Institute of Physics, Polish Academy of Sciences



Who we are
What do we do
Our hardware
Our software
Some previous work
  

      

We are part of the ON2.3 laboratory of Vibrational and Rotational Spectroscopy

Our main research activity is rotational spectroscopy of small molecules and intermolecular complexes at frequencies from 2 to ca 500 GHz.



Toluene spectrum with internal rotation satellites
     

Staff and PhD students

      
Prof. dr hab. Zbigniew KISIEL
 
Dr Ewa BIALKOWSKA-JAWORSKA
Dr Leonid SHIRKOV  
Jerzy KOSARZEWSKI
 
Phone:  +48-22-1163332,  +48-22-1163227
Email:  kisiel@ifpan.edu.pl

      

Geometry of the weakly bound cyclic trimer (H2O)2HCl
  Research
         Our research is mainly concerned with recording and analysis of pure rotational spectra of molecules and of weakly bound intermolecular complexes.  These studies are carried out in the gas-phase and the spectra arise from quantised end-over-end rotation of molecules. 

       Analysis of rotational spectra allows highly precise determination of the geometry, of the electric dipole moment, and of inter- and intra-molecular interactions in the studied species.  An important feature of the derived molecular information is that it is for isolated molecules and has traditionally provided a benchmark for ab initio quantum chemistry calculations.

       Analysis of the experimental results involves the use of many specialised computer programs and being able to reproduce the results reported in publications is crucial.  For this reason the primary data and results files for many molecules studied by us are collected in the Our Data section.  Lists of studied species with links to the pertinent publications are given below.

      

  Rotational spectroscopy of small molecules, including species of atmospheric and astrophysical interest:
         Completed studies include those of:
             
Click to see publication(s) CBrClF2 Click to see publication(s)  CHF2Cl Click to see publication(s)  CH2Cl2
Click to see publication(s) CH2I2 Click to see publication(s) CHBr3 Click to see publication(s) CHF2I
Click to see publication(s) HCCl3 Click to see publication(s)e H2C=CHCN Click to see publication(s) H2C=CClCN
Click to see publication(s) H2C=CCl2 Click to see publication(s) Cl2C=CHCl Click to see publication(s) Cl3CCH3
Click to see publication(s) ClONO2 Click to see publication(s) S(CN)2
Click to see publication(s) n-Propanol
Click to see publication(s) Pyrimidine Click to see publication(s) 1-F-adamantane Click to see publication(s) Diethyl ether
Click to see publication(s) Benzene derivatives
Click to see publication(s) Quinoline /  Isoquinoline Click to see publication(s) Acetone
Click to see publication(s) Acetic acid
Click to see publication(s) Lactic acid
Click to see publication(s) Pyruvic acid/CN
Click to see publication(s) Glycolic acid
Click to see publication(s) 1,2-benzodioxole
Click to see publication(s) t-BuX
Click to see publication(s) C2H5CN Click to see publication(s) Cyclopropyl cyanide
Click to see publication(s) (CH3)2CCl2
Click to see publication(s) Camphor Click to see publication(s) CH3CCl=CH2

       Their aim has been to determine new molecular information as well as spectroscopic constants for use in environmental (i.e. atmospheric and astrophysical) applications.

                       

  Rotational spectroscopy of intermolecular complexes:
         Some examples:
             
Click to see publication(s)  H2O...HCl Click to see publication(s)  (H2O)2HCl Click to see publication(s)  (H2O...HCl)...Ar
Click to see publication(s)  36Ar...HCl Click to see publication(s)  Ar2...HBr Click to see publication(s)  ArnHX
Click to see publication(s)  N2...HCl Click to see publication(s)  N2...HBr Click to see publication(s)  Pyrimidine...H2O
Click to see publication(s)  (H2O)2HBr Click to see publication(s) Ar...HC3N  Click to see publication(s)  H2O(HCl)2
Click to see publication(s) Water clusters
Click to see publication(s) CH2F2...CH2Cl2

       The goal of these studies is to improve the understanding of the nature of the intermolecular interaction. They allow precise determination of the geometry, dipole moment, nuclear quadrupole splitting constants, and of the effect of the shape of the intermolecular potential on the measured spectroscopic observables.



  Equipment
        Most of our experimental studies are performed on equipment constructed in our laboratory, which currently consists of two complementary spectrometers:

      

  A broadband millimetre wave (MMW) spectrometer:
The IFPAN MMW spectrometer
         The spectrometer gives access to the 90-550 GHz rotational spectrum of molecules kept in a static or flow regime in a 3.5 m long absorption cell.  Broadband spectra can be recorded with two different source types:
  • High-frequency Backward Wave Oscillators (in the grey electromagnet on the right).  The sources are phase locked to a controlling synthesiser.  Sources from <100 to >500 GHz are available although the preferred coverage is 150-350 GHz.
  • Harmonic generation of mmw radiation directly from synthesiser input, currently available for 90-140 GHz.
       Source modulation and second derivative detection is employed using room temperature GaAs Schottky diode, or liquid helium cooled InSb detectors.  The cell can be heated above ambient for studying transitions in excited vibrational states.. 

      

  A supersonic expansion Fourier Transform Microwave (FTMW) spectrometer
The IFPAN FTMW spectrometer
         This spectrometer allows recording of rotational spectra of supersonically cooled samples.  The operating range is 2-18.5 GHz and two complementary microwave excitation configurations are available:
  • High sensitivity and resolution using a confocal Fabry-Perot microwave resonator with 50 cm diameter mirrors (horizontal axis of the white high-vacuum chamber).
  • Broadband using chirped pulse excitation (vertical axis of the chamber).
       Electrodes for Stark measurements are available.  It is possible to measure spectra in standard supersonic expansion through a standard circular pulsed nozzle, with a heated nozzle, and with a nozzle equipped with electric discharge. 

      

  Programs for ROtational SPEctroscopy
        

       The processing and interpretation of spectroscopic data is often a computationally intensive task and the availability of suitable programs is crucial to the efficiency of such studies.  For this reason we maintain a database of computer programs dealing with various aspects of the rotational spectroscopy problem. The PROSPE database contains extensively tested, well documented programs written both in this laboratory and elsewhere.

      

      

 
 
  Some selected studies and publications
 
 

PhD Theses

    
  • Beata Agnieszka Pietrewicz: "Spektroskopia rotacyjna wybranych cząsteczek i kompleksów międzyczasteczkowych w naddźwiękowej wiązce molekularnej", IFPAN, 2003.Reprint
  • Oleksandr Desyatnyk: "Wyznaczanie struktur i momentów dipolowych cząsteczek metodą spektroskopii rotacyjnej", IFPAN, 2005.Reprint
  • Orest Dorosh: "Szerokopasmowa spektroskopia rotacyjna cząsteczek zawierających plaszczyznę symetrii", IFPAN, 2008.Reprint
  • Adam Krasnicki: "Rotational spectroscopy of selected molecules of astrophysical inportance", IFPAN, 2011.
    Reprint
  • Zbigniew Kisiel: "An investigation of the microwave spectra of R2O...HX type hydrogen bonded dimers in the gas phase", University College London, 1980.Reprint

   

Weakly bound intermolecular complexes

      

  • (H2O)2...HCl:

    Z.Kisiel, E.Bialkowska-Jaworska, L.Pszczolkowski, A.Milet, C.Struniewicz, R.Moszynski, and J.Sadlej, "Structure and properties of the weakly bound trimer (H2O)2...HCl observed by rotational spectroscopy", J.Chem.Phys. 112, 5767-5776 (2000).

    Z.Kisiel, J.Kosarzewski, B.A.Pietrewicz, and L.Pszczolkowski, "Electric dipole moments of the cyclic trimers (H2O)2...HCl and (H2O)2...HBr from Stark effects in their rotational spectra", Chem.Phys.Lett. 325, 523-530 (2000).

  • (H2O)2...HBr:

    Z.Kisiel, B.A.Pietrewicz, O.Desyatnyk, L.Pszczolkowski, I.Struniewicz, and J.Sadlej, "Structure and properties of the weakly bound cyclic trimer (H2O)2...HBr observed by rotational spectroscopy", J.Chem.Phys. 119, 5907-5917 (2003).

    Z.Kisiel, J.Kosarzewski, B.A.Pietrewicz, and L.Pszczolkowski, "Electric dipole moments of the cyclic trimers (H2O)2...HCl and (H2O)2...HBr from Stark effects in their rotational spectra", Chem.Phys.Lett. 325, 523-530 (2000).

  • H2O...HCl:

    Z.Kisiel, B.A.Pietrewicz, P.W.Fowler, A.C.Legon, and E.Steiner, "Rotational spectra of the less common isotopomers, electric dipole moment and the double minimum inversion potential of H2O...HCl", J.Phys.Chem.A 104, 6970-6978 (2000).

    see also: Z.Kisiel, "Least-squares mass-dependence molecular structures for selected weakly-bound intermolecular complexes", J.Mol.Spectrosc. 218, 58-67 (2003).

  • H2O...(HCl)2: Z.Kisiel, A.Lesarri, J.L.Neill, M.T.Muckle, and B.H.Pate, "Structure and properties of the (HCl)2H2O cluster observed by chirped-pulse Fourier transform microwave spectroscopy",  Phys.Chem.Chem.Phys. 13, 13912-13919 (2011).
  • (H2O)n, n=6-10: Water clusters in the size range from the hexamer to the decamer

    J. O. Richardson, C. Perez, S. Lobsiger, A. A. Reid, B. Temelso, G. C. Shields, Z. Kisiel, D. J. Wales, B. H. Pate, S. C. Althorpe, ”Concerted hydrogen-bond breaking by quantum tunneling in the water hexamer prism", Science  351, 1310-1313 (2016); https://www.youtube.com/watch?v=PKPB6pasxGU

    C. Perez, D. P. Zaleski, N. A. Seifert, B. Temelso, G. C. Shields, Z. Kisiel, B. H. Pate, ”Hydrogen bond cooperativity and the three-dimensional structures of water nonamers and decamers”, Angew. Chem. Int. Ed. 53, 14368-14372 (2015).

    C. Perez, S. Lobsiger, N. A. Seifert, D. P. Zaleski, B. Temelso, G. C. Shields, Z. Kisiel, B. H. Pate, ”Broadband Fourier transform rotational spectroscopy for structure determination: The water heptamer”, Chem. Phys. Lett. 571, 1-15 (2013).

    C. Perez, M. T. Muckle, D. P. Zaleski, N. A. Seifert, B. Temelso, G. C. Shields, Z. Kisiel, B. H. Pate, ”Structures of the Cage, Prism, and Book Isomers of Water Hexamer from Broadband Rotational Spectroscopy”, Science 336, 897-901 (2012).
  • Ar...HCl: Z.Kisiel and L.Pszczolkowski, "Rotational spectrum and spectroscopic constants of 36Ar...H35Cl and 40Ar...HCl", Chem.Phys.Lett. 291,190-196 (1998).
  • Arn...HX, n=2,3, X=F, Cl, Br: Z.Kisiel, E.Bialkowska-Jaworska, and L.Pszczolkowski, "The experimental electric dipole moments of the ArnHX van der Waals clusters", Chem.Phys.Lett. 333,381-386 (2001).
  • Pyrimidine...H2O: S.Melandri, M.E.Sanz, W.Caminati, P.G.Favero, and Z.Kisiel, "The hydrogen bond between water and aromatic bases of biological interest: an experimental and theoretical study of the 1:1 complex of pyrimidine with water", J.Amer.Chem.Soc. 120, 11504-11509 (1998).
  • N2...HCl: Z.Kisiel and L.Pszczolkowski, P.W.Fowler, and A.C.Legon, "Rotational spectrum of 14N2...H35Cl and 14N2...H37Cl: electric field gradients at the nitrogen nuclei", Chem.Phys.Lett. 276, 202-209 (1997).
  • N2...HBr: Z.Kisiel, B.A.Pietrewicz, and L.Pszczolkowski, "Rotational spectrum of the most abundant isotopomer of the van der Waals dimer N2...HBr", Acta Physica Polonica A 101, 231-242 (2002).Reprint
  • Ar2...HBr:

    Z.Kisiel, B.A.Pietrewicz, and L.Pszczolkowski, "The observation and characterisation by rotational spectroscopy of the weakly bound trimer Ar2HBr", J.Chem.Phys. 117, 8248-8255 (2002).

    Z.Kisiel, E.Bialkowska-Jaworska, and L.Pszczolkowski, Chem.Phys.Lett. 333,381-386 (2001) - dipole moment measurement only.

  • (H2O...HCl)...Ar: ms. in prep.
  • Ar...HCCCN: O.Desyatnyk, J.Kosarzewski, Z.Kisiel, "Observation and properties of the van der Waals dimer Ar...HCCCN produced in electrical discharge", Acta Physica Polonica A 104, 415-424 (2003).Reprint
  • CH2F2...CH2Cl2: Q. Gou, L. Spada, M. Vallejo-López, Z. Kisiel, W. Caminati, ”Interactions between
    Freons: A Rotational Study of CH2F
    2...CH2Cl2”, Chem. Asian J. 9, 1032-1038 (2014).

     

Isolated molecules

   

Trichloroethylene, Cl2C=CHCl (a well known solvent):

  • Z.Kisiel, E.Bialkowska-Jaworska, and L.Pszczolkowski, "Nuclear quadrupole coupling in Cl2C=CHCl and Cl2C=CH2; "Evidence for systematic differences in orientation between internuclear and field gradient axes for terminal quadrupolar nuclei", J.Chem.Phys. 109, 10263-10272 (1998).
  • Z.Kisiel and L.Pszczolkowski, "Assignment and analysis of the mm-wave rotational spectrum of trichloroethylene: observation of a new, extended b.R-band and an overview of high-J, R-type bands", J.Mol.Spectrosc. 177, 125-137 (1996).

1,1,1-trichloroethane, Cl3CCH3 (another popular industrial solvent):

  • Z.Kisiel, L.Pszczolkowski, G.Cazzoli, L.Dore, "Strong Coriolis coupling between v5 and v11  states of CH3CCl3 studied by millimeter-wave spectroscopy", J.Mol.Spectrosc. 251, 235-240 (2008).
  • L.Dore and Z.Kisiel, "Nuclear quadrupole coupling in 1,1,1-Trichloroethane: Inertial and principal tensors for 35Cl and 37Cl", J.Mol.Spectrosc. 189, 228-234 (1998).
  • Z.Kisiel and L.Pszczolkowski, "Millimeter wave rotational spectra of the 37Cl species of 1,1,1,-trichloroethane" J.Mol.Spectrosc. 181, 48-55 (1997).
  • G.Cazzoli, G.Cotti, L.Dore, and Z.Kisiel, "The high frequency rotational spectrum of 1,1,1-trichloroethane and the observation of K=3 splitting", J.Mol.Spectrosc. 174, 425-432 (1995).

Chlorobromodifluoromethane, CBrClF2 (the popular fillant for fire extinguishers, removed from use following concerns over the well-being of the ozone layer):

  • Z.Kisiel, E.Bialkowska-Jaworska, and L.Pszczolkowski, "Nuclear quadrupole coupling in Cl2C=CHCl and Cl2C=CH2; Evidence for systematic differences in orientation between internuclear and field gradient axes for terminal quadrupolar nuclei", J.Chem.Phys. 109, 10263-10272 (1998).
  • Z.Kisiel and L.Pszczolkowski, "Assignment and analysis of the mm-wave rotational spectrum of trichloroethylene: observation of a new, extended b.R-band and an overview of high-J, R-type bands", J.Mol.Spectrosc. 177, 125-137 (1996).

Chlorofluoromethane, CHF2Cl (the freon CFC-22, widely used as an intermediate replacement for the CFC-11 and CFC-12 refrigerants which were relegated from use due to adverse effect on the ozone layer):

  • Z.Kisiel, J.L.Alonso, S.Blanco, G.Cazzoli, J.M.Colmont, G.Cotti, G.Graner, J.C.Lopez, I.Merke, and L.Pszczolkowski, "Spectroscopic constants for HCFC-22 from rotational and high-resolution vibration spectra: CHF237Cl and 13CHF235Cl isotopomers", J.Mol.Spectrosc. 184, 150-155 (1997).
  • Z.Kisiel, L.Pszczolkowski, G.Cazzoli, and G.Cotti, "The millimeter-wave rotational spectrum and Coriolis interaction in the two lowest excited vibrational states of CHClF2", J.Mol.Spectrosc. 173, 477-487 (1995).
  • G.Klatt, G.Graner, S.Klee, G.Mellau, Z.Kisiel, L.Pszczolkowski, J.L.Alonso, and J.C.Lopez, "Analysis of the high-resolution FT-IR and millimeter-wave spectra of the v5=1 state of CHF2Cl", J.Mol.Spectrosc. 178, 108-112 (1996).

Methylene iodide, CH2I2 (a rather taxing problem for rotational spectroscopy):

  • Z.Kisiel, E.Bialkowska-Jaworska, L.Pszczolkowski, "The <ICI bending satellites in the millimeter-wave rotational spectra of CH2I2 and CD2I2", J.Mol.Spectrosc. 199, 5-12 (2000).
  • Z.Kisiel, L.Pszczolkowski, L.B.Favero, and W.Caminati, "An isotopomer of the first molecule containing two iodine nuclei investigated by microwave spectroscopy", J.Mol.Spectrosc. 189, 283-290 (1998).
  • Z.Kisiel, L.Pszczolkowski, W.Caminati, and P.G.Favero, "First assignment of the rotational spectrum of a molecule containing two iodine nuclei: spectroscopic constants and structure of CH2I2", J.Chem.Phys. 105, 1778-1785 (1996).

Bromoform, CHBr3 (spectrum complicated by hyperfine structure and multiple isotopic species, which was  solved on the basis of a broadband, supersonic expansion spectrum recorded with chirped-pulse microwave techniques):

  • Z.Kisiel, A.Krasnicki, L.Pszczolkowski, S.T.Shipman, L.Alvarez-Valtierra, B.H.Pate, "Assignment and analysis of the rotational spectrum of bromoform enabled by broadband FTMW spectroscopy",  J.Mol.Spectrosc. 257, 177-186 (2009).

Diethyl ether, C2H5OC2H5 (the classical anaesthetic):

  • Z.Kisiel, L.Pszczolkowski, I.R.Medvedev, M.Winnewisser, F.C.De Lucia, E.Herbst, "Rotational spectrum of trans-trans diethyl ether in the ground and three excited vibrational states", J.Mol.Spectrosc. 233, 231-243 (2005).
  • I.Medvedev, M.Winnewisser, F.C.De Lucia, E.Herbst, E.Bialkowska-Jaworska, L.Pszczolkowski, Z.Kisiel, "The millimeter- and submillimeter-wave spectrum of the trans-gauche conformer of diethyl ether", J.Mol.Spectrosc. 228, 314-328 (2004).
  • I.Medvedev, M.Winnewisser, F.C.De Lucia, E.Herbst, E.Yi, L.P.Leong, R.P.A.Bettens, E.Bialkowska-Jaworska, O.Desyatnyk, L.Pszczolkowski, Z.Kisiel, "The millimeter- and submillimeter-wave spectrum of the trans-trans conformer of diethyl ether C2H5OC2H5", Astrophys.J.Suppl.Series 148, 593-597 (2003).

Chlorine nitrate, ClONO2 (important stratospheric molecule):

  • Z.Kisiel, E.Bialkowska-Jaworska, R.A.H.Butler, D.T.Petkie, P.Helminger, I.R.Medvedev, F.C.De Lucia, "The rotational spectrum of chlorine nitrate (ClONO2) in four lowest nv9 polyads", J.Mol.Spectrosc. 254, 78-86 (2009).
  • R.A.H.Butler, D.T.Petkie, P.Helminger, F.C.De Lucia, E.Bialkowska-Jaworska, Z.Kisiel, "The rotational spectrum of chlorine nitrate (ClONO2): The v6 vibrational state", J.Mol.Spectrosc. 244, 113-116 (2007).
  • R.A.H.Butler, D.T.Petkie, P.Helminger, F.C.De Lucia, Z.Kisiel, "The rotational spectrum of chlorine nitrate (ClONO2): The v5/v6v9 dyad", J.Mol.Spectrosc. 243, 1-9 (2007).

Acrylonitrile = Vinyl cyanide, H2C=CHCN: This molecule has been classified as a significant astrophysical  weed molecule and thus requiring detailed understanding of its rotational spectrum well into the THz region.  The A&A paper showed that even its rotational transitions in relatively high vibrational states are astrophysically relevant.

  • Z. Kisiel, M.-A. Martin-Drumel, O. Pirali, ”Lowest vibrational states of acrylonitrile from microwave and synchrotron radiation spectra”, J. Mol. Spectrosc. 315, 83-91 (2015).
  • A. Lopez, B. Tercero, Z. Kisiel, A. M. Daly, C. Bermdez, H. Calcutt, N. Marcelino, S. Viti, B. J. Drouin, I. R. Medvedev, C. F. Neese, L. Pszcz´ o lkowski, J. L. Alonso, J. Cernicharo, ”Laboratory characterization and astrophysical detection of vibrationally excited states of vinyl cyanide in Orion-KL”, Astron. Astrophys. 572, A44:1-39 (2014).
  • Z. Kisiel, L. Pszczolkowski, B. J. Drouin, C. S. Brauer, S. Yu, J. C. Pearson, I. R.Medvedev, S. Fortman, C. Neese, ”Broadband rotational spectroscopy of acrylonitrile: Vibrational energies from perturbations”, J. Mol. Spectrosc. 280, 134-144 (2012).
  • A. Krasnicki, Z. Kisiel, B. J. Drouin, J. C. Pearson, ”Terahertz spectroscopy of isotopic acrylonitrile”, J. Mol. Struct. 1006, 20-27 (2011).
  • A. Krasnicki, Z. Kisiel, ”Electric dipole moments of acrylonitrile and of propionitrile measured in supersonic expansion”, J. Mol. Spectrosc. 270, 83-87 (2011).
  • Z.Kisiel, L.Pszczolkowski, B.J.Drouin, C.S.Brauer, S.Yu, J.C.Pearson, "The rotational spectrum of acrylonitrile up to 1.67 THz", J.Mol.Spectrosc. 258, 26-34 (2009).
  • G.Cazzoli, Z.Kisiel, "The rotational spectrum of acrylonitrile in excited states of the low frequency CCN bending vibrational modes", J.Mol.Spectrosc. 130, 303-315 (1988).

Ethyl cyanide (propionitrile), C2H5CN (another relevant astrophysical molecule, not only in the interstellar medium but, as it turns out, also closer to Earth on Saturn's moon Titan):

  •  M.A. Cordiner, M.Y. Palmer, C.A. Nixon, P.G.J. Irwin, N.A. Teanby, S.B. Charnley, M.J. Mumma, Z.Kisiel, J. Serigano, Y.-J. Kuan, Y.-L. Chuang, K.-S. Wang, ”Ethyl cyanide on Titan: Spectroscopic detection and mapping using ALMA”, Astrophys. J. Lett. 800, L14:1-7 (2015).
  • A. Krasnicki, Z. Kisiel, ”Electric dipole moments of acrylonitrile and of propionitrile measured in supersonic expansion”, J. Mol. Spectrosc. 270, 83-87 (2011).

n-propanol, H3CCH2CH2OH (successful assignment of all five conformers by combining information from spectra recorded in four different laboratories using different techniques of rotational spectroscopy):

  • Z.Kisiel, O.Dorosh, A.Maeda, I.R.Medvedev, F.C.De Lucia, E.Herbst, B.J.Drouin, J.C.Pearson, S.T.Shipman, "Determination of precise relative energies of conformers of n-propanol by rotational spectroscopy", Phys.Chem.Chem.Phys. 12, 8329-8339 (2010).

Pyrimidine (nucleic acid backbone molecule):

  • Z.Kisiel, L.Pszczolkowski, J.C.Lopez, J.L.Alonso, A.Maris, and W.Caminati, "Investigation of the rotational spectrum of pyrimidine from 3 to 337 GHz: Molecular structure, nuclear quadrupole coupling, and vibrational satellites", J.Mol.Spectrosc. 195,332-339(1999).
  • Y-J.Kuan, C-H.Yan, S.B.Charnley, Z.Kisiel, P.Ehrenfreund, H-C.Huang, "A search for interstellar pyrimidine", Mon.Not.R.Astron.Soc. 345,650-656(2003).
  • Z.Peeters, O.Botta, S.B.Charnley, Z.Kisiel, Y.-J.Kuan, P.Ehrenfreund, "Formation and photostability of N-heterocycles in space - I. The effect of nitrogen on the photostability of small aromatic molecules", Astron. & Astrophys. 433, 583-590 (2005).

Various substituted benzene derivatives:

  • Toluene: V.V.Ilyushin, E.A.Alekseev, Z.Kisiel, L.Pszczolkowski, "High-J rotational spectrum in |m|<=3 torsional states", J.Mol.Spectrosc. 339, 31-39 (2017).
  • V.V.Ilyushin, Z.Kisiel, L.Pszczolkowski, H.Mader, J.T.Hougen, "A new torsion-rotation fitting program for molecules with a sixfold barrier: Application to the microwave spectrum of toluene", J.Mol.Spectrosc. 259, 26-38 (2010).
  • Z.Kisiel, E.Bialkowska-Jaworska, L.Pszczolkowski, H.Mader, "Ground state rotational spectrum of toluene", J.Mol.Spectrosc. 227, 109-113 (2004).
  • Fluorobenzene: Z.Kisiel, E.Bialkowska-Jaworska, L.Pszczolkowski, "The millimeter-wave rotational spectrum of fluorobenzene", J.Mol.Spectrosc 232, 47-54 (2005).
  • Z.Kisiel, E.Bialkowska-Jaworska,"Sextic centrifugal distortion in fluorobenzene and phenylacetylene from cm-wave rotational spectroscopy", J.Mol.Spectrosc. 359, 16-21 (2019).
  • Chlorobenzene, Bromobenzene, Iodobenzene: O.Dorosh, E.Bialkowska-Jaworska, Z.Kisiel, L.Pszczolkowski, "New measurements and global analysis of rotational spectra of Cl-, Br- , and I-benzene: Spectroscopic constants and electric dipole moments", J.Mol.Spectrosc. 246, 228-232 (2007).
  • Anisole and Benzaldehyde: O.Desyatnyk, L.Pszczolkowski, S.Thorwirth, T.M.Krygowski, Z.Kisiel, "The rotational spectra, electric dipole moments and molecular structures of anisole and benzaldehyde", Phys.Chem.Chem.Phys. 7, 1708-1715 (2005); publisher's correction Phys.Chem.Chem.Phys. 7, 2080 (2005).
  • Phenylacetylene: Z.Kisiel, A.Krasnicki, "The millimetre-wave rotational spectrum of phenylacetylene", J.Mol.Spectrosc. 262, 82-88 (2010).
  • Z.Kisiel, E.Bialkowska-Jaworska,"Sextic centrifugal distortion in fluorobenzene and phenylacetylene from cm-wave rotational spectroscopy", J.Mol.Spectrosc. 359, 16-21 (2019).
  • Salicyl aldehyde: O.Dorosh, E.Bialkowska-Jaworska, Z.Kisiel, L.Pszczolkowski, M.Kanska, T.M.Krygowski, "The complete molecular geometry and electric dipole moment of salicyl aldehyde from rotational spectroscopy", J.Mol.Spectrosc. 335, 3-12 (2017).
  • Benzonitrile: M.A.Zdanovskaia, B.J.Esselman, H.S.Lau, D.M.Bates, R.C.Woods, R.J.McMahon, Z.Kisiel, "The 103-360 GHz rotational spectrum of benzonitrile, the first interstellar benzene derivative detected by radioastronomy", J.Mol.Spectrosc. 351, 39-48 (2018).



Sulfur dicyanide, S(CN)2 (a tutorial in the study of complex broadband rotational and rotation-vibration spectra with analysis of multiple Coriolis+Fermi interstate interactions):

  •  Z. Kisiel, M. Winnewisser, B. P. Winnewisser, F. C. De Lucia, D. W. Tokaryk, B. E. Billinghurst, ”Far-Infrared Spectrum of S(CN)2 Measured with Synchrotron Radiation: Global Analysis of the Available High-Resolution Spectroscopic Data”, J. Phys. Chem. A 117, 13815-13824 (2013).
  • Z.Kisiel, O.Dorosh, M.Winnewisser, M.Behnke, I.R.Medvedev, F.C.De Lucia, "Comprehensive analysis of the FASSST rotational spectrum of S(CN)2", J.Mol.Spectrosc. 246, 39-56 (2007).

Selected other molecules studied with either the MMW or FTMW (or both) spectrometers in Warsaw:

  • H2C=CClCN: Z.Kisiel and L.Pszczolkowski, "Nuclear quadrupole coupling in 2-chloroacrylonitrile: inertial and principal quadrupole tensor components for Cl and N", J.Mol.Spectrosc. 184, 215-220 (1997).
  • CH2Cl2: Z.Kisiel, J.Kosarzewski, and L.Pszczolkowski, "Nuclear quadrupole coupling tensor of CH2Cl2: Comparison of quadrupolar and structural angles in methylene halides", Acta Physica Polonica A. 92, 507-516 (1997).Reprint
  • Chloroform, HCCl3: E.Bialkowska-Jaworska, Z.Kisiel and L.Pszczolkowski, "Nuclear quadrupole coupling in chloroform and calibration of ab initio calculations", J.Mol.Spectrosc. 238, 72-78 (2006).
  • CHF2I: C.T.Dewberry, Z.Kisiel, S.A.Cooke,  "The pure rotational spectrum of Difluoroiodomethane, CHF2I", J.Mol.Spectrosc. 261, 82-86 (2010).
  • CCl2=CH2:

    Z.Kisiel, E.Bialkowska-Jaworska, L.Pszczolkowski, "Nuclear quadrupole coupling in Cl2C=CHCl and Cl2C=CH2; Evidence for systematic differences in orientation between internuclear and field gradient axes for terminal quadrupolar nuclei", J.Chem.Phys. 109, 10263-10272 (1998).

    Z.Kisiel and L.Pszczolkowski, "The high-frequency rotational spectrum of 1,1-dichloroethylene", Z.Naturforsch. 50A, 347-351 (1995).

  • tBuX, X=F, Cl, Br, I, CN, NC: Z.Kisiel, E.Bialkowska-Jaworska, O.Desyatnyk, B.A.Pietrewicz, L.Pszczolkowski, "The gas-phase electric dipole moments of the symmetric top tertiary butyl molecules tBuX, X=F,Cl,Br,I,CN, and NC", J.Mol.Spectrosc. 208, 113-120 (2001).
  • 1-F-adamantane: A.C.Legon, J.Tizard, and Z.Kisiel, "Bridgehead distortion at the C1 position of 1-fluoroadamantane revealed by rotational spectroscopy and ab initio calculations", J.Mol.Struct. 612, 83-91 (2002).
  • Quinoline/Isoquinoline:

 O. Pirali, Z. Kisiel, M. Goubet, S. Gruet, M.A. Martin-Drumel, A. Cuisset, F. Hindle, G. Mouret, ”Rotation-vibration interactions in the spectra of polycyclic aromatic hydrocarbons: Quinoline as a test-case species”, J. Chem. Phys. 142, 104310:1-11 (2015).

Z.Kisiel, O.Desyatnyk, L.Pszczolkowski, C.B.Charnley, P.Ehrenfreund, "Rotational spectra of quinoline and of isoquinoline: spectroscopic constants and electric dipole moments", J.Mol.Spectrosc. 217, 115-122 (2003).

  • Camphor: Z.Kisiel, O.Desyatnyk, E.Bialkowska-Jaworska, L.Pszczolkowski, "The structure and electric dipole moment of camphor determined by rotational spectroscopy", Phys.Chem.Chem.Phys. 5, 1359-1364 (2003).
  • Urethane (ethyl carbamate): M.Goubet, R.A.Motiyenko, F.Real, L.Margules, T.R.Huet, P.Asselin, P.Soulard, A.Krasnicki, Z.Kisiel, E.A.Alekseev, "Influence of the geometry of a hydrogen bond on conformational stability: a theoretical and experimental study of ethyl carbamate", Phys.Chem.Chem.Phys. 11, 1719-1728 (2009).
  • 1,3-benzodioxole: Z.Kisiel, L.Pszczolkowski, G.Pietraperzia, M.Becucci, W.Caminati, R.Meyer, "The anomeric effect in 1,3-benzodioxole: additional evidence from the rotational, vibration-rotation and rovibronic spectra", Phys.Chem.Chem.Phys. 6, 5469-5475 (2004).
  • Cyclopropyl cyanide: L.Bizzocchi, C.D.Esposti, L.Dore, Z.Kisiel, "Submillimetre-wave spectrum, 14N-hyperfine structure, and dipole moment of cyclopropyl cyanide", J.Mol.Spectrosc. 251, 138-144 (2008).
  • Acetic acid/Acetone: O.Dorosh, Z.Kisiel, "Electric dipole moments of acetone and of acetic acid measured in supersonic expansion", Acta Physica Polonica A 112, S95-S104 (2007).Reprint
  • Glycolic acid:  Z.Kisiel, L.Pszczolkowski, E.Bialkowska-Jaworska, S.B.Charnley,  "Millimetre wave rotational spectrum of glycolic acid", J.Mol.Spectrosc. 321, 12-32 (2016).
  • Lactic acid:  L.Pszczolkowski, E.Bialkowska-Jaworska, Z.Kisiel, "The millimeter-wave rotational spectrum of lactic acid", J.Mol.Spectrosc. 234, 106-112 (2005).
  • Pyruvic acid: Z.Kisiel, L.Pszczolkowski, E.Bialkowska-Jaworska, S.B.Charnley, "The millimeter-wave rotational spectrum of pyruvic acid", J.Mol.Spectrosc. 241, 220-229 (2007).
  • Pyruvonitrile (acetyl cyanide): A.Krasnicki, L.Pszczolkowski, Z.Kisiel, "Analysis of the rotational spectrum of pyruvonitrile up to 324 GHz", J.Mol.Spectrosc. 260, 57-65 (2010).
  • 2,2-dichloropropane, (CH3)2CCl2: E. Bialkowska-Jaworska, L. Pszczolkowski, Z. Kisiel, ”Comprehensive analysis of the rotational spectrum of 2,2-dichloropropane”, J. Mol. Spectrosc. 308-309, 20-27 (2015).
  • CF3CH2Cl: I.Uriarte, Z.Kisiel, E.Bialkowska-Jaworska, L.Pszczolkowski, P.Ecija, F.J.Basterretxea, E.J.Cocinero, "Comprehensive rotational spectroscopy of the newly identified atmospheric ozone depleter CF3CH2Cl", J.Mol.Spectrosc. 337, 37-45 (2017).
  • CF3CCl3: Z.Kisiel,  L.Pszczolkowski, E.Bialkowska-Jaworska, I.Uriarte, F.J.Basterretxea, E.J.Cocinero, "Rotational spectroscopy update for the newly identified atmospheric ozone depleter CF3CCl3", J.Mol.Spectrosc. 352, 1-9 (2018).
  • 2-chloropropene: Z.Kisiel, J.Kosarzewski, "Identification of trace 2-chloropropene with a new chirped pulse microwave spectrometer", Acta Physica Polonica A 131, 311-317 (2017).Reprint
 
     

Institute Home Page   Division ON2

links       PROSPE database