-resolved or hyperfine-free measurements as appropriate with fit of A,B,C for all states
PAR LIN RES
Fit III in the nomenclature of Table II = hyperfine removed frequencies only and fit of linear combinations of A,B,C for the two excited vibrational states
PAR LIN RES
Fit IV in the nomenclature of Table II = global fit using hyperfine-resolved or hyperfine-free measurements as appropriate with it of linear combinations of A,B,C for the two excited vibrational states


Notes:

1/ Search the results file for the string 'RMS' to jump to the block of subset statistics, which is followed by the block of fitted parameters with standard errors
2/ The LIN file contains lines in the order: supersonic expansion and room temperature FTMW, MMW, synchrotron FTIR, selected additional MMW implicated in the interstate perturbation
3/ Annotation 'maxpert' identifies the peak of an interstate resonance
4/ The LIN files for fits I and III are identical, as are the LIN files for fits II and IV.
5/ It appears that Table II, Fit II actually contains the non-hyperfine parameters from Fit I 











O.Desyatnyk, J.Kosarzewski, and Z.Kisiel,

"Observation and Properties of the van der Waals Dimer Ar...HCCCN Produced in Electrical Discharge",

Acta Physica Polonica A
104, 415-424 (2003).
  [doi]  Reprint





PAR LIN RES
Cluster generated from discharge through acrylonitrile in Ar











I.Medvedev, M.Winnewisser, F.C.De Lucia, E.Herbst, E.Yi, L.P.Leong, R.P.A.Bettens, E.Bialkowska-Jaworska, O.Desyatnyk, L.Pszczolkowski, Z.Kisiel,

"The millimeter- and submillimeter-wave spectrum of the trans-trans conformer of diethyl ether (
C2H5OC2H5)",

Astrophys. J. Suppl. Series 148, 593-597 (2003).
  [doi]





ASF RES

Fit of collected data from several laboratories, as specified in the data files and with parameters reported in Table 2 of the paper
QS RES

Dipole moment determination with QSTARK











I.Medvedev, M.Winnewisser, F.C.De Lucia, E.Herbst, E.Bialkowska-Jaworska, L.Pszczolkowski, Z.Kisiel,

"The millimeter- and submillimeter-wave spectrum of the trans-gauche conformer of diethyl ether
",

J.Mol.Spectrosc. 228, 314-328 (2004).  [doi]





PAR LIN RES
Fit to collected data for the ground state of the tg conformer: transitions with 0.1 MHz uncertainty are from the Columbus FASSST spectrometer, those with 0.05 MHz uncertainty are from the Warsaw PLL spectrometer.











Z.Kisiel, L.Pszczolkowski, I.R.Medvedev, M.Winnewisser, F.C.De Lucia, E.Herbst,

"Rotational spectrum of trans-trans diethyl ether in the ground and three excited vibrational states
",

J.Mol.Spectrosc. 233, 231-243 (2005).  [doi]





ASF RES

Ground state of the tt conformer with  FASSST lines from a new spectrum with better frequency calibration.
PAR LIN RES
Coriolis fit for v20=1 v39=1
ASF RES

Effective fit for v12=1











Z.Kisiel, L.Pszczolkowski, G.Pietraperzia, M.Becucci, W.Caminati, R.Meyer,

"The anomeric effect in 1,3-benzodioxole: additional evidence from the rotational, vibration-rotation and rovibronic spectra
",

Phys. Chem. Chem. Phys.
6, 5469-5475 (2004).
  [doi]





PAR LIN RES
Fit of CMW and MMW pure rotation and vibration-rotation transitions, for a case with an inversion splitting of 8.6635280(4) cm-1.











Z.Kisiel, E.Bialkowska-Jaworska, L.Pszczolkowski, H.Mader,

"Ground state rotational spectrum of toluene
",

J.Mol.Spectrosc. 227, 109-113 (2004).
  [doi]





ASF RES

Data and results files for Fit II in Table 1











V.V.Ilyushin, Z.Kisiel, L.Pszczolkowski, H.Mader, J.T.Hougen,

"A new torsion–rotation fitting program for molecules with a sixfold barrier: Application to the microwave spectrum of toluene
",

J.Mol.Spectrosc. 259, 26-38 (2010).
  [doi]





INP OUT RES
The input, the original and the reformatted output files for the RAM36 program.











V.V.Ilyushin, E.A. Alekseev, Z.Kisiel, L.Pszczolkowski,

"High-J rotational spectrum of toluene in |m| <= 3 torsional states
",

J.Mol.Spectrosc. 339, 31-39 (2017).
  [doi]





INP OUT RES
The input file for the RAM36 program, the original output file and the output file reformatted  with VIFORM.












Z.Kisiel, E.Bialkowska-Jaworska, L.Pszczolkowski,

"The millimeter-wave rotational spectrum of fluorobenzene
",

J.Mol.Spectrosc. 232, 47-54 (2005).
  [doi]





ASF RES

The ground state of the parent species
ASF RES

v11=1
ASF RES

v11=2
PAR LIN RES
v18b=1v16a=1 coupled fit
ASF RES

v16b=1
ASF RES

v6a=1
ASF RES

13C4 ground state











Z.Kisiel, E.Bialkowska-Jaworska,

"Sextic centrifugal distortion in fluorobenzene and phenylacetylene from
cm-wave rotational spectroscopy
",

J.Mol.Spectrosc. 359, 16-21 (2019).
  [doi]





ASF RES

The ground state of the parent species of fluorobenzene combining legacy and new waveguide FTMW measurements
ASF RES

The ground state of the parent species of phenylacetylene combining legacy and new measurements











L.Pszczolkowski, E.Bialkowska-Jaworska, Z.Kisiel,

"The millimeter wave rotational spectrum of lactic acid
",

J.Mol.Spectrosc. 234, 106-112 (2005).
  [doi]





ASF RES

The ground state
ASF RES

v30=1
ASF RES

v30=2
ASF RES

v30=3
ASF RES

v30=4
ASF RES

v30=5
ASF RES

v29=1
ASF RES

(v29=1,v30=1)
ASF RES

vu=1
ASF RES

(vu=1,v30=1)











O.Desyatnyk, L.Pszczolkowski, S.Thorwirth, T.M.Krygowski, Z.Kisiel,

"The rotational spectra, electric dipole moments and molecular structures of anisole and benzaldehyde
",

Phys.Chem.Chem.Phys. 7, 1708-1715 (2005) 
[doi]; 7, 2080 (2005).  [doi]









Anisole:
ASF RES

The ground state of the parent species, MMW+FTMW
ASF RES

The lowest excited vibrational state of the parent, MMW
ASF RES

13C1, FTMW
ASF RES

13C2, FTMW
ASF RES

13C3, FTMW
ASF RES

13C4, FTMW
ASF RES

13C5, FTMW
ASF RES

13C6, FTMW
ASF RES

13C7, FTMW
ASF RES

18O, FTMW
ASF RES

Refit of the data subset for the ground state of the parent for use as fixed parameters in dipole determination
QS RES

Dipole moment determination with QSTARK
STF OUT

Fit of the least-squares rm(1) geometry (input and output for STRFIT)




Benzaldehyde:
ASF RES

The ground state of the parent species
ASF RES

The lowest excited vibrational state of the parent
ASF RES

13C1, FTMW
ASF RES

13C2, FTMW
ASF RES

13C3, FTMW
ASF RES

13C4, FTMW
ASF RES

13C5, FTMW
ASF RES

13C6, FTMW
ASF RES

13C7, FTMW
ASF RES

18O, FTMW
ASF RES

Refit of the FTMW subset for the ground state of the parent for use as fixed parameters in dipole determination
QS RES

Dipole moment determination with QSTARK
STF OUT

Fit of the least-squares rm(1) geometry (input and output for STRFIT)











E.Bialkowska-Jaworska, Z.Kisiel, L.Pszczolkowski,

"Nuclear quadrupole coupling in chloroform and calibration of ab initio calculations
",

J.Mol.Spectrosc. 238, 72-78 (2006).
  [doi]





PAR LIN RES
The data files for the SPFIT program and the PIFORM reformatted results of fit for the ground state of CH35Cl3
PAR LIN RES
The data files for the SPFIT program and the PIFORM reformatted results of fit for the ground state of CH37Cl35Cl2


TXT
Comparison of the experimental and calculated values of the chi_zz principal nuclear quadrupole tensor component for the chlorine nucleus in chlorine containing molecules











P.R.Varadvaj, A.I.Jaman, Z.Kisiel, L.Pszczolkowski,

"Assignment and analysis of the rotational spectrum of 3-chlorobenzonitrile
",

J.Mol.Spectrosc. 239, 88-93 (2006).
  [doi]





PAR LIN RES
The data files for the SPFIT program and the PIFORM reformatted results of the global hyperfine and hyperfine-free fit for the ground state of 35Cl 3-chlorobenzonitrile
PAR LIN RES
The data files for the SPFIT program and the PIFORM reformatted results of the global hyperfine and hyperfine-free fit for the ground state of 37Cl 3-chlorobenzonitrile











O.Dorosh and Z.Kisiel,

"Electric Dipole Moments of Acetone and of Acetic Acid Measured in Supersonic Expansion",

Acta Physica Polonica A
112, S:95-104 (2007).
  [doi]   Reprint









Acetone:
ASF RES

Effective fit to the AA substate transitions used to derive parameter values to be fixed in the dipole moment determination
QS RES

Dipole moment determination with QSTARK




Acetic acid:
ASF RES

Effective fit to the A substate transitions used to derive parameter values to be fixed in the dipole moment determination
QS RES

Dipole moment determination with QSTARK


Note:

The two QS files contain notes on how the estimate of the actual dipole moment uncertainty inclusive of that in the Stark electrode separation




 






Z.Kisiel, L.Pszczolkowski, E.Bialkowska-Jaworska, S.B.Charnley,

"The millimeter wave rotational spectrum of pyruvic acid
",

J.Mol.Spectrosc. 241, 220-229 (2007).
  [doi]





PAR LIN RES
Data and results files for the ground state A-substate fit using SPFIT
PAR LIN RES
Data and results files for the ground state E-substate fit using SPFIT
XI XO

Data and results files for joint fit of ground state A- and E-substate lines with XIAM
IN OUT RES
Input, output and reformatted results files for joint fit of ground state A- and E-substate lines with ERHAM
PAR LIN RES
Data and results files for the SPFIT fit of the A-substate of the first excited state of the skeletal torsion (v24=1)
PAR LIN RES
Data and results files for the SPFIT fit of the E-substate of the first excited state of the skeletal torsion (v24=1)
IN OUT RES
Input, output and reformatted results files for the ERHAM fit of the A- and E-substates  of the first excited state of the skeletal torsion (v24=1)
PAR LIN RES
Data and results files for the SPFIT fit of the A-substate of the first excited state of the methyl torsion (v23=1)
PAR LIN RES
Data and results files for the SPFIT fit of the E-substate of the first excited state of the methyl torsion (v23=1)
IN OUT RES
Input, output and reformatted results files for the ERHAM fit of the A- and E-substates of the first excited state of the methyl torsion (v23=1)
IN OUT RES
Input, output and reformatted results files for the ERHAM fit of the A- and E-substates of the second excited state of the skeletal torsion (v24=2)
PAR LIN RES
Data and results files for the SPFIT fit of the third excited state of the skeletal torsion (v24=3)











A.Krasnicki, L.Pszczolkowski, Z.Kisiel,

"Analysis of the rotational spectrum of pyruvonitrile up to 324 GHz
",

J.Mol.Spectrosc. 260, 57-65 (2010).
  [doi]









Table 1:
PAR LIN RES
Effective fit for the A-substate of the ground state (with hyperfine resolved and hyperfine unresolved lines)
PAR LIN RES
Effective fit for the E-substate of the ground state
PAR LIN RES
Effective fit for the A-substate of the first excited state of the methyl torsion (v18=1)
PAR LIN RES
Effective fit for the E-substate of the first excited state of the methyl torsion (v18=1)
PAR LIN RES
Effective fit for the A-substate of the first excited state of the CCN in-plane bend (v12=1)
PAR LIN RES
Effective fit for the E-substate of the first excited state of the CCN in-plane bend (v12=1)




Table 2:
XI XO

Data and results files (intermediate iterations deleted) for joint fit of ground state A- and E-substate lines with XIAM
IN RES

Data and reformatted results files for joint fit of ground state A- and E-substate lines with ERHAM
IN RES

ERHAM fit of A- and E-substates of the first excited state of the methyl torsion (v18=1)
IN RES

ERHAM fit of A- and E-substates  of the first excited state of the CCN in-plane bend (v12=1)




Table 5:
QS RES

Dipole moment: the data and results files for QSTARK











O.Dorosh, E.Bialkowska-Jaworska, Z.Kisiel, L.Pszczolkowski,

"New measurements and global analysis of rotational spectra of Cl-,
Br-, and I-benzene: Spectroscopic constants and electric dipole moments
",

J.Mol.Spectrosc. 246, 228-232 (2007).
  [doi]









Bromobenzene:
PAR LIN RES
79Br ground state: global fit of hyperfine resolved and unresolved data
ASF RES

v30=1: hyperfine unresolved only
ASF RES

v24=1: hyperfine unresolved only
QS RES

79Br dipole moment: the data and results files for QSTARK
PAR LIN RES
81Br ground state: global fit of hyperfine resolved and unresolved data
ASF RES

v30=1: hyperfine unresolved only
ASF RES

v24=1: hyperfine unresolved only
QS RES

81Br dipole moment: the data and results files for QSTARK




Chlorobenzene:
PAR LIN RES
35Cl ground state: global fit of hyperfine resolved and unresolved data
PAR LIN RES
37Cl ground state: global fit of hyperfine resolved and unresolved data
QS RES

35Cl dipole moment: the data and results files for QSTARK




Iodobenzene:
PAR LIN RES
ground state: global fit of hyperfine resolved and unresolved data
ASF RES

v30=1: hyperfine unresolved only
ASF RES

v24=1: hyperfine unresolved only
ASF RES

v11=1: hyperfine unresolved only
QS RES

dipole moment: the data and results files for QSTARK












Z.Kisiel, O.Dorosh, M.Winnewisser, M.Behnke, I.R.Medvedev, F.C.De Lucia,

"Comprehensive analysis of the FASSST rotational spectrum of S(CN)
2",

J.Mol.Spectrosc. 246, 39-56 (2007).
  [doi]





ZIP



The paper is associated with twelve supplementary tables, but for some reason only the first of these tables made it into the J.Mol.Spectrosc. archive and the OSU Supplementary archives.  All of the intended tables are contained in this ZIP archive.
ASF RES

S(CN)2: ground state
ASF RES

S(CN)2: v4=1
ASF RES

S(CN)2: v4=2
PAR LIN RES
S(CN)2: triad of interacting states (v8=1), (v9=1), (v4=3)
PAR LIN RES
S(CN)2: tetrad of interacting states (v8=1,v4=1), (v9=1,v4=1), (v4=4), (v3=1)
ASF RES

S(CN)2: v4=5
ASF RES

S(CN)2: v7=1
ASF RES

S(CN)2: (v7=1, v4=1)
ASF RES

34S(CN)2: ground state
ASF RES

S(13CN)(CN): ground state
ASF RES

S(C15N)(CN): ground state











Z.Kisiel, M.Winewisser, B.P.Winnewisser, F.C.De Lucia, D.W.Tokaryk, B.E.Billinghurst,

"Far-Infrared Spectrum of
S(CN)2 Measured with Synchrotron Radiation: Global Analysis of the Available High-Resolution Spectroscopic Data",

J.Phys.Chem. A 117, 13815-13824 (2013).
  [doi]





PAR LIN RES
Global fit of FASSST pure-rotation and synchrotron vibration-rotation data for 13 vibrational states











R.A.H.Butler, D.T.Petkie, P.Helminger, F.C.De Lucia, Z.Kisiel,

"The rotational spectrum of chlorine nitrate (
ClONO2): the ν5/ν6ν9 dyad",

J.Mol.Spectrosc. 243, 1-9 (2007).
  [doi]





PAR LIN RES
The ground state of 35ClONO2 combining hyperfine resolved and hyperfine unresolved data (the .PAR file contains parameters for A- and S-reductions, while the results file is for the S-reduction)
PAR LIN RES
The ground state of 37ClONO2
PAR LIN RES
The ν5/ν6ν9 polyad fit for 35ClONO2 (results file for A-reduction)


RES
The S-reduction output for the above
PAR LIN RES
The ν5/ν6ν9 polyad fit for 37ClONO2 (.PAR allows reproducing both reductions, results file is for S-reduction)











R.A.H.Butler, D.T.Petkie, P.Helminger, F.C.De Lucia, E.Bialkowska-Jaworska, Z.Kisiel,

"The millimeter-wave spectrum of chlorine nitrate (
ClONO2): the ν6 vibrational state",

J.Mol.Spectrosc. 244, 113-116 (2007).
  [doi]





PAR LIN RES
35ClONO2: ν6
PAR LIN RES
37ClONO2: ν6
PAR LIN RES
35ClONO2: ν9
PAR LIN RES
37ClONO2: ν9

RES RES
A-reduction fits for ν9 in 35ClONO2 and 37ClONO2.  The fits above are all for the S-reduction but both types of fits can be reproduced with the parameter sets stored in the .PAR files.











Z.Kisiel,  E.Bialkowska-Jaworska, R.A.H.Butler, D.T.Petkie, P.Helminger, I.R.Medvedev, F.C.De Lucia,
 
"The rotational spectrum of chlorine nitrate (
ClONO2) in the four lowest 9 polyads",

J.Mol.Spectrosc. 254, 78-86 (2009).
  [doi]





PAR LIN RES
35ClONO2: 2ν9ν7 coupled fit.  The .PAR files for the polyads carry undeleted history of the progress of these fits.
PAR LIN RES
37ClONO2: 2ν9ν7 coupled fit
PAR LIN RES
35ClONO2: 3ν9ν7ν9 coupled fit
PAR LIN RES
37ClONO2: 3ν9ν7ν9 coupled fit
PAR LIN RES
35ClONO2: 4ν9ν72ν9 ↔ 2ν7 coupled fit
PAR LIN RES
37ClONO2: 4ν9ν72ν9 ↔ 2ν7 coupled fit
PAR LIN RES
35ClONO2: 5ν9ν73ν9 ↔ 2ν7ν9 coupled fit
PAR LIN RES
37ClONO2: 5ν9ν73ν9 ↔ 2ν7ν9 coupled fit


TXT
Comparison of fitting the 2ν9 dyad in 35ClONO2 to similar deviation of fit with two significantly different fitting schemes: additional criteria need to be applied to decide which fit is more reasonable.











L.Bizzocchi, C.Degli Esposti, L.Dore, Z,Kisiel,
 
"Submillimetre-wave spectrum, 14N-hyperfine structure, and dipole moment of cyclopropyl cyanide
",

J.Mol.Spectrosc. 251, 138-144 (2008).
  [doi]





PAR LIN RES
Global fit for the ground state: data files for SPFIT and results reformatted with PIFORM
QS RES

Dipole moment determination: the data and results files for QSTARK











Z.Kisiel, A.Krasnicki, L.Pszczolkowski, S.T.Shipman, L.Alvarez-Valtierra, B.H.Pate,

"Assignment and analysis of the rotational spectrum of bromoform enabled by broadband FTMW spectroscopy
",

J.Mol.Spectrosc. 257, 177-186 (2009).
  [doi]





PAR LIN RES
CH79Br3: the data and results files for a global SPFIT fit of chirped-pulse FTMW and MMW measurements
PAR LIN RES
CH79Br281Br: the data and results files for a global fit of FTMW and MMW data
PAR LIN RES
CH79Br81Br2: the data and results files for a global fit of FTMW and MMW data
PAR LIN RES
CH81Br3: the data and results files for a global fit of FTMW and MMW data
PAR LIN RES
CD79Br3: the data and results files for a SPFIT fit of chirped-pulse FTMW data
PAR LIN RES
CD79Br281Br: the data and results files for a fit of chirped-pulse FTMW data
PAR LIN RES
CD79Br81Br2: the data and results files for a fit of chirped-pulse FTMW data
PAR LIN RES
CD81Br3: the data and results files for a fit of chirped-pulse FTMW data











Z.Kisiel, L.Pszczolkowski, B.J.Drouin, C.S.Brauer, S.Yu, J.C.Pearson,

"The rotational spectrum of acrylonitrile up to 1.67 THz
",

J.Mol.Spectrosc. 258, 26-34 (2009).
  [doi]





PAR LIN RES
H2CCHCN: effective single state S-reduction fit for the ground state (the .PAR file also contains the A-reduction constants)
PAR LIN RES
H2CCHCN: effective single state S-reduction fit for the v11=1 state (the .PAR file also contains the A-reduction constants)
PAR LIN RES
H2CCHCN: coupled A-reduction fit for the (ground)(v11=1) state (the .PAR file also contains the S-reduction constants)
PAR LIN RES
H213CCHCN: S-reduction fit for the ground state 
PAR LIN RES
H2C13CHCN: S-reduction fit for the ground state
PAR LIN RES
H2CCH13CN: S-reduction fit for the ground state
PAR LIN RES
H2CCHC15N: S-reduction fit for the ground state











A.Krasnicki, Z.Kisiel, B.J.Drouin, J.C.Pearson,

"Terahertz spectroscopy of isotopic acrylonitrile
",

J.Mol.Struct. 1006, 20-27 (2011).
  [doi]





PAR LIN RES
H213CCHCN: coupled fit for the (ground state)↔(v11=1) dyad of states (data files for SPFIT program and results reformatted with PIFORM)
PAR LIN RES
H2CCH13CN: coupled fit for the (ground state)↔(v11=1) dyad of states
PAR LIN RES
H2CCHC15N: coupled fit for the (ground state)↔(v11=1) dyad of states
PAR LIN RES
H2CCDCN: coupled fit for the (ground state)↔(v11=1) dyad of states
PAR LIN RES
H213C13CHCN ground state
PAR LIN RES
H213CCH13CN ground state
PAR LIN RES
H2C13CH13CN ground state
PAR LIN RES
H213CCHC15N ground state
PAR LIN RES
H2C13CHC15N ground state
PAR LIN RES
H2CCH13C15N ground state

STF OUT
The data and results for determination of the complete reSE geometry of acrylonitrile with the STRFIT program

STF OUT
r0 geometry (the input for the rm fits reused by means of the various exclusion features)

STF OUT
rm(1) geometry

STF OUT
rm(1L) partial geometry (not recommended, just exploratory)











A.Krasnicki, Z.Kisiel,

"Electric dipole moments of acrylonitrile and of propionitrile measured in supersonic expansion
",

J.Mol.Spectrosc. 270, 83-87 (2011).
  [doi]





PAR LIN RES
Acrylonitrile: global fit of hyperfine resolved and hyperfine unresolved measurements for fixing the rotational parameters in the dipole moment fit (data files for SPFIT and results reformatted with PIFORM )
QS RES

Acrylonitrile: dipole moment determination (the data and results files for QSTARK)
PAR LIN RES
Propionitrile: global fit encompassing new supersonic expansion measurements for fixing the rotational parameters in the dipole moment fit
QS RES

Propionitrile: dipole moment determination











Z.Kisiel, L.Pszczolkowski, B.J.Drouin, C.S.Brauer, S.Yu, J.C.Pearson, I.R.Medvedev, S.Fortman, C.Neese,

"Broadband rotational spectroscopy of acrylonitrile: Vibrational energies from perturbations
",

J.Mol.Spectrosc. 280, 134-144 (2012).
  [doi]





PAR LIN RES
H2CCHCN: coupled fit of the (ground state)↔(v11=1)↔(v15=1)↔(v11=2) tetrad of states











A.Lopez, B.Tercero, Z.Kisiel, A.M. Daly, C. Bermudez, H. Calcutt, N. Marcelino, S. Viti, B.J. Drouin, I.R. Medvedev, C. F. Neese, L. Pszczołkowski, J. L. Alonso, J. Cernicharo,

"Laboratory characterization and astrophysical detection of vibrationally excited states of vinyl cyanide in Orion-KL",

Astronomy & Astrophysic572, A44 (2014).  [doi]





PAR LIN RES
H2CCHCN: coupled fit for the (v10=1)↔(v11=1,v15=1) dyad of states
PAR LIN RES
coupled fit for the (v15=2)↔(v14=1)↔(v11=3) triad of states
PAR LIN RES
coupled fit for the (v10=1,v11=1)↔(v11=2,v15=1) dyad of states
PAR LIN RES
single state effective fit for the v9=1 state
PAR LIN RES
single state effective fit for the v11=4 state











Z.Kisiel, M.A.Martin-Drumel, O.Pirali,

"Lowest vibrational states of acrylonitrile from microwave and synchrotron radiation spectra
",

J.Mol.Spectrosc. 315, 83-91 (2015).
  [doi]





PAR LIN RES
Global fit subsuming all previous microwave data sets, which are complemented by  synchrotron FTIR data.



Notes:

1/ The SPFIT vibrational indices are: 0 = gs, 1=v11, 2=v15, 3=2v11, 4=v10, 5=v11v15, 6=2v15, 7=v14, 8=3v11, 9=v10v11, 10=2v11v15

2/ Search the results file for the string 'RMS' to jump to the block of subset statistics, which is followed by the block of fitted parameters with standard errors

3/ The data blocks in the 33431 transition LIN and in the results file can be located by searching for the strings:
    'gs' or 'nvm' as used in fig.1 to find blocks of data for a given vibrational state
    'FIR:' to find infrared data
    'fundamental', 'hot' or 'overtone' to find a given type of infrared band

4/ The fit begins to show a roll-over at K=50, and this value has been used as the upper limit on K
5/ There are 487 confidently assigned lines rejected from the fit at the cutoff criterion of 10σ indicating that there are interactions not yet accounted for by the model











Z.Kisiel, C.A.Nixon, M.A.Cordiner, A.E.Thelen, S.B.Charnley,

"Propionitrile in the two lowest excited vibrational states in the laboratory and on Titan
",

J.Mol.Spectrosc. 372, 111324:1-9 (2020).
  [doi]





PAR LIN RES
The data and results files for the coupled fit of the (v13=1)↔(v21=1) dyad of the two lowest excited vibrational states performed with the SPFIT program.











Z.Kisiel, A.Krasnicki,

"The millimetre-wave rotational spectrum of phenylacetylene
",

J.Mol.Spectrosc. 262, 82-88 (2010).
  [doi]





ASF RES

Data and results files for the ground state fitted with Watson's A-reduced asymmetric rotor Hamiltonian by using the ASFIT program.
ASF RES

Data and results files for the ground state fitted with Watson's S-reduced asymmetric rotor Hamiltonian by using the ASFIT program.
PAR LIN RES
The data and results files for the preferred solution I of the A-reduced coupled fit of the (v24=1)↔(v36=1) dyad of the two lowest excited vibrational states performed with the SPFIT program.  The sum and difference linear combinations of the A rotational constants are fitted in order to reduce intercorrelations.


RES
The PIFORM reformatted results file for the alternative solution II.  The .PAR file contains the input for this solution underneath the one for solution I.
PAR LIN RES
The data and results fills for the preferred solution I of the S-reduced coupled fit of the (v24=1)↔(v36=1) dyad of the two lowest excited vibrational states performed with the SPFIT program.


RES
The PIFORM reformatted results file for the alternative solution II.











Z.Kisiel, O.Dorosh, A.Maeda, I.R.Medvedev, F.C.De Lucia, E.Herbst, B.J.Drouin, J.C.Pearson, S.T.Shipman,

"Determination of precise relative energies of conformers of n-propanol by rotational spectroscopy
",

Phys.Chem.Chem.Phys. 12, 8329-8339 (2010).
  [doi]





PAR LIN RES
The data files for the SPFIT program and the PIFORM reformatted results file for the coupled fit of the GtGgGg' conformers of n-propanol.
PAR LIN RES
The data and results files for the excited vibrational state in the Gt conformer.
QS RES

Dipole moment determination for the Gt conformer with QSTARK











C.T.Dewberry, Z.Kisiel, S.A.Cooke,

"The pure rotational spectrum of Difluoroiodomethane, CHF2I
",

J.Mol.Spectrosc. 261, 82-86 (2010).
  [doi]





PAR LIN RES
The data files for the SPFIT program and the PIFORM reformatted results file for the joint fit of supersonic expansion, chirped-pulse FTMW data and room-temperature MMW data (all hyperfine resolved)











A.Krasnicki, Z.Kisiel, W.Jabs, B.P.Winnewisser, M.Winnewisser,

"Analysis of the mm- and submm-wave rotational spectra of isotopic cyanamide: New isotopologues and molecular geometry
",

J.Mol.Spectrosc. 267, 144-149 (2011).
  [doi]





PAR LIN RES
D2N13CN: coupled fit of 0+ and 0- transitions
PAR LIN RES
D215NCN: coupled fit of 0+ and 0- transitions
PAR LIN RES
D2NC15N: coupled fit of 0+ and 0- transitions
PAR LIN RES
HDN13CN: coupled fit of 0+ and 0- transitions
PAR LIN RES
HD15NCN: coupled fit of 0+ and 0- transitions
PAR LIN RES
HDNC15N: coupled fit of 0+ and 0- transitions
PAR LIN RES
H2N13CN: coupled fit of 0+ and 0- transitions
PAR LIN RES
H215NCN: coupled fit of 0+ and 0- transitions
PAR LIN RES
H2NC15N: coupled fit of 0+ and 0- transitions
PAR LIN RES
H215NC15N: coupled fit of 0+ and 0- transitions

STF OUT
The data and results for determination of the complete reSE geometry of cyanamide with the STRFIT program











Z.Kisiel, A.Krasnicki, W.Jabs, E.Herbst, B.P.Winnewisser, M.Winnewisser,

"Rotation and Rotation-Vibration Spectroscopy of the 0+-0- Inversion Doublet in Deuterated Cyanamide
",

J.Phys.Chem. A 117, 9889-9898 (2013).
  [doi]





PAR LIN RES
D2NCN: Fit to microwave and infrared data truncated at Ka=15
CAT INT INP
D2NCN: Room temperature linelist limited to J=80 and Ka=15 and the files necessary for its generation (before use rename the batch input file for the filtering program CATFIL to just catfil.inp)





PAR LIN RES
HDNCN: Fit to microwave and infrared data truncated at Ka=10
CAT INT INP
HDNCN: Room temperature linelist limited to J=50 and Ka=10 and the files necessary for its generation (before use rename the batch input file for the filtering program CATFIL to just catfil.inp)





PAR LIN RES
H2NCN: Fit to microwave and infrared data truncated at Ka=6
CAT INT INP
H2NCN: Room temperature linelist limited to J=70 and Ka=6 and the files necessary for its generation (before use rename the batch input file for the filtering program CATFIL to just catfil.inp)











Z.Kisiel, A.Lesarri, J.L.Neil, M.T.Muckle, B.H.Pate,

"Structure and properties of the (HCl)2H
2O cluster observed by chirped-pulse Fourier transform microwave spectroscopy",

Phys. Chem. Chem. Phys.
13, 13912-13919 (2011).
  [doi]





PAR LIN RES
The data files for the SPFIT program and the PIFORM reformatted results of fit for the S state of the parent isotopic species of (HCl)2H2O.
PAR LIN RES
The data files and the results of fit for the S state of the 37Cl1 species of (HCl)2H2O.
PAR LIN RES
The data files and the results of fit for the S state of the 37Cl2 species of (HCl)2H2O.
PAR LIN RES
The data files and the results of fit for the S state of the 37Cl137Cl2 species of (HCl)2H2O.
PAR LIN RES
The data files and the results of fit for the S state of the 18O species of (HCl)2H2O.
NOTE how the .PAR file is used as a notebook recording the progress of the analysis.
PAR LIN RES
The data files and the results of fit for the HDO species of (HCl)2H2O
PAR LIN RES
The data files and the results of fit for the W state of the parent isotopic species of (HCl)2H2O











E.Bialkowska-Jaworska, L.Pszczolkowski, Z.Kisiel,

"Comprehensive analysis of the rotational spectrum of 2,2-dichloropropane
",

J.Mol.Spectrosc. 308-309, 20-27 (2015).
  [doi]





PAR LIN RES
(CH3)2C35Cl2 ground state:  data files for SPFIT and PIFORM reformatted results
PAR LIN RES
(CH3)2C37Cl35Cl ground state
PAR LIN RES
(CH3)2C37Cl2 ground state
ASF RES

13CH312CH3C35Cl2 ground state: data and results files from ASFIT
PAR LIN RES
(CH3)2C35Cl2 lower dyad: coupled fit of (v9=1)↔(v14=1)
PAR LIN RES
(CH3)2C37Cl35Cl lower dyad: coupled fit of (v9=1)↔(v14=1)
PAR LIN RES
(CH3)2C35Cl2 upper dyad: coupled fit of (v13=1)↔(v27=1)
PAR LIN RES
(CH3)2C37Cl35Cl upper dyad: coupled fit of (v13=1)↔(v27=1)
PAR LIN RES
(CH3)2C35Cl2 triad: coupled fit of (v26=1)↔(v8=1)↔(v21=1)
PAR LIN RES
(CH3)2C37Cl35Cl triad: coupled fit of (v26=1)↔(v8=1)↔(v21=1)
PAR LIN RES
(CH3)2C35Cl2 ground state: fit of hyperfine resolved measurements
PAR LIN RES
(CH3)2C37Cl35Cl ground state: it of hyperfine resolved measurements


QDG
TheQDIAG.INP file for the QDIAG program for converting hyperfine tensor from principal inertial to principal quadrupole axis.  Various alternative inputs and results are included below the active part of the input.
STF OUT

Fit of the least-squares reSE geometry (input and output for STRFIT)











Z.Kisiel, L.Pszczolkowski, E.Bialkowska-Jaworska,  S.B.Charnley,

"Millimetre wave rotational spectrum of glycolic acid
",

J.Mol.Spectrosc. 321, 13-22 (2016).
  [doi]





PAR LIN RES
SSC conformer, ground state: data files for SPFIT and results reformatted with PIFORM
PAR LIN RES
SSC conformer, v21=1
PAR LIN RES
SSC conformer, v21=2
PAR LIN RES
SSC conformer, lower triad: coupled fit of (v14=1)↔(v20=1)↔(v21=3)
PAR LIN RES
SSC conformer, upper triad: coupled fit of (v14=1,v21=1)↔(v20=1,v21=1)↔(v21=4)
PAR LIN RES
AAT conformer, ground state











I.Uriarte, Z.Kisiel, E.Bialkowska-Jaworska,  L.Pszczolkowski, P.Ecija, F.J.Basterretxea, E.J.Cocinero,

"Comprehensive rotational spectroscopy of the newly identified atmospheric ozone depleter CF3CH2Cl
",

J.Mol.Spectrosc. 337, 37-45 (2017).
  [doi]





PAR LIN RES
CF3CH235Cl ground state: global fit of hyperfine resolved and hyperfine unresolved measurements (data files for SPFIT and results reformatted with PIFORM)
PAR LIN RES
CF3CH237Cl ground state: global fit
PAR LIN RES
CF3CH235Cl, v18=1
PAR LIN RES
CF3CH235Cl, v18=2
PAR LIN RES
CF3CH235Cl, v11=1
PAR LIN RES
CF3CH237Cl, v18=1
PAR LIN RES
13C135Cl isotopic species, g.s.
PAR LIN RES
13C235Cl isotopic species, g.s.
PAR LIN RES
13C137Cl isotopic species, g.s.
PAR LIN RES
13C237Cl isotopic species, g.s.
STF OUT

Fit of the least-squares reSE geometry (input and output for STRFIT)











O.Dorosh, E.Bialkowska-Jaworska, Z.Kisiel, L.Pszczolkowski, M.Kanska, T.M.Krygowski, H.Mader,

"The complete molecular geometry and electric dipole moment of salicyl aldehyde from rotational spectroscopy
",

J.Mol.Spectrosc. 335, 3-12 (2017).
  [doi]





ASF RES

Parent isotopic species, ground state (data and results files for ASFIT)
ASF RES

Parent, v39=1
ASF RES

Parent, v38=1
ASF RES

Parent, v27=1
ASF RES

Parent, v39=2
ASF RES

Parent, v37=1
ASF RES

13C1 (isotopic species with single carbon substitution)
ASF RES

13C2
ASF RES

13C3
ASF RES

13C4
ASF RES

13C5
ASF RES

13C6
ASF RES

13C7
ASF RES

18O1 (isotopic species with single oxygen substitution)
ASF RES

18O2
PAR LIN RES
D1 singly deuterium substituted isotopic species (D1 = OD, this species has resolved deuterium hyperfine  structure on some lines so that the fit was made with SPFIT)
ASF RES

D3
ASF RES

D4
ASF RES

D5
ASF RES

D6
ASF RES

D7
ASF RES

D3,D5 (isotopic species with multiple deuterium substitution)
ASF RES

D1,D3
ASF RES

D1,D5
ASF RES

D1,D7
ASF RES

D4,D6
ASF RES

D1,D3,D5
ASF RES

D3,D4,D5,D6
ASF RES

D1,D3,D4,D5,D6
ASF RES

D7,13C1 (isotopic species with mixed isotopic substitution)
ASF RES

D7,13C2
KRA OUT

Substitution Cartesian coordinates (input and output for KRA)
EVA OUT

Substitution bonds and angles (input and output for EVAL)
STF OUT TXT
Fit of the least-squares reSE geometry (input and output for STRFIT).  The sample data input file is for a fit to only the B and C rotational constants.

Fits to three different pairs of rotational constants were averaged in order to reduce the uncertainty arising from incompletely cancelled inertia defect.  Several different connectivity declarations were also used in order to derive all desired structural parameters.  The details are in the TXT file.

QS
RES


Dipole moment determination with QSTARK
















Z.Kisiel, J.Kosarzewski,

"Identification of Trace 2-Chloropropene with a New Chirped Pulse Microwave Spectrometer
",

Acta.Physica Polonica A 131, 311-317 (2017).
  [doi]  Reprint





PAR LIN RES
The global fit of chirped pulse FTMW, waveguide FTMW, and MMW data
NOTE


Notes on the fit











M.A.Zdanovskaia, B.J.Esselman, H.S.Lau, D.M.Bates, R.C.Woods, R.J.McMahon, Z.Kisiel,

"The 103–360 GHz rotational spectrum of benzonitrile, the first interstellar benzene derivative detected by radioastronomy
",

J.Mol.Spectrosc. 351, 39-48 (2018).
  [doi]





PAR LIN RES
The global fit of hyperfine resolved (v=0) and hyperfine unresolved (v=1) data.  Spin weights from two pairs of symmetry equivalent hydrogens are accounted for (data files for SPFIT and results reformatted with PIFORM)
PAR LIN RES
Coupled fit of the (v22=1)↔(v33=1) dyad of the two lowest excited vibrational states.  The SPFIT vibrational labels are 0 = g.s., 1 = (v22=1), 2 = (v33=1), but the g.s. parameters are fixed.  The A rotational constants for the two excited states are fitted as linear combinations in order to reduce intercorrelations.
PAR LIN RES
Coupled fit as above, except for the standard way of fitting the excited state A rotational constants.  The .LIN file is actually identical with that in the previous fit but is duplicated for completeness.
PAR LIN RES
Fit of the hyperfine unresolved frequencies for the g.s. and the (v22=1)↔(v33=1) dyad.  The ground state parameters are somewhat less precise than with the global ground state fit due to not using supersonic expansion data, but allows generation of line lists inclusive of uncertainties.
VAR INT CAT
The files necessary for line list generation, and the .CAT line list for 300K and up to 450GHz, comprising transitions for the g.s. and the two lowest excited vibrational states.

The .VAR file contains nuclear spin statistical weights for all three states so that the partition function value in the .INT file is consistent with CASE 2 discussed in the crib-sheet hints for SPCAT.

NOTE that due to a peculiarity of our web server the .VAR extension cannot be used so that it was changed to .VARM for transmission.  Just remove the last letter for use.











Z.Kisiel, L.Pszczolkowski, E.Bialkowska-Jaworska, M.Jaworski, I.Uriarte, F.J.Basterretxea, E.J.Cocinero,

"Rotational spectroscopy update for the newly identified atmospheric ozone depleter CF3CCl3
",

J.Mol.Spectrosc. 352, 1-9 (2018).
  [doi]





PAR LIN RES
CF3C35Cl3, ground state: symmetric top global fit of hyperfine resolved supersonic-expansion FTMW, and hyperfine uresolved MMW data (input files for SPFIT and results reformatted with PIFORM). 
Statistics for fitting the various data subsets are obtained by assigning a different v identifier to each subset.
PAR LIN RES
CF3C37Cl35Cl2, ground state: asymmetric top global fit (but with symmetric quantisation) of FTMW+MMW data
PAR LIN RES
CF3C37Cl235Cl, ground state: fit to FTMW data
PAR LIN RES
CF3C37Cl3, symmetric top, ground state: fit to FTMW data
ASF RES

CF3C37Cl35Cl2, v18=1: fit to MMW data (data and results files for ASFIT)
KRA OUT EVA
Evaluation of ClCl distance from 37Cl substitution in CF3C35Cl3 using KRA  and EVAL (KRA input and output, while EVAL output is pasted below its input)
KRA OUT EVA
Evaluation of ClCl distance from 35Cl substitution in CF3C37Cl3
STF OUT

Fit of the least-squares r0 geometry (input and output for STRFIT)
STF OUT

Fit of the least-squares reSE geometry











Z.Kisiel, E.Bialkowska-Jaworska, J.Chen, L.Pszczolkowski,, P.Gawrys, J.Kosarzewski,

"Rotational spectroscopy and precise molecular structure of 1,2-dichlorobenzene
",

J.Mol.Spectrosc. 374, 111380:1-10 (2020).
  [doi]





PAR LIN RES
Parent, ground state: global fit of hyperfine resolved and hyperfine unresolved data from cavity and chirped pulse supersonic expansion FTMW, waveguide FTMW, and MMW (input files for SPFIT and results reformatted with PIFORM). 
PAR LIN RES
37Cl35Cl, ground state:global fit of hyperfine resolved and hyperfine unresolved data
PAR LIN RES
37Cl37Cl, ground state
PAR LIN RES
13C2, ground state
PAR LIN RES
13C3, ground state
PAR LIN RES
13C4, ground state
PAR LIN RES
Parent, v16=1
PAR LIN RES
Parent, v11=1
PAR LIN RES
Parent, v20=1
PAR LIN RES
37Cl35Cl, v16=1
PAR LIN RES
37Cl35Cl, v11=1
PAR LIN RES
37Cl35Cl, v20=1
PAR LIN RES
35Cl135Cl2 D3, ground state
PAR LIN RES
35Cl137Cl2 D3, ground state
PAR LIN RES
37Cl135Cl2 D3, ground state
PAR LIN RES
35Cl135Cl2 D4, ground state
PAR LIN RES
35Cl137Cl2 D4, ground state
PAR LIN RES
37Cl135Cl2 D4, ground state











Z. Kisiel, L. Kolesniková, A. Belloche, J.-C. Guillemin, L.Pszczółkowski, E.R.Alonso, R.T.Garrod, E.Białkowska-Jaworska, I.León, H.S.P. Müller, K.M. Menten, and J.L.Alonso,

"Millimetre-wave laboratory study of glycinamide and search for it with ALMA toward Sagittarius B2(N)"

Astronomy & Astrophysics 657, A99:1-17 (2022).  [doi]





PAR LIN RES
Ground state tunneling doublet: data files for SPFIT and results reformatted with PIFORM
PAR LIN RES
v27=1 tunneling doublet files
PAR LIN RES
v26=1 tunneling doublet files
PAR LIN RES
Three lowest tunneling doublets collected into a single fit


INT
The control file for SPCAT to produce the .CAT file with predictions (but only  once the three doublets fit is run as a prerequisite).











A.Krasnicki, Z.Kisiel, J.C.Guillemin,

"From Molecular to Cluster Properties: Rotational Spectroscopy of 2-Aminopyridine and of its Biomimetic Cluster with Water
",

Molecules 26, 6870:1-14 (2021).
  [doi]









2-Aminopyridine:
PAR LIN RES
Parent isotopic species of 2-aminopyridine, 0+ substate: global fit of hyperfine resolved and hyperfine unresolved data from cavity supersonic expansion FTMW, waveguide CMW, and MMW (input files for SPFIT and results reformatted with PIFORM). 
ASF RES

Parent isotopic species of 2-aminopyridine, 0- substate: room-temperature data only (data and results files for ASFIT)
PAR LIN RES
d-5 isotopic species of 2-aminopyridine, 0+ substate: supersonic expansion FTMW data
PAR LIN RES
d-6 isotopic species of 2-aminopyridine, 0+ substate: supersonic expansion FTMW data









2-Aminopyridine...H2O:
PAR LIN RES
Parent isotopic species of 2-aminopyridine...H2O: supersonic expansion FTMW data
PAR LIN RES
d-6 isotopic species of 2-aminopyridine...H2O
PAR LIN RES
d-6 isotopic species of 2-aminopyridine...H2O











M.Melosso, L.Bizzocchi, L.Dore, Z.Kisiel, N.Jiang, S.Spezzano, P.Caselli, J.Gauss, C.Puzzarini,

"Improved centrifugal and hyperfine analysis of ND2H and NH2D and its application to the spectral line survey of L1544"

J.Mol.Spectrosc. 377, 111431:1-8 (2021).  [doi]





PAR LIN RES
Ground state tunneling doublet of NH2D: data files for SPFIT and results of fit reformatted with PIFORM. The collected frequencies comprise of CMW, MMW, SMM and FIR measurements, inclusive of new Lamb dip resolved hyperfine structure.

The first three quantum numbers are standard asymmetric rotor labels. The fourth is a vibrational label serving to distinguish data subsets, where v=0,1 or 2,3 or 4,5 are used for 0+, 0- substates, and depend on the degree of resolution of the hyperfine structure (only nitrogen structure, both nitrogen and deuterium, and hyperfine unresolved, respectively).  The two final, fifth and sixth,  quantum numbers are spins corresponding to inclusion of N and D spins, respectively.

The standard PIFORM output has two additional columns of blanks inserted in order to break the clash between the last quantum number and the first digit of SMM frequency.
PAR LIN RES
Ground state tunneling doublet of ND2H: data files as above.











Z.Kisiel,

"Further rotational spectroscopy of phenol: sextic centrifugal distortion and vibrational satellites"

J.Mol.Spectrosc. 386, 111630:1-9 (2022).  [doi]





PAR LIN RES
Ground state tunneling doublet: global fit of collected legacy data + waveguide FTMW + new MMW + cavity FTMW (input files for SPFIT and results reformatted with PIFORM). 
PAR LIN RES
vb=1 satellite (244 cm-1)
PAR LIN RES
vt=1 satellite (309 cm-1)
PAR LIN RES
v18b=1 satellite (403 cm-1)
PAR LIN RES
v16a=1 satellite (408.5 cm-1)
PAR LIN RES
vb=2 satellite (488 cm-1)
PAR LIN RES
v16b=1 satellite (503 cm-1)
PAR LIN RES
v6a=1 satellite (526 cm-1)
PLOT



PDF file with data distribution plots for all of the fits above.











D. J. Tyree, T. W. Chapman, I. R. Medvedev, Z. Kisiel,

"Rotational spectroscopy of urea up to 500 GHz: The ground and eight excited        vibrational states"

J.Mol.Spectrosc. 390, 111706:1-11 (2022).  [doi]





PAR LIN RES
Ground state:  fit of Watson's IIIl asymmetric rotor Hamiltonian to collected spectroscopic data   (input files for SPFIT and results reformatted with PIFORM). 
PAR LIN RES
v1 satellite, 61(8) cm-1
PAR LIN RES
v2 and v3 satellites, coupled fit in the framework of a-axis Coriolis resonance (ca 260 cm-1, DE=1.447941(2) cm-1
PAR LIN RES
v4 and v5 satellites, coupled fit in the framework of a-axis Coriolis resonance (ca 405 cm-1, DE=17.197496(10) cm-1
PAR LIN RES
v6 satellite, 453(12) cm-1
PAR LIN RES
v7 satellite, 505(11) cm-1
PAR LIN RES
v8 satellite, 571(13) cm-1











Z.Kisiel and K.Habdas,

"Electric Dipole Moments from Stark Effect in Supersonic Expansion: n-propanol, n-butanol, and n-butyl cyanide"

Molecules 28, 1692:1-18 (2023).  [doi]









n-Propanol, Aa conformer:
ASF RES

Determination of spectroscopic constants for use as fixed values in the dipole moment fit (input and output files for the ASFIT program)
TXT


The table of newly measured A and E internal rotation components and evaluation of their average frequencies for the fit above.
QS RES

The data and output files for the dipole moment fit with the QSTARK program.









n-Butanol, TGt conformer:
ASF RES

Determination of spectroscopic constants for use as fixed values in the dipole moment fit (input and output files for the ASFIT program)
QS RES

The data and output files for the dipole moment fit with the QSTARK program.









n-Butanol, GTg' conformer:
ASF RES

Determination of spectroscopic constants for use as fixed values in the dipole moment fit (input and output files for the ASFIT program)
QS RES

The data and output files for the dipole moment fit with the QSTARK program.









n-Propyl cyanide, AA conformer:
PAR LIN RES
Determination of spectroscopic constants for use as fixed values in the dipole moment fit (input files for SPFIT and results reformatted with PIFORM
QS RES

The data and output files for the dipole moment fit with the QSTARK program.









n-Propyl cyanide, GA conformer:
PAR LIN RES
Determination of spectroscopic constants for use as fixed values in the dipole moment fit (input files for SPFIT and results reformatted with PIFORM
QS RES

The data and output files for the dipole moment fit with the QSTARK program.









Calibration of Stark electrode separation (Ne carrier gas):
QS RES

Calibration with methyl cyanide
QS RES

Calibration with methyl iodide











A.L.Steber, B.Temelso, Z.Kisiel, M.Schnell, and C.Perez,

"Rotational dive into the water clusters on a simple sugar substrate"

PNAS 120, e2214970120:1-8 (2023).  [doi]









Glycolaldehyde - (H2O):
PAR LIN RES
18O1 species (parent species from Aviles-Moreno et al. JACS 2006,128,10467)
STF OUT

Fit of the partial least-squares r0 geometry (input and output for STRFIT)
EVA OUT

O...O distances in the r0 geometry (input and output for EVAL)
KRA OUT

Substitution, rs, coordinates of the water oxygen atom (input and output for KRA)
FIG


Correlation between oxygen atom labels









Glycolaldehyde - (H2O)2:
PAR LIN RES
0+ tunneling substate of parent isotopic species (input files for SPFIT and results reformatted with PIFORM). 
PAR LIN RES
18O1 species, 0+ tunneling substate
PAR LIN RES
18O2 species, 0+ tunneling substate
PAR LIN RES
0- tunneling substate of parent isotopic species
PAR LIN RES
18O1 species, 0- tunneling substate
PAR LIN RES
18O2 species, 0- tunneling substate
STF OUT

Fit of the partial least-squares r0 geometry (input and output for STRFIT)
EVA OUT

O...O distances in the r0 geometry (input and output for EVAL)
KRA OUT

Substitution, rs, coordinates of the water oxygen atoms (input and output for KRA)
FIG


Correlation between oxygen atom labels









Glycolaldehyde - (H2O)3:
PAR LIN RES
parent isotopic species (input files for SPFIT and results reformatted with PIFORM)
PAR LIN RES
18O1 species
PAR LIN RES
18O2 species
PAR LIN RES
18O3 species
STF OUT

Fit of the partial least-squares r0 geometry (input and output for STRFIT)
EVA OUT

O...O distances in the r0 geometry (input and output for EVAL)
KRA OUT

Substitution, rs, coordinates of the water oxygen atoms (input and output for KRA)
FIG


Correlation between oxygen atom labels









Glycolaldehyde - (H2O)4:
PAR LIN RES
parent isotopic species (input files for SPFIT and results reformatted with PIFORM)
PAR LIN RES
18O1 species
PAR LIN RES
18O2 species
PAR LIN RES
18O3 species
PAR LIN RES
18O4 species
STF OUT

Fit of the partial least-squares r0 geometry (input and output for STRFIT)
EVA OUT

O...O distances in the r0 geometry (input and output for EVAL)
KRA OUT

Substitution, rs, coordinates of the water oxygen atoms (input and output for KRA)
FIG


Correlation between oxygen atom labels









Glycolaldehyde - (H2O)5:
PAR LIN RES
parent isotopic species (input files for SPFIT and results reformatted with PIFORM)
PAR LIN RES
18O2 species
PAR LIN RES
18O3 species
PAR LIN RES
18O4 species
PAR LIN RES
18O5 species
PAR LIN RES
18O6 species
STF OUT

Fit of the partial least-squares r0 geometry (input and output for STRFIT)
EVA OUT

O...O distances in the r0 geometry (input and output for EVAL)
KRA OUT

Substitution, rs, coordinates of the water oxygen atoms (input and output for KRA)
FIG


Correlation between oxygen atom labels









Glycolaldehyde - (H2O)6:
PAR LIN RES
parent isotopic species (input files for SPFIT and results reformatted with PIFORM)
PAR LIN RES
18O1 species
PAR LIN RES
18O2 species
PAR LIN RES
18O3 species
PAR LIN RES
18O4 species
PAR LIN RES
18O5 species
PAR LIN RES
18O6 species
STF OUT

Fit of the partial least-squares r0 geometry (input and output for STRFIT)
EVA OUT

O...O distances in the r0 geometry (input and output for EVAL)
KRA OUT

Substitution, rs, coordinates of the water oxygen atoms (input and output for KRA)
FIG


Correlation between oxygen atom labels


The PROSPE table of programs