Magnetoabsorpcja i magnetoodbicie w półprzewodnikach w obszarze krawędzi absorpcji podstawowej

Magnetoabsorption and Magnetorefection in the Fundamental Edge Region

Abstract: A review of fundamental problems connected with magnetooptical phenomena in semiconductors is given. Special concern was devoted to the magnetooptical phenomena in narrow gap semiconductors. Theoretical as well as experimental problems are discussed.

1. Wstęp

Zjawiskami magnetooptycznymi nazywamy zjawiska zachodzące w wyniku oddziaływania promieniowania elektromagnetycznego z ciałami stałymi w obecności zewnętrznego pola magnetycznego. Magnetooptyka rozumiana ogólnie jest dziedziną bardzo starą. Pierwsi zjawisko magnetooptyczne — skręcenie płaszczyzny polaryzacji pod wpływem pola magnetycznego — odkryte zostało przez Faradaya w 1846 r., podczas badania własności szkła. Mimo to magnetooptyka w półprzewodnikach jest stosunkowo młodym działem fizyki. Przed 1956 r. nie było praktycznie żadnej pracy na ten temat. Dziedzina ta szybko rozwinięła się, ponieważ badanie efektów magnetooptycznych jest jednym z najlepszych źródeł informacji o strukturze pasmowej półprzewodników. Współcześnie najczęściej badanymi efektami magnetooptycznymi są:

a) magnetoabsorpcja międzypasmowa
b) rezonans cyklotronowy
c) oscylacje absorpcji typu Szubnikowa — de Haasa związanej ze swobodnymi nośnikami
d) zjawiska magnetoplazmowe takie jak odbicie magnetoplazmowe i magnetooptyczny efekt Kerra

e) magnetoabsorpcja domieszkowa
f) efekt Zeemana dla ekscytonów
g) efekty Faradaya i Voigt a na swobodnych nośnikach.
Pomiary magnetoabsorpcji i magnetoodbicia stanowią dwie różne metody eksperymentalne stosowane do badania tego samego zjawiska — przejść międzypasmowych i wewnątrzpasmowych w obecności pola magnetycznego. W obu przypadkach stosuje się tę samą teorię.

W części pierwszej zajmiemy się ogólną teorią przejść międzypasmowych w obecności zewnętrznego pola magnetycznego. Rozważania będą dotyczyły półprzewodników o prostych pasmach parabolicznych i szerokiej przerwie energetycznej. W drugiej części zajmiemy się półprzewodnikami z wąską przerwą energetyczną. Po omówieniu efektów wynikających z oddziaływania między pasmami przedstawimy wyniki kilku wybranych prac doświadczalnych dotyczących HgTe.

2. Reguły wyboru dotyczące przejść międzypasmowych

Równanie Schrödingera dla elektronu w j-tym pasmie w obecności pola magnetycznego, bez uwzględnienia spinu ma postać

$$\left[\frac{1}{2m_0} \left(\frac{p + eA}{c} \right)^2 + V(r) \right] \psi_j(r) = \varepsilon_j \psi_j(r),$$

gdzie m_0 — masa swobodnego elektronu, $p + \frac{e}{c} A$ — pęd uogólniony elektronu w polu magnetycznym, jeżeli A jest potencjałem wektorowym tego pola, $V(r)$ — potencjał krystaliczny, $\psi_j(r)$ oraz ε_j — odpowiednio funkcje własne i wartości własne energii.

Korzystając z przybliżenia masy efektywnej, rozwiązanie takiego równania można zapisać w postaci

$$\psi_j(r) = \psi_{j0}^{(0)}(r) + \psi_{j1}^{(1)}(r) + \psi_{j2}^{(2)}(r) + ...$$

1 Magnetooptyczny efekt Kerra polega na tym, że jeżeli fala liniowo spolaryzowana rozchodząca się w kierunku równoległym do zewnętrznego pola magnetycznego pada na półprzewodnik, wtedy fala odbita spolaryzowana jest eliptycznie, przy czym dłuższa oś elipsoidy i wektor polaryzacji fali podającej tworzą pewien kąt.

2 Efektem Faradaya nazywamy skręcenie płaszczyzny polaryzacji fali po przejściu przez ośrodek, gdy kierunek rozchodzenia się fali jest równoległy do zewnętrznego pola magnetycznego.

3 Efekt Voigt polega na tym, że jeżeli fala liniowo spolaryzowana rozchodząca się prostopadle do kierunku zewnętrznego pola magnetycznego pada na półprzewodnik, wtedy fala przechodząca spolaryzowana jest eliptycznie.
Pierwszego składnika w tym wyrażeniu poszukujemy w postaci iloczynu funkcji Blocha na dnie pasma \(u_{j0} \) i pewnej funkcji, którą oznaczamy \(F_j(r) \)

\[
\psi_j^{(0)}(r) = u_{j0}F_j(r)
\]

(3)

Funkcja \(F_j(r) \) jest proporcjonalna do iloczynu wielomianów Hermite’a i pewnej funkcji wykładniczej o argumencie zespolonym. Wartości własne energii mają postać:

dla elektronów

\[
\varepsilon_c = (n + \frac{1}{2}) \hbar \omega_c + \frac{\hbar^2 k_x^2}{2m_c}
\]

(4)

dla dziur

\[
\varepsilon_v = - \varepsilon_g - (n' + \frac{1}{2}) \hbar \omega_v - \frac{\hbar^2 k_x^2}{2m_v}
\]

(5)

gdzie \(\varepsilon_g \) jest szerokością przerwy energetycznej, \(m_c \) i \(m_v \) są odpowiednio masami efektywnymi elektronów i dziur, a \(\omega_c \) i \(\omega_v \) ich częstotliwościami cyklotronowymi, \(n, n' \) są liczbami całkowitymi, \(\hbar \) jest stałą Plancka.

Prawdopodobieństwo przejścia elektronu na jednostkę czasu ze stanu początkowego \(v \) leżącego w pasmie walencyjnym do stanu końcowego \(c \), leżącego w pasmie przewodnictwa, pod wpływem zaburzenia spowodowanego oddziaływaniem fali elektromagnetycznej z ośrodkiem znającym się w zewnętrznym polu magnetycznym jest proporcjonalne do kwadratu elementu macierzyowego \(F_{vc} \). Obliczając element macierzyowy z funkcji typu \(\psi_j^{(0)}(r) \) trzeba mniej, korzystając z własności ortogonalności wielomianów Hermite’a oraz własności funkcji wykładniczej, następujące reguły wyboru

\[
\Delta k_v = \Delta k_c = 0 \quad \text{oraz} \quad \Delta n = 0.
\]

Wobec tego w przypadku przejść prostych możliwe są jedynie przejścia pomiędzy poziomami Landaua o tych samych numerach w pasmie walencyjnym i pasmie przewodnictwa.

Uwzględnienie spinu wprowadza dodatkowe reguły wyboru. Jeżeli wektor propagacji fali elektromagnetycznej jest równoległy do kierunku zewnętrznego pola magnetycznego, mamy do czynienia z konfiguracją Farada, wówczas \(\mathbf{E} \perp \mathbf{H} \) i \(\Delta M = \pm 1 \). Jeżeli wektor propagacji fali elektromagnetycznej jest prostopadły do kierunku zewnętrznego pola magnetycznego, mamy do czynienia z konfiguracją Voigta. Możliwe są wtedy dwie sytuacje

\[
\mathbf{E} \parallel \mathbf{H} \quad \text{wtedy} \quad \Delta M = 0
\]

\[
\mathbf{E} \perp \mathbf{H} \quad \text{wtedy} \quad \Delta M = \pm 1.
\]

Polaryzacji kołowej lewoskrętnej \(\sigma^- \) fali padającej odpowiada reguła wyboru \(\Delta M = -1 \), natomiast polaryzacji kołowej prawoskrętnej \(\sigma^+ \) odpowiada \(\Delta M = +1 \).
3. Absorpcja związana z przejściami prostymi dozwolonymi

Zajmijmy się teraz wielkością, którą mierzy się bezpośrednio w eksperymentcie, współczynnikiem absorpcji. Wartość współczynnika absorpcji jest proporcjonalna do iloczynu prawdopodobieństwa przejść oraz gęstości stanów. Biorąc pod uwagę wyrażenie opisujące łączną gęstość stanów otrzymujemy wzór na współczynnik absorpcji α w zerowym polu magnetycznym dla pasm sferycznych i parabolicznych

$$\alpha = \frac{2e^2(2\mu)^{3/2}}{\eta c m_0^2 \omega \hbar^3} A \left(\hbar \omega - \varepsilon_g \right)^{1/2}$$ (6)

gdzie $\mu = \frac{m_0 m_e}{m_e + m_0}$ — zredukowana masa efektywna, e — ładunek elektronu, η — współczynnik załamania, c — prędkość światła, m_0 — masa swobodnego elektronu, $\hbar \omega$ — energia fali elektromagnetycznej, ε_g — szerokość przerw energetycznej, A — wielkość związana z elementem macierzowym P_{ee}.

W obecności pola magnetycznego zależność współczynnika absorpcji α od energii ε jest inna ze względu na zmianę wyrażenia opisującego gęstość stanów.

Rys. 1. Gęstość stanów w nieobecności i w obecności pola magnetycznego

Na rys. 1 porównano gęstości stanów w nieobecności pola magnetycznego (gruba linia ciągła) i w polu magnetycznym (linia przerywana). Widać, że w ostatnim przypadku gęstość stanów rośnie nieograniczenie w pobliżu energii odpowiadających kolejnym poziomom Landaua oznaczonym na rysunku 0, 1, 2, ... (patrz np. [1]).

Wyrażenie opisujące współczynnik absorpcji α w obecności pola magnetycznego zostało podane przez Roth i innych [2].

$$\alpha = \frac{2e^2A(2\mu)^{3/2}}{\eta c m_0^2 \omega \hbar^3} \frac{eH}{hc} \sum_n \left[\hbar \omega - \varepsilon_g - (n + \frac{1}{2}) \hbar \omega_{cv} \right]^{-1/2}$$ (7)

gdzie $\omega_{cv} = \omega_e + \omega_v = \frac{eH}{\mu c}$; ω_e, ω_v — częstości cyklotronowe elektronów i dziur, H — natężenie pola magnetycznego, pozostałe oznaczenia mają takie samo znaczenie jak we wzorze (6). Przy wy prowadzaniu tego wzoru efekty spinowe
zostały zaniedbane. Wykorzystano regułę wyboru $\Delta n = 0$. Z wzoru tego wynika, że przy pewnych wartościach energii współczynnik absorpcji α może rosnąć w sposób nieograniczony. Uwzględniając rozproszenia wzór ten modyfikuje się w następujący sposób [2]. Oznaczmy

$$
\omega_n = \frac{1}{\hbar}[e_g + (n + \frac{1}{2}) \hbar \omega_{cv}].
$$

Wtedy wzór (7) można zapisać w postaci

$$
\alpha = \frac{2e^2 A (2\mu)^{1/2}}{\eta c m_0^2 \omega \hbar} \sum_n \frac{1}{\hbar (\omega - \omega_n)^{1/2}}
$$

(7')

Uwzględnienie rozproszeń powoduje zmianę

$$
\frac{1}{(\omega - \omega_n)^{1/2}} \left\{ \frac{\omega - \omega_n + \left[(\omega - \omega_n)^2 + \frac{1}{\tau^2} \right]^{1/2}}{2 \left[(\omega - \omega_n)^2 + \frac{1}{\tau^2} \right]} \right\}
$$

(8)

gdzie τ jest czasem relaksacji nośników. Porównanie charakteru zależności współczynnika absorpcji od energii w obecności i w nieobecności pola magnetycznego przedstawione jest na rys. 2.

![Rys. 2. Porównanie charakteru zależności współczynnika absorpcji od energii w obecności zewnętrznego pola magnetycznego i w $H = 0$ na podstawie [2]](image)

W obecności pola magnetycznego zamiast gładkiej krawędzi absorpcji wy stępuje jak widać szereg maksimów odpowiadających przejściom pomiędzy poziomami Landaua o tym samym numerze, ponieważ $\Delta n = 0$. Na skutek rozproszeń następuje lorentzowskie poszerzenie maksimów. Poszerzenie to jest rzędem \hbar/τ. Uwzględnienie rozproszeń powoduje, że wysokość linii jest proporcjonalna do $\tau^{1/2}$, a położenie linii przesuwa się w stronę wyższych energii o wielkość proporcjonalną do $(\tau \sqrt{3})^{-1}$.

Wykreślając zależność położenia czyli energii maksimów absorpcji od pola magnetycznego otrzymuje się odcinki prostych (patrz rys. 3), których ekstra-
polacja do $H = 0$ daje wartość przerwy energetycznej ε_0 w nieobecności pola. Nachylenie prostych na ostatnim wykresie zależności $\varepsilon(H)$ dla ustalonego n daje informacje o masie zredukowanej μ, ponieważ $\tan \beta = \frac{\varepsilon - \varepsilon_0}{H} = (n + \frac{1}{2}) \frac{e^2}{\mu_0 c}$.

Określając m_e np. z pomiaru rezonansu cyklotronowego lub oscylacji Szubnikowa-de Haasa można wyznaczyć m_v znając μ. (Istnieją metody pozwalające wyznaczyć tę wielkość w sposób bardziej dokładny.)

Rys. 3. Zależność energii odpowiadających maksimom absorpcji od wartości pola magnetycznego

4. Współczynnik absorpcji związany z przejściami prostymi wzbronionymi

Dotychczas uwzględnialiśmy tylko pierwszy człon w wyrażeniu na funkcję falową elektronu w polu magnetycznym (2). Uwzględniając drugi człon otrzymujemy dodatkowy optyczny element macierzowy drugiego rzędu P_{ψ}, który został podany przez Bursteina i innych [3]. Obecnie mamy dwa elementy macierzowe P_{ψ} i P'_{ψ}. W przypadku przejść pomiędzy pasmami o tej samej parzystości, element macierzowy P_{ψ} znika i wtedy poprawki związane z P'_{ψ} odgrywają istotną rolę. Obliczając P'_{ψ} otrzymujemy nowe reguły wyboru

$$\Delta k_{\psi} = \Delta k_{\psi} = 0 \quad i \quad \Delta n = 0, \pm 1.$$
Analizując zachowanie elementu macierzowego w zależności od różnych polaryzacji fali padającej względem kierunku pola magnetycznego H otrzymujemy

$$E \parallel H \quad \Delta n = 0$$
$$E \perp H \quad \begin{cases}
\Delta n = +1 \text{ polaryzacja } \sigma^- \\
\Delta n = -1 \text{ polaryzacja } \sigma^+ .
\end{cases}$$

Współczynnik absorpcji dla przejść prostych wzbronionych w obecności pola magnetycznego został podany przez Roth i innych [2].

$$\alpha = \frac{2e^2 C^2}{\eta m_e^2 \omega} \frac{eH}{\hbar c} \sum_n \left[\frac{1}{3} \left(\varepsilon - \varepsilon_{nn'} \right)^{1/2} \delta_{nn'} + \frac{1}{6} \frac{eH}{\hbar \kappa} \frac{n \delta_{n',n-1} + n' \delta_{n',n+1}}{(\varepsilon - \varepsilon_{nn'})^{1/2}} \right]$$

gdzie C — pewien czynnik proporcjonalności

$$\varepsilon_{nn'} = \varepsilon_0 + (n + \frac{1}{2}) \hbar \omega_c + (n' + \frac{1}{2}) \hbar \omega_v .$$

Korzystając z reguł wyboru otrzymujemy, że gdy $E \parallel H$, wkład do wartości współczynnika absorpcji wnosi pierwszy człon w nawiasie kwadratowym, natomiast w przypadku $E \perp H$ — człon drugi. W pierwszym przypadku

$$\alpha \sim \frac{H}{\hbar \omega} \sum_n \left(\varepsilon - \varepsilon_{nn} \right)^{1/2} .$$

Rys. 4. Absorpcja w obecności zewnętrznego pola magnetycznego dla przejść prostych wzbronionych, $E \parallel H$, na podstawie pracy [2]. Krzywa oznaczona $H = 0$ ilustruje zależność współczynnika absorpcji w nieobecności pola magnetycznego. Rodzina krzywych w dolnej części rysunku ilustruje wkład poszczególnych par poziomów Landaua do całkowitego współczynnika absorpcji w obecności pola magnetycznego. Zależność współczynnika absorpcji od energii w obecności pola magnetycznego przedstawia krzywa oznaczona $H > 0$.
Wykreślając zależność $a_H(\varepsilon)$ otrzymujemy krzywą będącą sumą krzywych opisanych wyróżnieniem pierwiastkowym (rys. 4). Funkcja $a_H(\varepsilon)$ jest funkcją rosnącą i nie obserwuje się żadnych nawet lokalnych minimów. Minima związane z „włączaniem się” absorpcji pomiędzy następnymi parami poziomów Landaua otrzymuje się dopiero po wykreślzeniu stosunku $\frac{a_H(\varepsilon)}{a_\varphi(\varepsilon)}$.

Zajmijmy się teraz drugim przypadkiem, tzn. $E \perp H$

$$a \sim \frac{H^2}{\hbar \omega} \sum_n \left(\frac{n}{(\varepsilon - \varepsilon_{n,n-1})^{1/2}} + \frac{n+1}{(\varepsilon - \varepsilon_{n,n+1})^{1/2}} \right).$$

(11)

W rzeczywistości współczynnik absorpcji przy określonych energiach nie dąży do nieskończoności, tak jak wynikałoby z tego wzoru, na skutek istnienia rozproszeń prowadzących do poszerzenia maksimów. Otrzymujemy podwojoną w stosunku do poprzedniego przypadku liczbę maksimów odpowiadających energiom

$$\varepsilon = \varepsilon_g + (n + \frac{1}{2}) \hbar \omega_{cv} \pm \hbar \omega_c.$$

Odległości pomiędzy parami maksimów wynoszą $\hbar \omega_{cv}$, a pomiędzy maksimumm w tej samej parze $2\hbar \omega_c$ (patrz rys. 5).

Rys. 5. Absorpcja w obecności zewnętrznego pola magnetycznego dla przejść prostych wzbierających, $E \perp H$, na podstawie pracy [2]

5. Efekt Luttingera

Dotychczas rozpatrywaliśmy proste pasma paraboliczne o symetrii sferycznej w półprzewodniku o szerokiej przerwie energetycznej. Dla materiału posiadającego pasma zdegenerowane w pewnym punkcie przestrzeni k umieszczonym w zewnętrznym polu magnetycznym poziomy energetyczne znajduje się stosując teorię Luttingera i Kohna [4, 5].
Wartości własne energii otrzymuje się rozwiązyując równanie Schrödingera w postaci
\[\sum_{j'} \left[D_{jj'}^{\beta} \left(p_x + e A_x \right) \left(p_{j'} + e A_{j'} \right) \right] F_j(r) = e F_{j'}(r) , \] (12)
gdzie \(a \) i \(\beta \) przebiegają \(x, y \) i \(z \), wielkość \(D_{jj'}^{\beta} \) definiuje się następująco
\[D_{jj'}^{\beta} = \frac{1}{2m_0} \delta_{jj'} \delta_{\alpha \beta} + \frac{1}{m_0^2} \sum_{i \neq j', i} \varepsilon_i - \varepsilon_j , \] (13)
j, j' przebiegają pasma zdegenerowane z uwzględnieniem spinu, i przebiega wszystkie pozostałe pasma, \(\varepsilon_0 \) jest energią odpowiadającą degeneracji, \(\pi_{ji}^{\alpha} \) jest składową \(\alpha \) międzypasmowego elementu macierzowego
\[\pi_{ji}^{\alpha} = \int u_j^* \left[p_x - \frac{\hbar}{4m_0 c^2} (VV \times \sigma)_x \right] u_i dx , \] (14)
gdzie \(V \) jest potencjałem periodycznym, a \(\sigma \) wektorem spinowym Pauliego.

Oznaczając \(k_x = p_x + e A_x \) można wprowadzić tensor \(D \), którego składowymi są \(D_{jj'} = D_{jj'}^{\alpha \beta} k_\alpha k_\beta \). Tensor \(D \) można rozbić na część symetryczną i antysymetryczną
\[D = D^{(S)} + D^{(A)} . \] (15)

Interpretacja fizyczna takiego podziału jest następująca. Część symetryczna \(D^{(S)} \) pozwala na znalezienie wartości poziomów energetycznych w zewnętrznym polu magnetycznym bez uwzględnienia spinu. Przy jej pomocy uzyskać można informacje o masie efektywnej nośników \(m \). Część antysymetryczna \(D^{(A)} \) związana z rozszczepieniem spinowym poziomów w polu magnetycznym pozwala na uzyskanie informacji o czynniku efektywnym \(g \).

Biorąc funkcję falową w postaci kombinacji liniowej iloczynów odpowiednich funkcji Blocha z uwzględnieniem spinu i funkcji \(F_j(r) \), tzn.
\[\psi = \sum_j F_j(r) u_j(r) , \] (16)
rozwiązujemy równanie Schrödingera (12). Otrzymujemy rozwiązania na wartości własne energii, których ilość jest równa ilości rozwiązań w przypadku bez degeneracji. Każde zdegenerowane pasmo ma dwa układy poziomów energetycznych, oznaczane w literaturze „\(a \)” i „\(b \)”, lub „parzyste” i „nieparzyste”.

Ze względu na degenerację pasma, na przykład w \(k = 0 \), następuje mieszanie funkcji falowych pasm. W polu magnetycznym otrzymuje się układy poziomów energetycznych, przy czym funkcja falowa dowolnego poziomu nie jest już funkcją z jednego tylko pasma, a jest kombinacją funkcji falowych pochodzących ze zdegenerowanych pasm [patrz (16)]. Spin nie jest już w tym przypadku dobrą liczbą kwantową i pojęcie orientacji spinu traci sens. Podział układów
poziomów energetycznych na \(a \) i \(b \) nie oznacza więc bynajmniej, że w obrębie jednego układu wszystkie spiny uporządkowane są w tę samą stronę. Funkcje falowe układów \(a \) i \(b \) różnią się pomiędzy sobą jedynie ze względu na operację zmiany orientacji spinu.

Jeżeli istnieje degeneracja pasma walencyjnego i pasma przewodnictwa o przynależności danego poziomu energetycznego do konkretnego pasma decyduje zależność energii poziomu \(E(k) \) poza \(k = 0 \). Jeżeli \(E(k) \) wzrasta poza \(k = 0 \), wtedy poziom jest poziomem elektronowym i należy do pasma przewodnictwa, jeżeli natomiast \(E(k) \) maleje wraz ze wzrostem \(k \) jest on poziomem dziurowym i należy do pasma walencyjnego.

W przypadku pasm zdegenerowanych odległości pomiędzy kolejnymi poziomami nie są stałe — konkretnie odległości pomiędzy pierwszymi poziomami energetycznymi znacznie różnią się od siebie i dopiero dla wysokich liczb kwantowych \(n \) odległości te są równe. Efekt ten nazywa się „kwantowym efektem Luttingera”, praktycznie jest on istotny dla kilku pierwszych poziomów energetycznych. Dla pasm nieparabolicznych, gdy masa efektywna nośników jest funkcją energii, odległości pomiędzy kolejnymi poziomami nie są równe nawet gdy pasmo jest pasmem prostym. W przypadku zdegenerowanych pasm nieparabolicznych oba efekty nakładają się na siebie.

6. Metody obliczania energii poziomów i reguły wyboru w półprzewodnikach z wąską przerwą energetyczną

Z tego względu, że HgTe jest materiałem stosunkowo intensywnie badanym metodami magneetooptycznymi, rozpatrzmy półprzewodnik z wąską przerwą energetyczną na jego przykładzie.

HgTe jest półprzewodnikiem o odwróconej strukturze energetycznej (typu Grovesa-Paula) krystalizującym w strukturze blendy cynkowej [6]. W punkcie \(I' \) strefy Brillouina pasmo przewodnictwa i pasmo walencyjne są zdegenerowane niezależnie od temperatury i koncentracji nośników, tak więc termiczna przerwa energetyczna w HgTe jest zawsze równa zeru. Poziom \(I'_{8} \), czterokrotnie zdegenerowany z uwzględnieniem spinu \((J = \frac{3}{2}) \), znajduje się powyżej poziomu zdegenerowanego dwukrotnie \((J = \frac{1}{2}) \). Różnica energii pomiędzy tymi poziomami \(\varepsilon_{0} = \varepsilon(I'_{8}) - \varepsilon(I'_{8}) \) nosi nazwę ujemnej przerwy energetycznej. Schemat poziomów energetycznych przedstawia rys. 6.

Istnieje kilka przybliżeń opisujących poziomy energetyczne pasm \(I'_{6} \) i \(I'_{8} \) w obecności zewnętrznego pola magnetycznego.

Pierwsze przybliżenie to zastosowanie teorii Luttingera do zdegenerowanych pasm \(J'_{6} \). Podejście to, które tłumaczy „efekty kwantowe” w pasmie przewodnictwa i w pasmie ciękich dziur, nie opisuje jednak efektów związanych z nieparaboliczością. Dotyczy ono przejść na pierwsze poziomy kwantowe. W dalszych rozważaniach nie będziemy uwzględniali niesferyczności (warpingu) obu pasm \(I'_{6} \) i członów liniowych w \(k \).
Poziomy energetyczne dla każdego z pasm I_6 w zewnętrznym polu magnetycznym dzielą się na dwa układy: a ($M = \frac{1}{2}, -\frac{1}{2}$) oraz b ($M = \frac{1}{2}, -\frac{3}{2}$). Funkcje falowe poziomów są kombinacjami liniowymi funkcji Blocha u_M i funkcji własnych oscylatora harmonicznego f_n.

Rys. 6. Struktura energetyczna HgTe

Wyrażenia na energie poziomów w obu układach są dość skomplikowane i nie będziemy ich tu podawać. Można je znaleźć na przykład w pracach [7, 8].

Pasmo I'_6 jest prostym pasmem o symetrii sferycznej. Ponieważ energie poziomów w pasmie I_8 obliczone zostały bez uwzględnienia nieparaboliczności, również poziomy energetyczne w I'_6 można w tym przypadku opisywać w przybliżeniu parabolicznym kształtu pasma. Istnieją dwie możliwe orientacje spinu ($M = \pm \frac{1}{2}$).

Energia poziomów landauowskich w $k_z = 0$ (pole magnetyczne skierowane jest wzdłuż osi z) określa wzór

$$\varepsilon_{I'_6}^{\pm}(n') = -\varepsilon_0 - (n' + \frac{1}{2}) \frac{eH\hbar}{mv_c} \mp \frac{1}{2} g_v \mu_B H,$$

gdzie n' numeruje kolejne poziomy, m_v i g_v są odpowiednio masą efektywną nośników i efektywnym czynnikiem g na dnie pasma, μ_B jest magnetonem Bohra.

Do opisu efektów związanych z nieparabolicznością grającą istotną rolę w obszarze wyższych energii w pasmie stosuje się teorię opartą na modelu trójpasowym. Podejście to uwzględnia tzw. oddziaływania kp pomiędzy poziomami $I'_6 - I'_7 - I'_8$, zaniedbując wpływ wyższych pasm. Model trójpasowy opisany został w pracach Yafeta [9] oraz Kacman i Zawadzkiego [10]. Przybli-
żenie to nie uwzględnia „efektów kwantowych” w pasmach Γ_8 i dotyczy poziomów energetycznych o dużych liczbach kwantowych.

Stosunkowo prosto podać można wzory opisujące energie poziomów w pasmach Γ_6 i Γ_8 w $k_z = 0$.

Jeżeli tylko $\varepsilon < \frac{2}{3} A$ (w HgTeA jest rzędu 1 eV) wówczas dla pasma przedwodnictwa

$$
\varepsilon_{\Gamma_6}^\pm(N) = -\frac{\varepsilon_0}{2} + \left[\left(\frac{\varepsilon_0}{2}\right)^2 + \varepsilon_0 D_N^\pm\right]^{1/2},
$$

(18)
dla pasma lekkich dziur

$$
\varepsilon_{\Gamma_8}^\pm(N) = -\frac{\varepsilon_0}{2} - \left[\left(\frac{\varepsilon_0}{2}\right)^2 + \varepsilon_0 D_N^\pm\right]^{1/2},
$$

(19)
gdzie

$$
D_N^\pm = \frac{e^2 \hbar}{m_0}(N + \frac{1}{2}) \pm \frac{1}{2} g \mu_B H,
$$

m i g są odpowiednio masę efektywną nośników i efektywnym czynnikiem g na dnie danego pasma, N — numerem poziomu.

Układem poziomów + i — w pasmie przewodnictwa odpowiadają układy a i b w notacji Luttingera, przy czym $N = n - 1$.

Istnieje jeszcze trzecie podejście będące modyfikacją teorii Luttingera i Kohna [4]. Oprócz „efektów kwantowych” w pasmach Γ_6 uwzględnia ono dodatkowo oddziaływania $k\hat{p}$ pomiędzy poziomami $\Gamma_6 - \Gamma_7 - \Gamma_8$, czyli wpływ nieparaboliczności pasm energetycznych. Podejście to zostało omówione w pracy Pidgeona i Browna [11] dotyczącej InSb.

Prawdopodobieństwa przejść i reguły wyboru otrzymuje się licząc odpowiednio międzypasmowe elementy macierzy. Reguły wyboru dla przejść $\Gamma_6 \rightarrow \Gamma_8$ można znaleźć np. w pracy [7], a dla przejść $\Gamma_8 \rightarrow \Gamma_8$ w pracy [8].

7. Przegląd wybranych prac doświadczalnych

Na konferencji związków półprzewodnikowych $A_{11}B_{11}$ w Providence w 1967 przedstawiona została praca Pidgeona i Grovesa poświęcona badaniu przejść międzypasmowych w HgTe w polu magnetycznym [12]. Struktura pasmowa tego materiału znana była już wcześniej. W pracy [12] wyznaczono wartość przerwy energetycznej oraz jej zależność od temperatury, a więc kierunek zmian. Zgodność krzywych teoretycznych oraz krzywych wyznaczonych przy pomocy eksperymentu dostarczyła argumentów na korzyść struktury odwróconej w HgTe.

W swoich poprzednich publikacjach [13, 14] autorzy podali wyniki pomiarów magnetoodbicia w HgTe w temperaturce 35 K. Przy pomiarach zastosowano światło niespolaryzowane w konfiguracji Faradaya, czyli $E \perp H$. Pomiary wykonano w próbie HgTe o koncentracji $n = 2 \cdot 10^{15}$ cm$^{-3}$ w obszarze energii
0,05—0,35 eV (czyli długości fal padającego promieniowania od 4 do 25 μm) w polach magnetycznych do 100 kGs. Obserwowano zarówno przejścia między-pasmowe \(\Gamma_8 \rightarrow \Gamma_8 \), jak i \(\Gamma_8 \rightarrow \Gamma_6 \). Wyniki pomiarów przedstawione są na rysunku 7.

Rys. 7. Wyniki pomiarów magnetooodbicia w HgTe z prac [12, 14]. Objawienia w tekście

Teoretyczne wartości energii przejść znaleziono korzystając z pracy Pidgeona i Browna poświęconej uogólnieniu teorii Luttingera i Kohna na przypadek InSb [11]. Ekstrapolacja wartości pola magnetycznego do \(H = 0 \) wykazuje, że rodziny krzywych \(A \) i \(B \) dają odpowiednio do zera oraz wartości przerwy energetycznej w nieobecności pola magnetycznego. Teoretyczne dopasowanie dla rodziny krzywych typu \(B \) (przejścia \(\Gamma_8 \rightarrow \Gamma_6 \)), posiadających wyższe energie było od razu bardzo dobre. Dla krzywych typu \(A \) (\(\Gamma_8 \rightarrow \Gamma_8 \)) odpowiadających niższym energiom przejść krzywe teoretyczne zachowywały się jakościowo identycznie, jak ciąg punktów eksperymentalnych, ilościowo natomiast wykazywały-systematyczne odchylenia.

W rzeczywistości przejścia typu \(A \) (\(\Gamma_8 \rightarrow \Gamma_8 \)), pomimo że odpowiadają niższym wartościom energii, wchodzą głębiej w pasmo przewodnictwa niż przejście typu \(B \) (\(\Gamma_8 \rightarrow \Gamma_6 \)). Penetrują one pasmo \(\Gamma_8 \) do energii powyżej 0,2 eV. Włączenie do teorii oddziaływania pomiędzy pasmami \(\Gamma_8 \) i \(\Gamma_{15} \) (leżącego powyżej \(\Gamma_8 \) w odległości 3—4 eV) przy uwzględnieniu poprawek wyższego rzędu niż \(k^2 \) usuwa większość rozbieżności. Jak podają autorzy, dla wysokich energii przejść \(\Gamma_8 \rightarrow \Gamma_8 \), powyżej 0,2 eV, uwzględnienie oddziaływania pomiędzy pasmami \(\Gamma_8 \) i \(\Gamma_{15} \) daje nam 10% poprawkę do wartości energii.

Pomiary, których wyniki przedstawiono w pracy [12] na konferencji w Providence, dotyczyły wyłącznie przejść typu \(B \), tzn. \(\Gamma_8 \rightarrow \Gamma_6 \). Badano magnetooodbiecie w obszarze temperatur 1,5—77 K, stosowano światło kołowo spolaryzo-
wane w konfiguracji Faradaya. Autorzy obserwowali przejścia międzypasmowe odpowiednio ze zmianą:

\[\Delta n = +1 \quad \text{dla polaryzacji } \sigma^- \]
\[\Delta n = -1 \quad \text{dla polaryzacji } \sigma^+. \]

Stosowanie oddzielnie światła spolaryzowanego kołową \(\sigma^- \) i \(\sigma^+ \) jest bardzo wygodne z tego względu, że oscylacje są wtedy lepiej widoczne (mamy dwa razy mniej maksimów), jak również łatwiejsza jest ich interpretacja.

Rys. 8. Wyniki pomiarów magnetoodbicia w HgTe na podstawie pracy [12]

Wyniki pomiarów Pidgeona i Grovesa wykonanych w temperaturach 1,5 oraz 60 K dla obu polaryzacji przedstawia rys. 8. Strzałką oznaczona jest wartość przerwy energetycznej w 77 K, zmierzona w ten sam sposób. Jest to pierwszy bezpośredni pomiar wartości znaku oraz wartości zmiany przerwy energetycznej z temperaturą w związkach o strukturze odwróconej. Podobnie jak poprzednio dopasowanie krzywych teoretycznych do danych doświadczalnych wykonano korzystając z modelu Grovesa-Paula oraz pracy Pidgeona i Browna [11].

Badanie magnetoodbicia nie jest najlepszą metodą doświadczalnego wyznaczania energii poziomów w obecności zewnętrznego pola magnetycznego, a więc i parametrów struktury pasmowej półprzewodnika. Bardzo istotną rolę odgrywa jakość i sposób przygotowania powierzchni próbki, jak również zachowanie się funkcji dielektrycznej w badanym obszarze. Najbardziej bezpośrednią metodą wyznaczania parametrów struktury pasmowej jest badanie magnetoabsorpcji, ponieważ energie odpowiadające maksimom oscylacji równe są energiom przejść pomiędzy poszczególnymi poziomami.

Pomiary magnetoabsorpcji międzymagazowowej w HgTe wykonane zostały przez grupę autorów polskich i francuskich na cienkich płytkach (grubości rzędu kilku mikronów) hodowanych na powierzchni roztworu telluru w rtęci. Omówieniu otrzymanych wyników poświęcono szereg prac [7, 8, 15, 17, 18].
Badano bardzo czyste próbki typu \(n \), pomiary wykonano w temperaturze ciekłego helu w polach magnetycznych do 60 kGs. Stosowano fale elektromagnetyczne spolaryzowane koło i liniowo, przy czym badano magnetoabsorpcję zarówno w konfiguracji Faradaya, jak i Voigta.

Analizę danych doświadczalnych przeprowadzono w następujący sposób.

1. Energety poziomów w pasmie przewodnictwa \(\Gamma_8 \) dla przejść \(\Gamma_8 \rightarrow \Gamma_8 \) w obszarze małych liczb kwantowych opisywano korzystając z teorii Luttingera-Kohna. Poziomy w pasmie \(\Gamma_8 \) traktowano jako poziomy Landaua. W obu pasmach zaniedbano wpływ nieparaboliczności. Analizę tę zastosowano dla energii przejść \(h\omega - \epsilon_0 < 30 \text{ meV} \). W obszarze wyższych energii (poziomy o wyższych liczbach kwantowych) korzystano z modelu trójpasmowego [7, 8, 16].

2. Energety poziomów dla przejść \(\Gamma_8 \rightarrow \Gamma_8 \), które badano w obszarze do kilku-nastu meV, opisywano korzystając z teorii Luttingera [15, 18].

We wszystkich przypadkach w obliczeniach zaniedbano niesferyczność istnienie członów liniowych w \(k \).

Autorzy prac otrzymali jeden komplet parametrów teorii, który dobrze opisuje zarówno energie przejść \(\Gamma_8 \rightarrow \Gamma_8 \), jak i \(\Gamma_8 \rightarrow \Gamma_8 \). Parametry te różnią się jednak nieco od parametrów wyznaczonych przez Grovesa, Browna i Pidgeona [14] z pomiarów magnetoabsorcja w HgTe.

W temperaturach helowych wyznaczono następujące parametry struktury pasmowej HgTe;

\[\epsilon(\Gamma_8) - \epsilon(\Gamma_8) = 302.5 \text{ meV} \] [16], co pozwala w dobrej zgodności z pracą Pidgeona i Grovesa [12],

 dla pasma przewodnictwa \(\Gamma_8 \) [7]: \(m_e = (0.031 \pm 0.001) m_0 \), \(g_e = -22 \pm 4 \),
 dla pasma walencyjnego \(\Gamma_8 \) [7]: \(m_v = (0.028 \pm 0.001) m_0 \), \(g_v = -41 \pm 4 \).

Uwzględnienie istnienia członów liniowych w \(k \) prowadzi do dodatkowych reguł wyboru dla przejść \(\Gamma_6 \rightarrow \Gamma_8 \) i \(\Gamma_8 \rightarrow \Gamma_8 \). Przejścia takie zostały zaobserwowane [17, 18]. Jest to pierwsze doświadczalne potwierdzenie występowania członów liniowych w \(k \) w HgTe oparte na wynikach pomiarów magnetooptycznych.

8. Podsumowanie

Pomiary magnetoabsorpcji (czy też magnetooabsorcji) międzypasmowego w związkach o wąskiej przerwie energetycznej są bardzo interesujące z wielu względów.

Po pierwsze: pomiary energii przejść wykazują inny charakter struktury pasmowej w HgTe niż na przykład w InSb i dlatego wyniki takich pomiarów traktować można jako silne kryterium przynależności badanego związku do grupy związków o strukturze odwróconej.

Po drugie: porównanie krzywych teoretycznych z położeniami punktów doświadczalnych pozwala na stosunkowo najdokładniejsze wyznaczenie parametrów struktury energetycznej, takich jak przerwa energetyczna, masy efek-
tywne elektronów i dziur na dnie i w wierzchołku pasm, efektywne czynniki g badanych pasm. Zmieniając temperatura można ożywiście wyznaczyć zależność przerwy energetycznej od temperatury.

Po trzecie: pomiary magnetoabsorpcji międzypasmowej pozwalają na badanie stanów energetycznych leżących wysoko w pasmie przewodnictwa. Stany takie oddziaływają już z wyższymi pasmami i dlatego pomiary takie mogą służyć jako test dla teorii zajmującej się oddziaływaniami tego typu.

HgTe jest materiałem półprzewodnikowym stosunkowo dobrze obecnie znany i w ostatnich latach intensywnie badanym metodami magnetooptycznymi. Dlatego też wydaje się, że dalsze badania wykorzystujące metody magnetooptyczne pójdą w kierunku innych związków, szczególnie trójskładnikowych, mających szersze zastosowanie, jak np. kryształy mieszane Cd$_x$Hg$_{1-x}$Te. Ukazało się już na ten temat kilka prac, m. in. [19].

Literatura