Recenzja rozprawy doktorskiej mgr. Alexeia Petrouchika pt. “Strukturalne i magnetyczne właściwości struktur wielowarstwowych Gd/Cr otrzymanych metodą epitaksji z wiązek molekularnych”

Jednym z ciekawszych kierunków rozwoju fizyki materii skondensowanej są badania struktur niskowymiarowych, czyli ciekich, o rozmiarach nanometrów, warstw i wielowarstw. Własności takich struktur są na ogół istotnie różne od własności materiałów objętościowych, co prowadzi do wielu ciekawych efektów fizycznych i stwarza potencjalne możliwości zastosowań praktycznych. Tematem przedstawionej mi do recenzji rozprawy doktorskiej autorstwa mgr. Alexeia Petrouchika, wykonanej pod kierunkiem doc. Baczewskiego, są badania z tej właśnie dziedziny, nad wzrostem i własnościami wielowarstw Gd/Cr. Tematyka ta jest częścią szerszej tematyki badań nad wzrostem i własnościami ciekich warstw i struktur magnetycznych, uprawianej w grupie kierowanej przez doc. Baczewskiego od kilku lat. Własności ciekich struktur magnetycznych są obecnie przedmiotem zainteresowania w najlepszych ośrodkach na świecie, i bardzo dobrze, że również w Instytucie Fizyki PAN podejmowane są tego typu problemy.

Rozprawa składa się z 15-tu rozdziałów, które można podzielić na 3, mniej więcej równie objętościowo, części: wstęp i wprowadzenie literaturowe (rozdziały 1-7), opis zastosowanych metod technologicznych i badawczych (rozdz. 8-10), oraz opis wyników badań i podsumowanie (rozdziały 11-14). Rozdział 15 stanowi spis bibliografii dotyczącej tematu, i obejmuje 98 pozycji – sa to pozycje dobrze ilustrujące temat, co pokazuje, że autor rozprawy zna dobrze poruszane zagadnienia.

Rozprawa zaczyna się od bardzo ogólnego wstępu uzasadniającego podjęcie badań nad wielowarstwami zbudowanymi z dwóch składników, metalu ziem rzadkiej i metalu przejściowego. Momenty magnetyczne pochodzą w tych metalach z powłok elektronowych zhybrydyzowanych w odmiennym stopniu, co prowadzi do zasadniczych różnic we własnoścach magnetycznych. Szkoda, że we wstępie zabrakło krótkiego wprowadzenia do szczegółowego celu badań prowadzonych przez doktoranta. Umieszczono zostało ono dopiero w rozdziale 11, na początku części omawiającej wyniki badań, skutkiem tego czytelnik aż do 2/3 rozprawy nie ma jasności, jakie badania będą przedstawione w rozprawie.

Część literaturowa rozprawy przedstawiona jest w zasadzie poprawnie. Dowiadujemy się z niej, między innymi, że warstwy gadolinu w strukturach ciekowarstwowych są uporządkowane ferromagnetycznie, zaś warstwy chromu o grubościach powyżej 10 Å wykazują porządek antyferromagnetyczny – znajdzie to również potwierdzenie w wynikach doświadczalnych opisanych w rozprawie. Mam kilka drobnych uwag do tej części pracy. Po pierwsze, niezbyt szczegółowy jest układ tej części, gdyż autor zaczyina od literaturowego przeglądu własności wielowarstw ziem rzadkich, później omawia związki międzymetaliczne ziem rzadka-metal przejściowy, zależność temperatury Curie od grubości warstw i anizotropię magnetyczną w warstwach, a na końcu przechodzi do opisu własności fizycznych gadolinu i chromu. Aż się prosi, aby układ tych rozdziałów był odwrotny, tzn. aby zacząć od najmniejszych „cegielek”, czyli gadolinu i chromu, i później przejść do bardziej skomplikowanych związków i struktur, co ułatwiłoby Autorowi opis, a czytelnikowi zrozumienie tekstu.
Po drugie, doktorant cytuję z literatury szereg wzorów, zwłaszcza w rozdziałach dotyczących temperatury Curie i anizotropii. Nie mam nic przeciwko wzorom, pod warunkiem, że wielkości w nich występujące są poprawnie zdefiniowane, i że, oprócz wzorów, wyjaśniony jest sens fizyczny opisywanego zagadnienia. Tak niestety niezawsze jest. Na przykład, we wzorach zaczernietych z „finite-size scaling theory” w rozdz. 4 doktorant definiuje „shift exponent” jako związany relacją odwrotności z długością korelacji, i utożsamia długość korelacji z wykładnikiem krytycznym. Tymczasem wg. teorii długości korelacji rośnie się w pobliżu przejścia fazowego z pewnym wykładnikiem krytycznym, i „shift exponent” jest odwrotnością tego wykładnika, a nie długości korelacji. Nie jestem też pewna, jaki sens ma wypisywanie wzorów na anizotropię magnetyczną (rozdz. 5, wzór 2), jeśli stałe anizotropii zdefiniowane są jako „stała anizotropii pierwszego rzędu” i „stała anizotropii drugiego rzędu”, bez podania, z czym są one związane i napisania, dlaczego stała K2 jest zazwyczaj o wiele mniejsza od K1? We wzorze (1.5) na oddziaływanie RKKY w rozdz. 6 brak jest definicji wielkości „l”.

Drugą część pracy, bardzo obszerna, opisuje metodę technologiczną epitaksji związek molekularnych (MBE), oraz użyska metody badawcze. Podobnie mi się rozdział o MBE, przekonująco opisane są różne rodzaje wzrostu warstw. Do charakteryzacji strukturalnej wielowarstw doktorant używał szeregu standardowych technik, takich jak dyfrakcja elektronów wysokoenergetycznych RHEED, reflektometria rentgenowska, spektroskopia elektronów Auger i mikroskopia sił atomowych; do badań magnetycznych użyto magnetometru VSM, pomiarów podatności zmiennościowej, reflektometrii neutronowej oraz pomiarów rentgenowskiego kołowego dichroizmu magnetycznego. Rozumiem, że większość pomiarów wykonana była albo samodzielnie, lub z dużym udziałem doktoranta. Wyjątkiem były badania reflektometrii neutronów, w których doktorant nie uczestniczył bezpośrednio, ale brał regularny udział w opracowaniu danych. Znajomość tylu technik bardzo dobrze świadczy o przygotowaniu doktoranta do przyszłych samodzielnych badań. Tym niemniej, uważam, że doktorant nieco przesadził ze szczegółowym opisem tych technik (niejedne rozdziały rozprawy przypominają podręcznik obsługi dyfrakturometru); do opracowania danych używa się obecnie standardowych programów komputerowych, i dokładna znajomość wzorów np. na współczynnik odbicia czy współczynnik transmisji nie jest potrzebna; znacznie ciekawsze byłoby porównanie własnych wyników badawczych, tak jak to doktorant zrobił w przypadku rozdziału 9.1, w którym bardzo ładnie opisał wpływ chropowatości warstwy molibdenu na obrazy otrzymane przy pomocy RHEED.

Oczywiście najciekawsza jest zawsze część rozprawy dotycząca własnych wyników badawczych. Część ta rozpoczyna się od krótkiego opisu celów badań w rozdziale 11; doktorant podkreśla, że istotnym zadaniem było dobranie optymalnych warunków osadzania warstw, a następnie wykonanie badań ich własności strukturalnych i magnetycznych. Opis procesu wytwarzania warstw ograniczony jest jednak do jednej strony. Rozumiem, że podane parametry osadzania warstw dotyczą zoptymalizowanego procesu wzrostu; naświta się pytanie, czy i jakie badania parametrów procesu wykonał doktorant zanim dobrał te optymalne parametry. Szkoda, że w rozprawie nie jest to uwypuklone - zwykle przy pracach technologicznych taka optymalizacja stanowi istotną, najbardziej pracochłonną część badań; ich opis stanowiłby ważną część, która tu została niemal całkowicie pominięta (wpływ zmiany kilku parametrów procesu na własności warstw opisany jest w następnym rozdziale).

W rozdziale 12 doktorant przechodzi do opisu własności strukturalnych wyhodowanych warstw. Zbadano obrazy dyfrakcyjne RHEED dla, kolejno, warstw buforowych molibdenu
osadzanych na podłożu szafirowym, dla pierwnej warstwy chromu osadzonej na molibdenie, a następnie dla pierwszej warstwy gadolinu osadzonej na chromie, wreszcie - dla całej wielowarstwy; następnie wykonano reflektometrię rentgenowską dla wielowarstw o trzech różnych grubościach warstw chromu. Badania te pokazały, że warstwy Gd rosną w strukturze heksagonalnej z osią c prostopadłą do podłoża; szczotkość międzypowierzchni jest rządu odległości międzyatomowych dla pierwszych warstw i nieznacznie rośnie dla całej wielowarstwy.

Doktorant wykonał następnie podobne badania strukturalne w celu oceny wpływu kilku czynników na własności strukturalne; stwierdził mianowicie, że wzrost wielowarstw na monokrystalicznym MgO zwiększa dwukrotnie chropowatość struktur; podniesienie temperatury podłoża pogarsza znacznie jakość struktur; natomiast zmniejszenie prędkości osadzania znacznie zmniejsza chropowatość międzypowierzchni; omówione są prawdopodobne przyczyny zaobserwowanych zmian. W tym miejscu warto zauważyć, że do dalszych badań magnetycznych użyto „oryginalnych” próbek osadzanych przy większych prędkościach osadzania, skraca, że nie wyhodowano serii próbek przy małych prędkościach i nie wykonano dla nich badań magnetycznych.

Rozdział 13 opisuje badania magnetyczne. Przeprowadzono je dla trzech wielowarstw Gd/Cr, przy czym grubość warstwy Gd była stała, zaś grubość warstwy chromu wynosiła 10A, 20A, oraz 30A. Przy tych grubościach Cr jest uporządkowany antyferromagnetycznie, zaś warstwy gadolinu wykazały w pomiarach pętli histerezy uporządkowanie ferromagnetyczne z kierunkiem łatwego namagnesowania w płaszczyźnie próbek. Z pomiarów tych doktorant wyznaczył moment magnetyczny przypadający na 1 atom gadolinu, i otrzymał wartości niższe (o ok. 10%) niż w gadolinie objętościowym. Z pomiarów tych wyznaczono także pola koercji, i pokazano, że rosną one wraz z grubością warstwy chromu. Doktorant proponuje możliwe wyjaśnienia tego wzrostu, który może pochodzić od sprzężenia z antyferromagnetyczną warstwą chromu (efekt „exchange bias”), oraz może być związane z większą ilością defektów w grubych warstwach chromu, działających jako ośrodki kotwiczenia. Oszacowany efekt „exchange bias” wywołany zmianą grubością warstw Cr opisano w literaturze dla przypadku wielowarstw Cr/permalloy; warto zauważyć jednak, że obserwowano tam nie tylko zwiększenie pola koercji, ale też przesunięcie pętli histerezy, typowe dla tego efektu (wielkość przesunięcia zależała od grubości). Niestety, w niniejszej rozprawie nie ma żadnej wzmianki na temat obecności (lub nie) przesunięcia pętli histerezy.

Najciekawszą częścią pracy wydają mi się badania nad wpływem wygrzewania na temperaturę Curie (T_C) warstw gadolinu, wykonane metodą pomiaru podatności zmiennoprądowej dla jednej z próbek, o największej grubości warstw Cr. W pomiarach tych obserwuje się szeroki pik, którego maksimum interpretuje się jako T_C; w próbkach niewygrzewanej Tc ma wartość sporo niższą niż ta obserwowana dla objętościowego gadolinu, co zgodne jest z oczekiwaniami dla cienkich warstw. Wygrzewanie w niskich temperaturach powoduje wzrost T_C, co doktorant wiąże z wygładzaniem międzypowierzchni w wielowarstwie. Dla wyższych temperatur wygrzewania pojawia się dodatkowy pik w podatności w T>T_C, co doktorant sugeruje związać z powstawaniem większych klastrów gadolinu; wydaje mi się, że taka interpretacja jest sensowna. Pomiary pokazują także obecność dodatkowego piku w podatności w temperaturach niższych niż T_C (Pik 1, wg. oznaczeń w rozprawie), który staje się bardzo dobrze widoczny po wygrzaniu próbki; doktorant sugeruje, że jego obecność można wiązać z niezerową prostopadłą składową namagnesowania pochodzącej od struktury domenowej, bądź też
od przejścia fazowego do struktury antyferromagnetycznej w warstwach chromu. Ta pierwsza sugestia wydaje się bardzo prawdopodobna; chęć tu zwrócić uwagę, że (wbrew temu co pisze Autor) pik 1 wydaje się być obecny również przed wygrzaniem, choć jest słabej widoczny; niezerowa składowa anizotropii jest zresztą widoczna w pomiarach pętli histerezy, co doktorant omawiał szczegółowo przy okazji tych pomiarów.

Dwie ostatnie części rozdziału 13 dotyczą badań reflektometrii spolaryzowanych neutronów oraz rentgenowskiego kołowego dichroizmu magnetycznego, wykonane w celu określenia momentu magnetycznego gadolinu i chromu w wielowarstwach. Z symulacji widm reflektometrii (w samych pomiarach doktorant nie brał udziału) otrzymano wartości momentu Gd o ponad 50% mniejsze niż moment dla Gd objętościowego, otrzymano też bardzo mały (niemal w granicach błędu) indukowany moment dla warstwy Cr. Tak duża wartość obniżenia momentu Gd wydaje się dziwna w porównaniu do obniżenia momentu o 10%, otrzymanego z pomiarów namagnesowania. Wg. doktoranta, obniżenie wartości momentu może być związane z rozorientowaniem atomów Gd przy powierzchniach; rozorientowanie to mogło być większe w pomiarach reflektometrii, które były przeprowadzone w znacznie słabszych polach oraz w nieco wyższych temperaturach, niż pomiary namagnesowania. Pomiary dichroizmu prowadzono w jeszcze wyższych temperaturach, i zmierzono obniżenie momentu Gd również znacznie większe niż to wyznaczone z namagnesowania, co doktorant tłumaczy niedokładnym określением temperatury pomiaru. Nie udało się także zaobserwować indukowanego momentu w chromie.

Warto tu może zwrócić uwagę, że oba te pomiary, reflektometrii oraz dichroizmu, wykonano na innych wielowarstwach niż badania namagnesowania, doktorant sugeruje wręcz, że próba użyta w reflektometrii mogła być bardziej utleniona. W związku z tym nie jest jasne, na ile porównywanie tych wyników do badań namagnesowania jest w ogóle sensowne.

Podsumowując całość przedstawionych wyników doświadczalnych, za najbardziej wartościowe uznamy przechowy w sposób otrzymanie wielowarstw o bardzo dobrej jakości międzypowierzchni; a także interesujący wpływ wygrzewania na temperaturę Curie. W sumie jednak badania magnetyczne sprawiają wrażenie badań wstępnych, które dopiero należałoby rozwinąć dalej, aby otrzymać naprawdę znaczące wyniki fizyczne. Innymi słowy, lekta tej części rozprawy pozostawia rozczarowujące wrażenie; wydaje mi się, że na tle rozpraw doktorskich branżowych w IFPAN materiał doświadczalny, przynajmniej w formie przedstawionej przez doktoranta, prezentuje się niezbyt obfitie. Prawdopodobnie spowodowane jest to faktem, że duża część badań dotyczyła prac technologicznych, które są na ogólnie czasochnone, a niekoniecznie wiodą szybko do pozytywnych wyników.

Generalnie rozprawę czyta się dobrze, co warte jest podkreślenia, bowiem język polski nie jest językiem ojczystym doktoranta. W pracy jest sporo drobnych błędów edytorskich, są też tu i ówdzie nieco humorystyczne sformułowania, jak np. na str. 25 zdanie „oddziaływanie RKKY przyjmuje postać Heisenberga”. Jednak te błędy nie utrudniają czytania rozprawy.

Mimo powyższych uwag krytycznych, stwierdzam, że praca spełnia wymogi stawiane pracom doktorским. W związku z tym wnoszę o dopuszczenie mgr Petrouchika do dalszych etapów przewodu doktorskiego.