Recenzja rozprawy doktorskiej
"Elektromagnetycznie wymuszona przezrozczystość w zimnych atomach rubidu w pułapce magneto-optycznej" mgr. Krzysztofa Kowalskiego

Przedstawiona do recenzji rozprawa doktorska mgr. Krzysztofa Kowalskiego dotyczy nowej i ważnej tematyki badawczej obejmującej zarówno zagadnienia fizyki zimnych atomów jak i problematykę modyfikacji własności optycznych ośrodka pod wpływem propagujących w nim wiązek laserowych.

Zjawisko elektromagnetycznie wymuszonej przezrozczystości (EIT) wykorzystuje możliwość istotnej modyfikacji własności optycznych ośrodka poprzez dobór odpowiednich parametrów propagujących w nich wiązek laserowych. Efekt ten przewidywany teoretycznie pod koniec lat osiemdziesiątych, krótko potem wykazany doświadczalnie, jest bardzo intensywnie badany dla różnych ośrodków optycznych i konfiguracji poziomów energetycznych i pól elektromagnetycznych. Brane są pod uwagę liczne możliwe zastosowania praktyczne tego zjawiska między innymi w magnetometrach i do budowy bardzo czułych magnetometrów oraz jako układy przełączające w telekomunikacji optycznej. Najbardziej spektakularnym (nawet w sensie swoistej sensacji medialnej) jest możliwość wykorzystania tych zjawisk do spawalniania prędkości grupowej światła a nawet do tak zwanego "zatrzymania" impulsu światła.

Przedstawiona do recenzji rozprawa doktorska ma układ klasyczny, składa się ze 185 stron podzielnionych na sześć rozdziałów i dwa dodatki, spis literatury obejmuje 115 pozycji.

W rozdziale pierwszym pracy Autor przedstawia podstawy fizyczne chłodzenia atomów pokazując w sposób poglądowy zależność siły działającej na chłodzone atomy od wielkości odstrzenia i natężenia wiązki lasera pułapującego. Omawia następnie rolę kwadrapolowego pola magnetycznego oraz dobór polaryzacji sześciu wiązek laserowych
niezbędnych dla działania pułapki magnetoopcyjnej MOT umożliwiającej zebranie (spułapkowanie) chłodzonych atomów w określonym miejscu w przestrzeni. Jednym z najistotniejszych parametrów charakteryzujących pracę pułapki jest wartość temperatury zimnych atomów. Autor przedstawia sposoby teoretycznego oszacowania tej wielkości podając wyrażenie na temperaturę graniczną chłodzenia dopplerowskiego oraz podaje jeden z mechanizmów umożliwiających uzyskiwanie jeszcze niższych temperatur. Należy tu jednak zaznaczyć, że przedstawiony mechanizm chłodzenia z gradientem polaryzacji daje co prawda bardzo poglądowy model tak zwanego *chłodzenia Syzyfu* lecz jak Autor zauważa dotyczy on przypadku zastosowania wiązki lasera chłodzącego o wzajemnie prostopadłych polaryzacjach liniowych, nie stosowanych w typowych (w tym i Autora) pułapkach MOT, gdzie zastosowane są wiązki o polaryzacjach kołowych. Istotne jest, że rozdział ten zawiera podstawowe informacje niezbędne do zrozumienia mechanizmów chłodzenia zebrane w jednym miejscu, co ułatwia dalsze zrozumienie tekstu pracy czytelnikowi nie będącemu specjalistą w tej dziedzinie.

Rozdział drugi pracy obejmuje szczegółowy opis wszystkich elementów składowych zbudowanej rubidowej pułapki MOT. O zlokalizacji całego układu pomiarowego może świadczyć fakt, że zastosowano w nim aż pięć laserów półprzewodnikowych: trzy lasery pracujące w układzie samej pułapki: *Master* i *Slave* – chłodzące oraz laser repompujący, jak również dwa lasery służące do pomiarów badanych widm. Wykorzystano zarówno lasery fabryczne (Toptica) jak i lasery zbudowane przez Doktoranta. W kolejnych podrozdziałach Autor szczegółowo opisał zbudowane lasery pracujące w konfiguracji ECDL, zwracając szczególną uwagę na osiągnięcie optymalnego sprzężenia diody laserowej z wiązką zawrotną przez siatkę dyfrakcyjną, gwarantującego pracę lasera przy szerokości spektralnej poniżej 1 MHz niezbędnej dla pracy pułapki.

Prawidłowe działanie pułapki MOT wymaga stabilnej pod względem częstotliwościowym pracy laserów. Autor przedstawił zasadę działania i budowę układu stabilizacji wykorzystującego powszechnie stosowaną w układach MOT metodę DAVLL (Dichroic Atomic Vapour Laser Lock). Metoda ta umożliwia uzyskanie żadanego odstrzeżenia lasera chłodzącego od właściwego przejścia atomowego poprzez odpowiedni obrót płytki ćwierćfalowej. Warto podkreślić, że zastosowane tutaj przez Autora niestandardowe rozwiązanie umożliwiające płynne i precyzyjne przestrawianie lasera poprzez zmianę napięcia odniesienia porównywanego z sygnałem różnicowym z metody DAVLL. Autor wspomina o dokładniejszej metodzie stabilizacji dichroicznej wykorzystującej widmo bezdopplerowskie DFDL (Doppler Free Dichroic Lock) lecz brak dostępnej modulatora akustoopcyjnego uniemożliwił wykorzystanie tej metody do stabilizacji lasera chłodzącego odstronnego "ku czerwieni" od właściwego przejścia atomowego.

Prawidłowa praca pułapki wymaga też odpowiedniej mocy dostarczanej przez laser pułapkujący. Konieczne okazało się "wzmocnienie" wysokostabilnego częstotliwościowego promieniowania lasera (*Master*) poprzez zastosowanie diodowego wzmacniacza laserowego (*Slave*). Doktorant bardzo szczegółowo opisał zastosowaną procedurę "injection locking" oraz dokładne ustawienie zastosowanych elementów optycznych i zoptymalizowanie pracy układu obu laserów.

Kluczową rolę w badaniach widm odgrywa właściwa kalibracja osi częstości. W przedstawionym rozwiązaniu jako wzorzec częstości wykorzystano widmo bezdopplerowskie przejść $5S_{1/2} (F=3) - 5P_{3/2} (F' = 2, 3, 4)$. Widmo to wykorzystywano też przy dostrzeganiu częstości laserów w procesie chłodzenia. Należy zwrócić tu uwagę, że metoda ta może wprowadzać pewien błąd. Mielesząco zakłada się bowiem, że w obszarze między zarejestrowanymi maksimami linii dyspersja jest dobrze znana i jest liniowa. Podobny problem napotykamy stosując jako wzorzec częstości względnych "grzebień" maksimów transmisyjnych z pasywnie stabilizowanego interferometru Fabry-Perot. Wnoszone przez taki
pomiar błędów częstotliwości mogą w istotny sposób niekształtać rejestrowane widma. Rozwiązaniem jest na przykład zastosowanie przestrażanego interferometru Fabry-Perot w połączeniu ze stabilizowanym laserem referencyjnym He-Ne.

Autor opisuje również zbudowany układ próżniowy wraz z komórką MOT oraz cewki magnetyczne: trzy pary do kompensacji zewnętrznego pola magnetycznego oraz cewki antyhelmoltzowskie wytwarzające pole kwadruplowe.

Do kompletności opisu zbudowanej pułapki MOT brakuje mi jednak standardowych dla prac konstrukcyjnych testów działania samej pułapki dających informację o ilości spułapkowanych atomów (krzywe ładowania), rozmiarach zajmowanego przez nie obszaru (aby móc wyznaczyć gęstość zimnych atomów) oraz prób wyznaczenia uzyskanej temperatury zimnych atomów rubidu. Część z tych informacji można w formie bardzo skróconej można co prawda znaleźć w publikacji Doktoranta (poz. [21]).

Rozdział trzeci przedstawia badania kształtów widm absorpcyjnych przejść wykorzystywanych przez Autora w dalszej części pracy do badania zjawiska EIT, ze szczególnym uwzględnieniem wpływu spułapkujących wiązek laserowych oraz kwadruplowego pola magnetycznego na rejestrowane widma. Analiza uzyskanych widm absorpcyjnych przeprowadzona jest w formaliźmie modelu atomu ubranego, którego zarys Autor w tym miejscu przedstawia. Jako pierwsze Autor analizuje widmo przejść $5S_{1/2} (F=3) - 5P_{3/2} (F'=2, 3, 4)$. Dobierając odpowiednio parametry pracy pułapki uzyskuje widmo precyzyjnie oddające wpływ silnych pól laserowych. Bada również kształt widma w funkcji mocy lasera pułapkującego. Analizując kształt zarejestrowanych linii widmowych Autor dopasowuje do punktów doświadczalnych profil Lorentza a uzyskane wartości szerokości połowskowych ekstrapolowane do zerowej mocy lasera pułapkującego porównuje z szerokością naturalną badanego przejścia D_2 (istotnie mniejszą). Autor próbuje wyjaśnić przyczynę niezgodności znajdując jako potencjalne źródło niezgodności rozszerzenie zeemanowskie rozważanych przejść.

Należy jednak zwrócić tu uwagę, że zastosowanie w tym przypadku w analizie kształtu linii tylko profilu Lorentza jest bardzo daleko idącym przybliżeniem rzeczywistego kształtu linii:
- w analizie pomijany jest całkowicie wpływ rozszerzenia dopplerowskiego linii. Autor sam szacuje, że dla temperatury 140 μK (granica chłodzenia dopplerowskiego) szerokość dopplerowska wynosi 0.35 MHz co stanowi 6% szerokości naturalnej – 6 MHz. Jest to nie "tylko 6%" ale "aż 6%". Badana w sposób bardzo precyzyjny asymetria zderzeniowa kształtu linii, istotnie modyfikująca obserwowany profil linii widmowych (i wszystkie parametry jego kształtu) jest efektem rzędu jednego procenta. Nie bez znaczenia jest też tutaj dokładna znajomość temperatury spułapkowanych atomów, która w przypadku rubidowej pułapki MOT może zmieniać się w szerokim zakresie zależnie od natężenia i odstrzenia wiązki pułapkującej,
- analizowanych trzech linii nie można traktować jako izolowane, istotny jest tu wpływ linii sąsiednich. Jeżeli zakres dopasowania był ograniczony do obszaru zaznaczonego na rysunkach to jest to zbyt mało biorąc pod uwagę rolę skrzęd profilu Lorentza,
- Autor nie przeprowadza żadnej analizy jakości wykonanego dopasowania – test χ^2 zgodności dopasowania, analiza różnic ważonych, a rysunki 3.5 wykazują widoczną asymetrię kształtu linii,
- na błąd wyznaczenia szerokości połowskiej może mieć też wpływ sposób wyznaczania skalistości (patrz uwagi do rozdziału drugiego),
- poza krótką wzmianką na stronie 164 o możliwości „zmiany pochylenia widm” Autor nie analizuje wpływu na rejestrowane widma zmiany mocy lasera podczas jego przestrażania.

Podobna przybliżona analiza kształtu linii była też wykonana przez M. J. Snadden i innych (Opt. Comm. 125, 70 (1996)), którzy również wyznaczyli lorentzowskie szerokości połowskowe większe od odpowiednich szerokości naturalnych, przy czym pomiary te były
wykonane przy całkowicie wyłączonej pułape (bez silnych wiązek pułapujących i pola magnetycznego) co sugeruje, że poprawna analiza zarejestrowanych kształtów linii wymaga zastosowania bardziej złożonych profili linii uwzględniających wszystkie możliwe mechanizmy modyfikujące obserwowany kształt linii, w tym również wspomnianą przez Autora, lecz nieuwzględnioną w dopasowywanym profilu szerokość spektralną lasera próbującego stanowiącą około 17% szerokości naturalnej badanej linii.

W dalszej części rozdziału trzeciego Autor analizuje również szczegółowo widmo przejść 5S_{1/2} (F'=2) – 5P_{3/2} (F'=1, 2, 3) – obszar pracy lasera repompującego oraz widmo w układzie kaskadowym 5S_{1/2} – 5P_{3/2} – 5D_{3/2} – 5D_{3/2} wykorzystanym następnie do badania zjawiska EIT.

W rozdziale czwartym pracy Autor przedstawia w sposób przejrzysty i z konieczności skondensowany opis teoretyczny zjawiska elektromagnetycznego wymuszonej przeloczoistości (EIT) zwracając szczególnie uwagę na te zagadnienia z których będzie korzystał przy analizie danych doświadczalnych. Wykazuje przy tym dobrą znajomość zagadnień teoretycznych i umiejętność wybrania z obszernej teorii tego co jest niezbędne do zrozumienia zagadnień poruszanych w dalszej części pracy.

Autor formułuje w tym miejscu główny cel swojej pracy – badanie struktur atomowych umożliwiających uzyskanie nie jednego a kilku dobrze określonych i sterowalnych okien transmisji. Przytaczane przez Autora w tym miejscu prace doświadczalne dotyczące tego efektu prowadzone były w wyższych temperaturach i wymagały stosowania metod spektroskopii bezdopplerowskiej. Zamiar wykonania takich pomiarów w układzie zimnych atomów stanowi więc tutaj nową jakość doświadczalną.

Rozdział piąty zawiera wyniki badań elektromagnetycznie wymuszonej przeloczoistości (EIT) przeprowadzonych przez Doktoranta dla różnych konfiguracji poziomów: schodkowej i lambda. Na wstępie Autor uzasadnia wybór zimnych atomów rubidu jako ośrodka badanego oraz przedstawia szczegółowy opis układu eksperymentalnego i stosowaną procedurę pomiarową. W swojej pracy Autor skoncentrował się głównie na konfiguracji schodkowej probe-control 5S_{1/2} – 5P_{3/2} – 5D_{5/2}, otrzymując dla różnych konfiguracji poziomów wielokrotnie okna transmisji w zakresie poszczególnych linii absorpcyjnych zarejestrowane podczas przestrzania wiązki próbującej. Doktorant zwraca uwagę na występujące rozbieżności między wynikami pomiarów położen okien EIT i znawanymi z bardzo dużą dokładnością wartościami rozszczepienia nasadubtelnego i upatruje ich przyczynę w niedoskonałościach układu pomiarowego m.in. braku stabilizacji częstości lasera sprzęgającego. Należy zaznaczyć, że przyczyna może też częściowo tkwić we wspomnianej przy omawianiu rozdziału drugiego właściwej kalibracji osi częstości.

Autor zbadal następnie wpływ odstrzeniań wiązki sprzęgającej na przesunięcie okien EIT, oraz zależność wprowadzonego współczynnika redukcji absorpcji w funkcji mocy wiązki sprzęgającej. Uzyskane wyniki porównano z obliczeniami teoretycznymi wykonanymi przy założeniu trój- i piecioletzomowego modelu zjawiska. Rozstrzygnięcie dotyczące zgodności i przewagi jednego z modeli byłyby łatwiejsze gdyby były wykonane pomiary współczynnika redukcji absorpcji dla zakresu natężenia wiązki sprzęgającej 150 – 400 mW/cm².

Analogicznie układ w konfiguracji schodkowej był badany przez Wanga i innych (poz.[87]) lecz wyniki uzyskane przez Doktoranta charakteryzują się lepszą zgodnością wyników doświadczalnych i teoretycznych.

Doktorant przedstawił również wstępne badania widm transmisji w konfiguracji lambda. Jedną z motywacji podjęcia tych badań były kontrowersje literaturowe na temat występowania EIT w tym układzie poziomów. Analizując widma uzyskane dla różnych mocy i częstości wiązki sprzęgającej nie uzyskano typowych okien transmisji EIT. Wykorzystując w interpretacji wyników strukturę magnetyczną poziomów Autor tłumaczy ten fakt występowaniem dodatkowego maksimum absorpcyjnego pochodzącego od stanów magnetycznych niesprzężonych wiązką kontrolną. Wychodzą z formalizmu atomu ubranego
Autor uzyskał dobrą zgodność wysymulowanych widm modelowych z widmami zmierzonymi.

Rozdział szósty pracy stanowi uzupełnienie rozdziału drugiego i zawiera szczegółowe opisy elementów aparatury zbudowanej przez Doktoranta: sterowników prądu i temperatury laserów diodowych, układów wykonujących operacje na sygnałach analogowych oraz głównego układu do rejestracji danych pomiarowych i przestrzania lasera połączonego z komputerem. Całość eksperymentu sterowana jest przy pomocy napisanego przez Autora programu.

Przedstawiona do recenzji praca doktorska napisana jest bardzo dobrze, styl jest jasny, wnioskowanie prawidłowe. Pod względem edytorzkim praca jest bardzo starannie napisana i złożona. Wykonane przez Autora rysunki są profesjonalnie wykonane, czytelne i dobrze podpisane.

Z obowiązku Recenzenta muszę przedstawić zauważone pewne niedociągnięcia:
- Autor konsekwentnie używa terminu "poszerzenie linii" podczas gdy zgodnie z zaleceniem prof. Aleksandra Jabłońskiego – twórcy teorii kształtu linii widmowych – poprzez analogię np. do "współczynnika rozszerzalności linioowej" powinniśmy mówić o "rozszerzeniu linii".
- w tekście pojawia się Neil ogromiczny "komórka spektroskop".
- w przypisie na stronie 42 pojawia się informacja o "poszerzeniu dopplerowskim każdego poziomu nadsłuchowego poziomu 5P_{2/3}" podczas gdy termin "rozszerzenie dopplerowskie" odnosi się raczej do linii widmowej emitowanej w przejściu pomiędzy określonymi stanami.
- W Tabeli 3.1 na stronie 63 brakuje jednostek przedstawionych wartości.
- na stronie 71 w opisie przejścia: zamiast 5P_{2/3} (F = 3) – 5D_{5/2} (F = 5, 4, 3) powinno być 5P_{3/2} (F = 4) – 5D_{5/2} (F = 5, 4, 3)

Pragnę zaznaczyć, że przedstawione powyżej uwagi i zapytania w niczym nie umniejszają mojej wysokiej oceny recenzowanej pracy, a stanowią jedynie punkt wyjścia do ewentualnej dalszej dyskusji.

Przedstawiona praca stanowi niewątpliwie osiągnięcie Autora i świadczy o umiejętności samodzielnego rozwiązania postawionego problemu naukowego.

Na zakończenie pragnę stwierdzić, że w wyniku realizacji pracy doktorskiej mgr. Krzysztofa Kowalskiego, pomimo szczupłości środków finansowych, powstało bardzo nowoczesne stanowisko badawcze, które w miarę potrzeb rozbudowywane, na pewno znajdzie przez następne lata wiele interesujących zastosowań. Sam będąc konstrukteorem jednej z toruńskich pulapek magneto-optycznych mogę obiektywnie ocenić obrazem zakres pracy koncepcyjnej, konstrukcyjnej i doświadczalnej włożony przez Doktoranta.

Wnoszę zatem o uznanie rozprawy doktorskiej mgr. Krzysztofa Kowalskiego jako wyróżniającej.