EVIDENCE FOR EXISTENCE OF THE BOUND EXCITON STATES
IN Pr$^{3+}$- DOPED LiNbO$_3$ CRYSTAL

Cz. Koepke1, K. Wisniewski1, D. Dyl2, M. Grinberg2
and M. Malinowski3

1Institute of Physics, N. Copernicus University, Toruń, Grudziądzka 5/7 87-100
Toruń, Poland
koepke@phys.uni.torun.pl

2Institute of Experimental Physics, University of Gdańsk, Wita Stwosza 57, 80-952
Gdańsk, Poland

3Institute of Microelectronics and Optoelectronics, Warsaw Technical University,
Koszykowa 75, 00-662 Warsaw, Poland

In the LiNbO$_3$:Pr$^{3+}$ system the most intensive Pr$^{3+}$ luminescence is due to the
$^1D_2 \rightarrow ^4H_4$ transition at about 630 nm. The emission from higher energy states: 3P_0
and 1S_0 is effectively quenched by nonradiative processes. In this contribution we
present the arguments for existence of the Pr$^{3+}$-coupled localized exciton system
that is responsible for the nonradiative processes. We report on the LiNbO$_3$: Pr$^{3+}$
absorption spectra, photoluminescence spectra for different excitation, the
$^1D_2 \rightarrow ^4H_4$ luminescence excitation spectra and excited state absorption (ESA)
spectra.

The analysis of absorption and luminescence spectra allows for estimation of the
semi-empirical parameters describing the LiNbO$_3$:Pr$^{3+}$ system (free-ion Racah
integrals, spin–orbit coupling and crystal field Wybourne parameters).

In the excitation spectrum of the $^1D_2 \rightarrow ^4H_4$ luminescence, apart of the sharp lines
related to the $^4H_4 \rightarrow ^3P_J$ transitions, we observe two distinct bands peaking at
26000 cm$^{-1}$ and 30000 cm$^{-1}$. These bands have been attributed to the exciton bound
to the Pr$^{3+}$ ion.

The existence of these excitonic states is verified by the ESA spectra that are
different when exciting directly into the bound exciton band or into the 3P_1 state.
Analysis of the band shapes and the ESA characteristics allows for reproduction of
the configurational coordinate diagram of the whole system.