Scientific papers presenting results obtained with the Laplace DLTS technique

The technique

  1. Laplace deep level transient spectroscopy: Embodiment and evolution, A.R. Peaker, V.P. Markevich, I.D. Hawkins, B. Hamilton, K. Bonde Nielsen, K. Gościński, Physica B: Condensed Matter. 407, 3026-3030 (2012 August) (http://dx NULL.doi NULL.org/10 NULL.1016/j NULL.physb NULL.2011 NULL.08 NULL.107)
  2. Relaxation Spectroscopy of Deep Levels in Semiconductors: Laplace–DLTS Method, M. N. Levin, A. E. Bormontov, A. É. Akhkubekov, and E. A. Tatokhin, Technical Physics Letters, 2010, Vol. 36, No. 11, pp. 1001–1005 (http://dx NULL.doi NULL.org/10 NULL.1134/S106378501011009X)
  3. Laplace-DLTS method with the regularization parameter chosen from the L curve, M. N. Levin, A. V. Tatarintzev, A. E. Akhkubekov, Semiconductors, May 2009, Vol 43, Issue 5, pp 586-589 (http://dx NULL.doi NULL.org/10 NULL.1134/S1063782609050078)
  4. Laplace-transform deep-level spectroscopy: the technique and its applications to the study of point defects in semiconductors, L. Dobaczewski, A. R. Peaker, and K. Bonde Nielsen, J. Appl. Phys. (Applied Physics Reviews), 96, 4689 (2004) (http://dx NULL.doi NULL.org/10 NULL.1063/1 NULL.1794897). PDF (900kB)
  5. Fine Structure Observed in the Thermal Emission Process for Defects in Semiconductors, L. Dobaczewski and M. Surma, Proceedings of the VI Defect Recognition and Image Processing Conference, Boulder, 1995, (invited talk), Institute of Physics Conference Series № 149, p313. (1996)
  6. Laplace transform deep level transient spectroscopy: a new insight into defect microscopy, L. Dobaczewski, I. D. Hawkins, and A. R. Peaker, 1st Int. Conf. on Materials for Microelectronics, Barcelona, 1994, Material Science and Technology vol 11, p1071 (1995)
  7. A High Resolution Method for the Analysis of Admittance Spectroscopy Data, D. Maier, P.Hug, M.Fiederle, C.Eiche, D.Ebling, and J. Weese J. Appl. Phys. vol77, p3851-3857 (1995) (http://dx NULL.doi NULL.org/10 NULL.1063/1 NULL.358562)
  8. Laplace transform spectroscopic studies of defects in semiconductors, L. Dobaczewski, P. Kaczor, I.D. Hawkins, and A.R. Peaker, J. Appl. Phys. vol 76, p194 (1994) (http://scitation NULL.aip NULL.org/getabs/servlet/GetabsServlet?prog=normal&id=JAPIAU000076000001000194000001&idtype=cvips&gifs=yes) , PDF (730kB)
  9. Comment on Inverse Problems for the nonexponential deep level transient spectroscopy analysis in semiconductor materials with strong disorder: Theoretical and computational aspects, C.Eiche, D.Maier, J. Weese, J. Honerkamp, and K.W.Benz, [J.Appl.Phys. vol74, 291 (1993)]; J. Appl. Phys. vol75 p1242 (1994)
  10. A regularisation method for nonlinear ill-posed problems, J. Weese, Comp. Phys. Comm. vol 77, p429-440 (1993) (http://dx NULL.doi NULL.org/10 NULL.1016/0010-4655%2893%2990187-H)
  11. Analysis of photoinduced current transient spectroscopy (PICTS) data by a regularisation method, C.Eiche, D.Maier, M.Schneider, D.Sinerius, J.Weese, K.W.Benz, and J. Honerkamp, J.Phys. Condens. Matter vol 4, p6131-6140 (1992)
  12. Tikhonovs regularisation method for ill-posed problems, J.Honerkamp and J. Weese, Continuum Mech. Thermodyn.vol 2 p17-30 (1990)

[Top]

Silicon

  1. Isolated Ti in Si: Deep level transient spectroscopy, minority carrier transient spectroscopy, and high-resolution Laplace deep level transient spectroscopy studies, L. Scheffler, Vl. Kolkovsky, and J. Weber, J. Appl. Phys. 117, 045713 (January 2015) (http://dx NULL.doi NULL.org/10 NULL.1063/1 NULL.4906855)
  2. Transition metals (Ti and Co) in silicon and their complexes with hydrogen: A Laplace DLTS study, Vl. Kolkovsky, L. Scheffler, J. Weber, Physica B: Condensed Matter, Volume 439, April 2014, Pages 24–28 (http://dx NULL.doi NULL.org/10 NULL.1016/j NULL.physb NULL.2013 NULL.11 NULL.005)
  3. Molybdenum nano-precipitates in silicon: A TEM and DLTS study, S. Leonard, V. P. Markevich, A. R. Peaker, B. Hamilton, K. Youssef and G. Rozgonyi, Physica Status Solidi. B: Basic Research. 251, 2201-2204 (2014 September) (http://dx NULL.doi NULL.org/10 NULL.1002/pssb NULL.201400065)
  4. Donor levels of the divacancy-oxygen defect in silicon, V. P. Markevich, A. R. Peaker, B. Hamilton, S. B. Lastovskii, and L. I. Murin’ J. Appl. Physics. 115, pp 012004, 1-6 (2014 January) (http://dx NULL.doi NULL.org/10 NULL.1063/1 NULL.4837995)
  5. Recombination via nano-precipitates… a new mechanism for efficiency loss in solar silicon?, A.R. Peaker, B. Hamilton, S. Leonard, V.P. Markevich, K. Youssef, G. Rozgonyi, Proceedings of 40th IEEE Photovoltaic Specialist Conference, PVSC 2014. Institute of Electrical and Electronics Engineers: pp37-41. (2014) (http://dx NULL.doi NULL.org/10 NULL.1109/PVSC NULL.2014 NULL.6925076)
  6. The Trivacancy and Trivacancy-Oxygen Family of Defects in Silicon, V. P. Markevich, A. R. Peaker, B. Hamilton, S.B. Lastovskii, L. I. Murin, J. Coutinho, M. J. Rayson, P. R. Briddon, B. G. Svensson, Solid State Phenomena. 2014 January; 205-206 pp181-190. (2014) (http://dx NULL.doi NULL.org/10 NULL.4028/www NULL.scientific NULL.net/SSP NULL.205-206 NULL.181)
  7. New Results on the Electrical Activity of 3d-Transition Metal Impurities in Silicon, J. Weber, L. Scheffler, V. Kolkovski, N. Yarykin, Solid State Phenomena, Vols. 205-206, pp. 245-254, Oct. 2013, (http://www NULL.scientific NULL.net/SSP NULL.205-206 NULL.245)
  8. Electronic and dynamical properties of the silicon trivacancy, J. Coutinho, V. P. Markevich, A. R. Peaker, B. Hamilton, S. B. Lastovskii, L. I. Murin, B. J. Svensson, M. J. Rayson, and P. R. Briddon, Physical Review B.Vol 86, (2012 November) (http://dx NULL.doi NULL.org/10 NULL.1103/PhysRevB NULL.86 NULL.174101)
  9. Recombination via point defects and their complexes in solar silicon, A. R. Peaker, V. P. Markevich, B. Hamilton, G. Parada, A. Dudas, A. Pap, E. Don, B. Lim, J. Schmidt, L. Yu, Y. Yoon, and G. Rozgonyi, Physica Status Solidi. A: Applications and Materials Science, 209(10): 1884-1893 (2012 October) (http://dx NULL.doi NULL.org/10 NULL.1002/pssa NULL.201200216)
  10. Reconfigurations and diffusion of trivacancy in silicon, V.P. Markevich, A.R. Peaker, B. Hamilton, S.B. Lastovskii, L.I. Murin, J. Coutinho, A.V. Markevich, M.J. Rayson, P.R. Briddon, B.G. Svensson, Physica B: Condensed Matter. 2012 August; 407(15): 2974-2977 (http://dx NULL.doi NULL.org/10 NULL.1016/j NULL.physb NULL.2011 NULL.08 NULL.001)
  11. A re-examination of cobalt-related defects in n- and p-type silicon, L. Scheffler, V. Kolkovsky, J. Weber, Physica Status Solidi (A) Applications and Materials Science Vol. 209, Issue 10, October 2012, Pages 1913-1916 (http://dx NULL.doi NULL.org/10 NULL.1002/pssa NULL.201200140)
  12. A re-examination of the interstitial Ti levels in Si, V. Kolkovsky, I. Scheffler, J. Weber, Physica Status Solidi (C) Current Topics in Solid State Physics, Vol 9, Issue 10-11, October 2012, Pages 1996-1999 (http://dx NULL.doi NULL.org/10 NULL.1002/pssc NULL.201200141)
  13. Radiation-induced Defect Reactions in Tin-doped Ge Crystals, Vladimir P. Markevich, Anthony R. Peaker, Bruce Hamilton, Valentin V. Litvinov, Yurii M. Pokotilo, Alla N. Petukh, Stanislav B. Lastovskii, Jose Coutinho, Mark J. Rayson, Patrick Briddon, Patrick R. Briddon, Solid State Phenomena. 2011 August; 178: 392-397 (http://dx NULL.doi NULL.org/10 NULL.4028/www NULL.scientific NULL.net/SSP NULL.178-179 NULL.392)
  14. Structure and electronic properties of trivacancy and trivacancy-oxygen complexes in silicon, V. P. Markevich, A. R. Peaker, B. Hamilton, S. B. Lastovskii, L. I. Murin, J. Coutinho, V. J. B. Torres, L. Dobaczewski, and B. G. Svensson, Phys. Status Solidi A. 2011 January; 208(3): 568-571 (http://dx NULL.doi NULL.org/10 NULL.1002/pssa NULL.201000265)
  15. Formation of Radiation-induced Defects in Si Crystals Irradiated with Electrons at Elevated Temperatures, V.P  Markevich,  A.R. Peaker, S.B. Lastovskii, V.E. Gusakov, I.F. Medvedeva, L.I. Murin, Diffusion and Defect Data Part B (Solid State Phenomena) 156, (http://dx NULL.doi NULL.org/10 NULL.4028/www NULL.scientific NULL.net/SSP NULL.156-158 NULL.299)299-304 ( (http://dx NULL.doi NULL.org/10 NULL.4028/www NULL.scientific NULL.net/SSP NULL.156-158 NULL.299)2010 June) (http://dx NULL.doi NULL.org/10 NULL.4028/www NULL.scientific NULL.net/SSP NULL.156-158 NULL.299)
  16. Structure and electronic properties of trivacancy and trivacancy-oxygen complexes in silicon, V. P. Markevich, A. R. Peaker, B. Hamilton, S. B. Lastovskii, L. I. Murin, J. Coutinho, V. J. B. Torres, L. Dobaczewski, and B. G. Svensson, Phys. Status Solidi A 208 568-571 (2010 December) (http://dx NULL.doi NULL.org/10 NULL.1002/pssa NULL.201000265)
  17. Trivacancy and trivacancy-oxygen complexes in silicon: experiments and ab initio modeling, V. P. Markevich, A. R. Peaker, S. B. Lastovskii, L. I. Murin, J. Coutinho, V. J. B. Torres, P. R. Briddon, L. Dobaczewski, E. V. Monakhov, and B. G. Svensson, Phys Rev B. 80, 235207 (2009 December) (http://dx NULL.doi NULL.org/10 NULL.1103/PhysRevB NULL.80 NULL.235207)
  18. The E-centre in silicon has a donor level in the band gap, A. Nylandsted Larsen, A. Mesli, K. Bonde Nielsen, and H. Kortegaard Nielsen, L. Dobaczewski,  J. Adey,  D. W. Palmer, R. Jones, P. R. Briddon, S. Öberg, Phys. Rev. Lett, 97, 106402 (2006) (http://dx NULL.doi NULL.org/10 NULL.1103/PhysRevLett NULL.97 NULL.106402)
  19. Electrical activity of PtH2 complex in silicon: High-resolution Laplace deep-level spectroscopy and uniaxial-stress technique, Vl. Kolkovsky, O. Andersen, L. Dobaczewski, A. R. Peaker, and K. Bonde Nielsen, Phys. Rev. B, 73, 195209 (2006) (http://dx NULL.doi NULL.org/10 NULL.1103/PhysRevB NULL.73 NULL.195209)
  20. Effect of stress on the acceptor level of the vacancy-oxygen-hydrogen complex in Si, J. Coutinho, O. Andersen, L. Dobaczewski, K. Bonde Nielsen, A. R. Peaker, R. Jones, S. Öberg, and P. R. Briddon, Phys. Rev. B, 68, 184106 (2003) (http://dx NULL.doi NULL.org/10 NULL.1103/PhysRevB NULL.68 NULL.184106)
  21. The electrical activity of the carbon – hydrogen center in Si, O. Andersen, L. Dobaczewski, A. R. Peaker, K. Bonde Nielsen, B. Hourahine, R. Jones, P. R. Briddon, and S. Oberg, Phys. Rev. B, 66, 235205, (2002) (http://dx NULL.doi NULL.org/10 NULL.1103/PhysRevB NULL.66 NULL.235205)
  22. Saddle point for oxygen re-orientation in the vicinity of a silicon vacancy, L. Dobaczewski, O. Andersen, L. Rubaldo, K. Gościński, V. P. Markevich, A. R. Peaker, and K. Bonde Nielsen, Phys. Rev. B, 67, 195204 (2003) (http://scitation NULL.aip NULL.org/getabs/servlet/GetabsServlet?prog=normal&id=PRBMDO000067000019195204000001&idtype=cvips&gifs=yes), PDF (100kB)
  23. Acceptor state of monatomic hydrogen in silicon and the role of oxygen, K. Bonde Nielsen, L. Dobaczewski, S. Søgård, and B. Bech Nielsen, Phys. Rev. B, 65, 075205, (2002) (http://prola NULL.aps NULL.org/abstract/PRB/v65/i7/e075205), PDF (90kB)
  24. Piezoscopic deep level transient spectroscopy studies of the silicon divacancy, L. Dobaczewski, K. Gościński, Z. R. Żytkiewicz, K. Bonde Nielsen, L. Rubaldo, O. Andersen, and A. R. Peaker, Phys. Rev. B 65, 113203, (2002) (http://dx NULL.doi NULL.org/10 NULL.1103/PhysRevB NULL.65 NULL.113203)
  25. Defect reconfiguration as a precursor for diffusion, L. Dobaczewski, K. Bonde Nielsen, O. Andersen, L. Rubaldo, K. Gościński, and A. R. Peaker, in Proceedings of the 25th International Conference on the Physics of Semiconductors, Osaka 2000, edited by N. Miura and T. Ando (Springer Proceedings in Physics, New York, 2001), p. 1427
  26. Electronic Levels of Isolated and Oxygen-Perturbed Hydrogen in Silicon and Migration of Hydrogen, K. Bonde Nielsen, L. Dobaczewski, S. Søgård, and B. Bech Nielsen, 21st Int. Conference on Defects in Semiconductors, Giessen, Physica B (invited talk) 308-310, 134 (2001)
  27. Piezospectroscopic analysis of the hydrogen – carbon complexes in silicon, O. Andersen, L. Dobaczewski, A. R. Peaker, K. Bonde Nielsen, B. Hourahine, R. Jones, P. R. Briddon, and S. Ö berg, 21st Int. Conference on Defects in Semiconductors, Giessen, Physica B, 308-310, 139 (2001)
  28. Hydrogen Reactions with Electron Irradiation Damage in Silicon, A. R. Peaker, J. H. Evans-Freeman, L. Rubaldo, I. D. Hawkins, K. Vernon-Parry, and L. Dobaczewski 20th Int. Conference on Defects in Semiconductors, Berkeley, 1999, Physica B 273-274, 243 (1999)
  29. Deep Levels Associated with vacancy-hydrogen complexes investigated by Laplace transform DLTS, K. Bonde Nielsen, L. Dobaczewski, K. Gościński, R. Bendensen, and B. Bech Nielsen 20th Int. Conference on Defects in Semiconductors, Berkeley, 1999, Physica B 273-274, 167 (1999)
  30. Laplace transform deep level transient spectroscopy studies of the G4 gold-hydrogen complex in silicon, P. Deixler, J. Terry, I. D. Hawkins, J. H. Evans-Freeman, A. R. Peaker, L. Rubaldo, D. K. Maude, J.-C. Portal, L. Dobaczewski, K. Bonde Nielsen, A. Nylandsted Larsen, and A. Mesli,  Appl. Phys. Lett. 73, 3126 (1998) (http://dx NULL.doi NULL.org/10 NULL.1063/1 NULL.122694)
  31. Tracing Diffusion by Laplace Deep-Level Spectroscopy, K. Bonde Nielsen and L. Dobaczewski, 19th Int. Conference on Defects in Semiconductors, Avairo, 1997 Materials Science Forum, 258-263, 331
  32. High-Resolution DLTS studies of Transition Metal-Related Defects in Silicon, L. Dobaczewski, P. Kaminski, R. Kozowski, and M. Surma, 18th Int. Conference on Defects in Semiconductors, Sendai (invited talk) Materials Science Forum, Vols 196-201, p. 669. (1996)

[Top]

Silicon-germanium alloys

  1. Alloy shift of “no-germanium” iron-related electronic levels in unstrained silicon-germanium alloys, P. Kruszewski, Vl. Kolkovsky, A. Mesli, L. Dobaczewski, N. V. Abrosimov, V. P. Markevich, and A. R. Peaker, Phys. Rev. B 76, 233203 (2007) (http://dx NULL.doi NULL.org/10 NULL.1103/PhysRevB NULL.76 NULL.233203)
  2. Iron-aluminium pair reconfiguration processes in SiGe alloys, P. Kruszewski, A. Mesli, L. Dobaczewski, N. V. Abrosimov, V. P. Markevich, and A. R. Peaker, Journal of Materials Science: Materials in Electronics, 18, 759 (2007) (http://dx NULL.doi NULL.org/10 NULL.1007/s10854-006-9104-5)
  3. Interaction of iron with the local environment in SiGe alloys, Vl. Kolkovsky, A. Mesli, L. Dobaczewski, N. V. Abrosimov, Z. R. Zytkiewicz, and A. R. Peaker, Phys. Rev B. 74, 195204 (2006) (http://link NULL.aps NULL.org/abstract/PRB/v74/e195204)
  4. The vacancy donor pair in unstrained silicon, germanium and SiGe alloys, A. R. Peaker, V. P Markevich, F. D. Auret, L. Dobaczewski, and N. V. Abrosimov, J. Phys.: Condens. Matter, 17, S2293 (2005) (http://dx NULL.doi NULL.org/10 NULL.1088/0953-8984/17/22/018)
  5. Structure and properties of vacancy-oxygen complexes in SiGe alloys,  V. P. Markevich, A. R. Peaker, J. Coutinho, R. Jones, V. J. B. Torres, S. Öberg, P. R. Briddon, L. Dobaczewski, and N. V. Abrosimov, Phys. Rev. B, 69, 125218 (2004) (http://dx NULL.doi NULL.org/10 NULL.1103/PhysRevB NULL.69 NULL.125218)
  6. Bond-centered hydrogen in SiGe alloys, K. Bonde Nielsen, L. Dobaczewski, and A. R. Peaker, Phys. Rev. B, 68, 045204 (2003) (http://scitation NULL.aip NULL.org/getabs/servlet/GetabsServlet?prog=normal&id=PRBMDO000068000004045204000001&idtype=cvips&gifs=yes), PDF (120kB)
  7. High-resolution DLTS studies of gold and platinum acceptor states in diluted SiGe alloys, K. Gościński, L. Dobaczewski, K. Bonde Nielsen, A. Nylandsted Larsen, and A. R. Peaker, Phys. Rev. B, 63, 235309 (2001) (http://link NULL.aps NULL.org/abstract/PRB/v63/e235309)
  8. Site preference next to germanium atom of gold and platinum impurities in SiGe alloy, L. Dobaczewski, K. Bonde Nielsen, K. Gościński, A. R. Peaker, and A. Nylandsted Larsen 20th Int. Conference on Defects in Semiconductors, Berkeley, 1999, Physica B 273-274, 620 (1999) (http://dx NULL.doi NULL.org/10 NULL.1016/S0921-4526(99)00588-8)
  9. Alloy splitting of platinum and gold related levels in SiGe, L. Dobaczewski, K. Gościński, K. Bonde Nielsen, A. Nylandsted Larsen, J. Lundsgaard Hansen, and A. R. Peaker, Phys. Rev. Lett., 83, 4582 (1999) (http://link NULL.aps NULL.org/abstract/PRL/v83/p4582)

[Top]

Germanium

  1. Tin-vacancy complex in germanium, V. P. Markevich, A. R. Peaker, B. Hamilton, V. V. Litvinov, Yu. M. Pokotilo, S. B. Lastovskii, J. Coutinho, A. Carvalho, M. J. Rayson and P. R. Briddon, J. Appl Phys. April 2011; 109: 083705-1-083705-6 (http://dx NULL.doi NULL.org/10 NULL.1063/1 NULL.3574405)
  2. Radiation-induced Defect Reactions in Tin-doped Ge Crystals, Vladimir P. Markevich, Anthony R. Peaker, Bruce Hamilton, Valentin V. Litvinov, Yurii M. Pokotilo, Alla N. Petukh, Stanislav B. Lastovskii, Jose Coutinho, Mark J. Rayson, Patrick Briddon, Patrick R. Briddon, Solid State Phenomena. 2011 August; 178: 392-397 (http://dx NULL.doi NULL.org/10 NULL.4028/www NULL.scientific NULL.net/SSP NULL.178-179 NULL.392)
  3. dc-Hydrogen plasma induced defects in bulk n-Ge, C. Nyamherea, A. Ventera, D.M. Murapea, F.D. Auretb, S.M.M. Coelhob, J.R. Bothaa, Physica B: Condensed Matter, Vol 407, Issue 15, 1 August 2012, Pages 2935–2938 (http://dx NULL.doi NULL.org/doi:10 NULL.1016/j NULL.physb NULL.2011 NULL.08 NULL.047)
  4. Electrical characterisation of ruthenium Schottky contacts on n-Ge (100), Albert Chawanda, Cloud Nyamhere, Francois D. Auret, Jacqueline M. Nel, Wilbert Mtangi, Mmatsae Diale, Physica B: Condensed Matter Vol 407, Issue 10, 15 May 2012, Pages 1570–1573 (http://dx NULL.doi NULL.org/10 NULL.1016/j NULL.physb NULL.2011 NULL.09 NULL.088)
  5. Deep level transient spectroscopy (DLTS) study of defects introduced in antimony doped Ge by 2 MeV proton irradiation, C. Nyamhere, A.G.M. Das, F.D. Auret, A. Chawanda, C.A. Pineda-Vargas, A. Venter, Physica B: Condensed Matter, Vol 406, Issues 15–16, August 2011, Pages 3056–3059 (http://dx NULL.doi NULL.org/10 NULL.1016/j NULL.physb NULL.2011 NULL.05 NULL.005)
  6. Spectroscopic Studies of Iron and Chromium in Germanium, Y. Gurimskaya, D. Mathiot, A. Mesli, Solid State Phenomena, Vols. 178-179, pp. 285-288, Aug. 2011 (http://dx NULL.doi NULL.org/10 NULL.4028/www NULL.scientific NULL.net/SSP NULL.178-179 NULL.285)
  7. Electrical characterization of deep levels in n-type GaAs after hydrogen plasma treatment, C. Nyamhere, J.R. Botha, A. Venter, Physica B: Condensed Matter, Vol 406, Issue 11, 15 May 2011, Pages 2273–2276 (http://dx NULL.doi NULL.org/10 NULL.1016/j NULL.physb NULL.2011 NULL.03 NULL.052)
  8. Characterization of defects introduced in Sb doped Ge by 3 keV Ar sputtering using deep level transient spectroscopy (DLTS) and Laplace-DLTS (LDLTS), C. Nyamhere, A.G.M. Das, F.D. Auret, A. Chawanda, W. Mtangi, Q. Odendaal, A. Carr, Physica B: Condensed Matter Vol 404, Issue 22, 1 December 2009, Pages 4379–4381, DOI: (http://dx NULL.doi NULL.org/10 NULL.1016/j NULL.physb NULL.2009 NULL.09 NULL.037)
  9. Low-temperature irradiation-induced defects in p-type germanium, Vl. Kolkovsky, M. Christian Petersen, A. Mesli, and A. Nylandsted Larsen, Phys. Rev. B 81, 035208 – January 2010 (http://dx NULL.doi NULL.org/10 NULL.1103/PhysRevB NULL.81 NULL.035208)
  10. Neutron-irradiation-induced defects in germanium: a Laplace deep level transient spectroscopy study, Capan, I. Pivac, B.; Hawkins, I.D.; Markevich, V.P.; Peaker, A.R.; Dobaczewski, L.; Jacimovic, R., Vacuum 84(1): 32-6 (2009 August) (http://dx NULL.doi NULL.org/10 NULL.1016/j NULL.vacuum NULL.2009 NULL.04 NULL.003)
  11. Vacancy Clusters in Germanium, Peaker AR, Markevich VP, Slotte J, Kuitunen K, Tuomisto F, Satta A, Simoen E, Capan I, Pivac B, Jačimović R., Diffusion and Defect Data Pt. B: Solid State Phenomena 131-133: 125-130 ( (http://dx NULL.doi NULL.org/10 NULL.4028/www NULL.scientific NULL.net/SSP NULL.131-133 NULL.125)2008 April) (http://dx NULL.doi NULL.org/10 NULL.4028/www NULL.scientific NULL.net/SSP NULL.131-133 NULL.125)
  12. Low-temperature irradiation-induced defects in germanium: In-situ analysis, A. Mesli, L. Dobaczewski, K. Bonde Nielsen, Vl. Kolkovsky, M. Christian Petersen, and A. Nylandsted Larsen, Phys. Rev. B, 78, 165202 (2008) (http://dx NULL.doi NULL.org/10 NULL.1103/PhysRevB NULL.78 NULL.165202)
  13. The antimony-vacancy defect in p-type germanium, C. E. Lindberg, J. Lundsgaard Hansen, P. Bomholt, A. Mesli, K. Bonde Nielsen, A. Nylandsted Larsen, and L. Dobaczewski, Appl. Phys. Lett., 87, 172103 (2005) (http://dx NULL.doi NULL.org/10 NULL.1063/1 NULL.2112168)
  14. Vacancy – donor atom pairs in Ge crystals doped with P, As, Sb, and Bi, V. P. Markevich, I. D. Hawkins, A. R. Peaker, K. V. Emtsev, V. V. Emtsev, V. V. Litvinov, L. I. Murin, and L. Dobaczewski, Phys. Rev. B, 70, 235213 (2004) (http://link NULL.aps NULL.org/abstract/PRB/v70/e235213)
  15. Donor Level of Bond-Center Hydrogen in Germanium, L. Dobaczewski, K. Bonde Nielsen, N. Zangenberg, B. Bech Nielsen, A. R. Peaker, and V. Markevich, Phys. Rev. B, 69, 245207 (2004) (http://scitation NULL.aip NULL.org/getabs/servlet/GetabsServlet?prog=normal&id=PRBMDO000069000024245207000001&idtype=cvips&gifs=yes), PDF (70kB)
  16. Radiation-induced defects and their transformations in oxygen-rich germanium crystals, V. P. Markevich, V. V. Litvinov, L. Dobaczewski, J. L. Lindström, L. I. Murin, and A. R. Peaker, phys. stat. solidi c, 0, 703 (2003) (http://dx NULL.doi NULL.org/10 NULL.1002/pssc NULL.200306214)
  17. Electronic properties of vacancy-oxygen complex in Ge crystals, V. P. Markevich, I. D. Hawkins, A. R. Peaker, V. V. Litvinov, L. I. Murin, L. Dobaczewski, and J. L. Lindström, Appl. Phys. Lett. 81, 1821, 2002 (http://dx NULL.doi NULL.org/10 NULL.1063/1 NULL.1504871)

[Top]

Silicon Carbide

  1. Correlation between barrier inhomogeneities of 4H-SiC 1 A/600 V Schottky rectifiers and deep-level defects revealed by DLTS and Laplace DLTS, Ł. Gelczuk, P. Kamyczek, E. Płaczek-Popko, M. Dąbrowska-Szata, Solid-State Electronics, Vol 99, September 2014, Pages 1–6: (http://dx NULL.doi NULL.org/10 NULL.1016/j NULL.sse NULL.2014 NULL.04 NULL.043)
  2. Zinc oxide thin films on silicon carbide substrates (ZnO/SiC): electro-optical properties and electrically active defects, J F Felix, M Aziz, C I L de Araujo, W M de Azevedo, V Anjos, E F da Silva Jr and M Henini, Semicond. Sci. Technol 2014. Vol 29 page 045021 (http://dx NULL.doi NULL.org/10 NULL.1088/0268-1242/29/4/045021)
  3. E1/E2 traps in 6H-SiC studied with Laplace deep level transient spectroscopy, A. Koizumi, V. P. Markevich, N. Iwamoto, S. Sasaki, T. Ohshima, K. Kojima, T. Kimoto, K. Uchida, S. Nozaki, B. Hamilton, and A. R. Peaker’ Applied Physics Letters. 2013 January; 102(3): (http://dx NULL.doi NULL.org/10 NULL.1063/1 NULL.4788814)
  4. Laplace Transform Deep Level Transient Spectroscopy Study of the EH6/7 Center, G. Alfieri, T. Kimoto, Materials Science Forum, Vols. 740-742, pp. 645-648, Jan. 2013 (http://dx NULL.doi NULL.org/10 NULL.4028/www NULL.scientific NULL.net/MSF NULL.740-742 NULL.645)
  5. Investigation of deep-level defects in conductive polymer on n-type 4H- and 6H-silicon carbide substrates using I-V and deep level transient spectroscopy techniques, J. F. Felix, M. Aziz, D. L. da Cunha, K. F. Seidel, I. A. Hümmelgen, W. M. de Azevedo, E. F. da Silva Jr., D. Taylor, and M. Henini, Journal of Applied Physics 112, 014505 (2012) (http://dx NULL.doi NULL.org/10 NULL.1063/1 NULL.4733569)

[Top]

III-V compounds

  1. Deep traps in n-type GaN epilayers grown by plasma assisted molecular beam epitaxy, beam epitaxy, P. Kamyczek, E. Placzek-Popko, Z. R. Zytkiewicz, E. Zielony and Z. Gumienny, J. Appl. Phys. 115, 023102 (2014) (http://dx NULL.doi NULL.org/10 NULL.1063/1 NULL.4861180)
  2. Electrical characterization and DLTS analysis of a gold/n-type gallium nitride Schottky diode, A. Elhaji, J.H.Evans-Freeman, M.M.El-Nahass, M.J.Kappers, C.J.Humphries, Materials Science in Semiconductor Processing, Vol 17, January 2014, Pages 94–99 (http://dx NULL.doi NULL.org/10 NULL.1016/j NULL.mssp NULL.2013 NULL.08 NULL.006)
  3. Deep levels in GaN studied by deep level transient spectroscopy and Laplace transform deep-level spectroscopy, P. Kamyczek, E. Placzek-Popko, E. Zielony, Z. Zytkiewicz, Materials Science-Poland Vol 31, Issue 4, October 2013, Pages 572-576 (http://dx NULL.doi NULL.org/10 NULL.2478/s13536-013-0138-0)
  4. Deep level transient spectroscopy characterisation of defects in AlGaN/Si dual-band (UV/IR) detectors grown by MBE, M.Aziz, R.H. Mari, J.F. Felix, A. Mesli, D. Taylor, M.O. Lemine, M. Henini, R. Pillai, D. Starikov, C. Boney, Physica Status Solidi (C) Current Topics in Solid State Physics Vol 10, Issue 1, January 2013, Pages 101-104, (http://dx NULL.doi NULL.org/10 NULL.1002/pssc NULL.201200409)
  5. Effect of epitaxial layer thickness on the deep level defects in MBE grown n-type Al0.33Ga0.67As, R.H. Mari, M. Aziz, M. Shafi, A. Khatab, D. Taylor, M. Henini, Physica Status Solidi (C) Current Topics in Solid State Physics, Vol 9, Issue 7, July 2012, Pages 1643-1646 (http://dx NULL.doi NULL.otg/10 NULL.1002/pssc NULL.201100676)
  6. A deep acceptor defect responsible for the yellow luminescence in GaN and AlGaN, P. Kamyczek, E. Placzek-Popko, Vl. Kolkovsky, S. Grzanka and R. Czernecki, J. Appl. Phys. 111, 113105 (June 2012) (http://dx NULL.doi NULL.org/10 NULL.1063/1 NULL.4725484)
  7. Inductively coupled plasma induced deep levels in epitaxial n-GaAs, F.D. Auret, P.J. Janse van Rensburg, W.E. Meyer, S.M.M. Coelho, Vl. Kolkovsky, J.R. Botha, C. Nyamhere, A. Venter, Physica B: Condensed Matter, Vol 407, Issue 10, 15 May 2012, Pages 1497–1500 (http://dx NULL.doi NULL.org/10 NULL.1016/j NULL.physb NULL.2011 NULL.09 NULL.070)
  8. Deep levels in H-irradiated GaAs1-xNx (x < 0.01) grown by molecular beam epitaxy, M. Shafi, R. H. Mari, A. Khatab, M. Henini, A. Polimeni, M. Capizzi and M. Hopkinson, J. Appl. Phys. 110, 124508 (2011) (http://dx NULL.doi NULL.org/10 NULL.1063/1 NULL.3664823)
  9. Electrical characterization of deep levels in n-type GaAs after hydrogen plasma treatment, C. Nyamhere, J.R. Botha, A. Venter, Physica B: Condensed Matter, Vol 406, Issue 11, 15 May 2011, Pages 2273–2276 (http://dx NULL.doi NULL.org/10 NULL.1016/j NULL.physb NULL.2011 NULL.03 NULL.052)
  10. Electrical Characterization of Metastable Defects Introduced in GaN by Eu-Ion Implantation, F. D. Auret, W. E. Meyer, M. Diale, P.J. Janse Van Rensburg, S.F. Song, K. Temst, A. Vantomme, Materials Science Forum, Vols. 679-680, pp. 804-807, Mar. 2011 (http://dx NULL.doi NULL.org/10 NULL.4028/www NULL.scientific NULL.net/MSF NULL.679-680 NULL.804)
  11. Deep levels fine structure in proton implanted p-type GaAs, A V P Coelho, M C Adam and H Boudinov, J. Phys. D: Appl. Phys. (2010) 43 205104 (http://dx NULL.doi NULL.org/10 NULL.1088/0022-3727/43/20/205104)
  12. Negative-U property of interstitial hydrogen in GaAs, Vl. Kolkovsky, K. Bonde Nielsen, and A. Nylandsted Larsen, and L. Dobaczewski, Phys. Rev. B, 78, 035211 (2008) (http://dx NULL.doi NULL.org/10 NULL.1103/PhysRevB NULL.78 NULL.035211)
  13. Donor level of interstitial hydrogen in GaAs, L. Dobaczewski, K. Bonde Nielsen, A. Nylandsted Larsen, and A. R. Peaker, Physica B, 376–377, 614 (2006) (http://hdl NULL.handle NULL.net/10 NULL.1016/j NULL.physb NULL.2005 NULL.12 NULL.155)
  14. Structure of the DX state in (Al,Ga)As and Ga(As,P), L. Dobaczewski, P. Kaczor, M. Missous, A. R. Peaker, and Z. R. Zytkiewicz, J. Appl. Phys. vol 78, 2468 (1995) (http://scitation NULL.aip NULL.org/getabs/servlet/GetabsServlet?prog=normal&id=JAPIAU000078000004002468000001&idtype=cvips&gifs=yes), PDF (1300kB)
  15. Fine structure observed in thermal emission process for the EL2 defect in GaAs, L. Dobaczewski, P. Kaczor, and A. R. Peaker 17th International Conference on Defects in Semiconductors, Gmunden, Austria p. 1001. (1993)
  16. Investigation of Deep Levels in X-Ray Detector Materials with Photo Induced Current Spectroscopy, C.Eiche, M. Fiederle, J.Weese, D. Maier, D.Ebling, and K.W.Benz, Material Research Society Symposium Proceedings Pittsburgh Pennsylvenia vol 302, p 231-236 (April 1993)
  17. Analysis of deep level in GaAs detector diodes using impedance spectroscopy, C.Eiche, M.Fiederle, J.Weese, D.Maier, D.Ebling, J.Ludwig, and K.W.Benz, Material Research Society Symposium Proceedings; Pittsburgh Pennsylvenia vol 302, p 375-379 (April 1993)
  18. Evidence for substitutional – interstitial defect motion leading to DX behavior by donors in AlGaAs, L. Dobaczewski, P. Kaczor, M.Missous, A. R. Peaker, and Z. R. Zytkiewicz, Phys. Rev. Lett. vol 68, 2508 (1992) (http://link NULL.aps NULL.org/abstract/PRL/v68/p2508)
  19. Formation of the DX state by donors in AlGaAs: experiment, L. Dobaczewski, P. Kaczor, M. Missous, Z. R. Zytkiewicz, D. Dobosz, and A. R. Peaker, 21th International School on Physics of Semiconducting Compounds, Jaszowiec 1992, Poland, Acta Phys. Pol. vol 82, 905, (1992)
  20. Microscopic mechanism of the DX state formation by donors in AlGaAs, L. Dobaczewski, P. Kaczor, M. Missous, A. R. Peaker, and Z. R. Zytkiewicz, 21st International Conference on the Physics of Semiconductors, Beijing, China, World Scientific, Singapore p.1557 (1992)
  21. Laplace transform DLTS studies of the DX centers in AlGaAs and GaSb, L. Dobaczewski, I. D.Hawkins, P. Kaczor, M. Missous, I. Poole and A.R. Peaker, 16th International Conference on Defects in Semiconductors, ed. G. Davies, G. G. DeLeo, M. Stavola, Bethlehem 1991, Materials Science Forum Vol 83-87, p.769 (http://dx NULL.doi NULL.org/10 NULL.4028/www NULL.scientific NULL.net/MSF NULL.83-87 NULL.769)

[Top]

II-VI compounds

  1. Electrical characterization of as-grown and H plasma treated CdTe epitaxial layers, Vl. Kolkovsky,V. Kolkovsky, J. Weber, Energy Procedia, Vol 3, 2011, Pages 70–75, (http://dx NULL.doi NULL.org/10 NULL.1016/j NULL.egypro NULL.2011 NULL.01 NULL.012)
  2. DX centers in CdTe:In layers grown by MBE, A. K. Zakrzewski, L. Dobaczewski, T. Wojtowicz, J. Kossut, and G. Karczewski, Proceedings of 23rd International Conference on the Physics of Semiconductors, Eds M. Scheffler and R. Zimmermann, (World Scientific, Singapore, 1996), p. 3005
  3. Analysis of Photoinduced Transient Spectroscopy (PICTS) Data by a Regularisation Method: Application to Compensation Defects in CdTe, C.Eiche, D.Maier, J.Weese, and K.W.Benz, Advanced Materials for Optics and Electronics vol3, p269-274 (1994)
  4. Investigation of compensation defects in CdTe:Cl samples grown by different techniques, C.Eiche, D.Maier, D.Sinerius, J.Weese, K.W.Benz, and J.Honerkamp, J. Appl. Phys. 74, 6667 (1993) (http://dx NULL.doi NULL.org/10 NULL.1063/1 NULL.355109)

[Top]

Zinc Oxide

  1. Zinc oxide thin films on silicon carbide substrates (ZnO/SiC): electro-optical properties and electrically active defects, J F Felix, M Aziz, C I L de Araujo, W M de Azevedo, V Anjos, E F da Silva Jr and M Henini, Semicond. Sci. Technol 2014. Vol 29 page 045021 (http://dx NULL.doi NULL.org/10 NULL.1088/0268-1242/29/4/045021)
  2. Effects of hydrogen, oxygen, and argon annealing on the electrical properties of ZnO and ZnO devices studied by current-voltage, deep level transient spectroscopy, and Laplace DLTS, W. Mtangi, F. D. Auret, W. E. Meyer, M. J. Legodi, P. J. Janse van Rensburg, S. M. M. Coelho, M. Diale and J. M. Nel, J. Appl. Phys. 111, 094504 (2012) (http://dx NULL.doi NULL.org/10 NULL.1063/1 NULL.4709728)
  3. Deep level transient spectroscopy studies of n-type ZnO single crystals grown by different techniques, L Scheffler, Vl Kolkovsky, E V Lavrov and J Weber, J. Phys.: Condens. Matter 23 334208 (2011) (http://dx NULL.doi NULL.org/10 NULL.1088/0953-8984/23/33/334208)

[Top]

Nanostructures and interfaces

  1. Deep-level transient spectroscopy of interfacial states in “buffer-free” p-i-n GaSb/GaAs devices, Mohsin Aziz, Philippe Ferrandis, Abdelmadjid Mesli, Riaz Hussain Mari, Jorlandio Francisco Felix, Azzouz Sellai, Dler Jameel, Noor Al Saqri, Almontaser Khatab, David Taylor and Mohamed Henini, J. Appl. Phys. 114, 134507 (2013) (http://dx NULL.doi NULL.org/10 NULL.1063/1 NULL.4824378)
  2. Laplace-Transform Deep-Level Spectroscopy Characterization of the Intrinsic and Deep-Level States in Self-Assembled InAs Quantum-Dot Structures, Lin, S.W. Song, A.M.; Peaker, A.R., AIP Conference Proceedings, v 1199. USA: American Institute of Physics: 2010: 313-314. (http://dx NULL.doi NULL.org/10 NULL.1063/1 NULL.3295427)
  3. Electric-Field Dependence of Electron Emission from InAs/GaAs Quantum Dots, Lin, S.W. Song, A.M.; Peaker, A.R., AIP Conference Proceedings, v 1199. USA: American Institute of Physics: 2010: 291-292 (http://dx NULL.doi NULL.org/10 NULL.1063/1 NULL.3295415)
  4. Deep-level Transient Spectroscopy of GaAs/AlGaAs Multi-Quantum Wells Grown on (100) and (311)B GaAs Substrates, M Shafi, RH Mari, A Khatab, D Taylor and M Henini, Nanoscale Research Letters 2010, 5:1948-1951 (http://dx NULL.doi NULL.org/10 NULL.1007/s11671-010-9820-x)
  5. Relation between photocurrent and DLTS signals observed for quantum dot systems, Kruszewski, P.; Dobaczewski, L.; Mesli, A.; Markevich, V.P.; Mitchell, C.; Missous, M.; Peaker, A.R., Physica B. 404(23): 5173-5176 (2009 December) (http://dx NULL.doi NULL.org/10 NULL.1016/j NULL.physb NULL.2009 NULL.08 NULL.275)
  6. Energy state distributions at oxide-semiconductor interfaces investigated by Laplace, DLTS. Dobaczewski, L.; Markevich, V.P.; Kruszewski, P.; Hawkins, I.D.; Peaker, A.R., Physica B. 404(23): 5170-2 (2009 December) (http://dx NULL.doi NULL.org/10 NULL.1016/j NULL.physb NULL.2009 NULL.08 NULL.136)
  7. Hole-Related Electrical Activity of InAs/GaAs Quantum Dots, Kruszewski, P., Dobaczewski, L., Markevich, V.P., Mitchell, C., Missous, M., Peaker, A.R., Acta Physica Polonica A. 114: 1201-1206 (2008 November) (http://przyrbwn NULL.icm NULL.edu NULL.pl/APP/PDF/114/a114z530 NULL.pdf)
  8. Energy-state distributions of the Pb centers at the (100), (110), and (111) Si/SiO2 interfaces investigated by Laplace Deep Level Transient Spectroscopy, L. Dobaczewski, S. Bernardini, P. Kruszewski, P. K. Hurley, V. P. Markevich, I. D. Hawkins, and A. R. Peaker, Appl. Phys. Lett, 92, 242104 (2008) (http://dx NULL.doi NULL.org/10 NULL.1063/1 NULL.2939001)
  9. Electron- and hole-related electrical activity of InAs/GaAs quantum dots, P. Kruszewski, L. Dobaczewski, V. P. Markevich, C. Mitchell, M. Missous, and A. R. Peaker, Physica B, 401–402, 580 (2007) (http://dx NULL.doi NULL.org/10 NULL.1016/j NULL.physb NULL.2007 NULL.09 NULL.026)

[Top]