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The investigation of many-body interactions holds significant importance for both quantum foundations and
information. Hamiltonians coupling multiple particles at once, beyond other applications, can lead to faster
entanglement generation, multiqubit gate implementation, and improved error correction. As an increasing
number of quantum platforms can enable the realization of such physical settings, it has become interesting to
study the verification of many-body-interaction resources. In this work, we explore the possibility of higher-order
coupling detection through the quantum Fisher information. For a family of normalized symmetric k-body Ising-
like Hamiltonians, we derive bounds on the quantum Fisher information in product states. Due to its ordering
with respect to the order of interaction, we demonstrate the possibility of detecting many-body couplings for
a given Hamiltonian from the discussed family by observing violations of an appropriate bound. As a possible
extension to these observations, we further analyze an example concerning three-body-interaction detection in
the XY model.
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I. INTRODUCTION

Among many fascinating phenomena in physics, in recent
years studying the nature of interactions has become not only
a subject of fundamental research but also part of the current
pursuit towards modern quantum technologies. Most current
controllable quantum systems rely solely on the two-body in-
teractions between particles [1–3]. Nevertheless, many-body
interactions are often discussed in the context of effective
models in low-energy physics [4–6]. These include studies
of spin systems [7–11], extended Hubbard models describ-
ing ultracold atoms or molecules in optical lattices [12–24],
quantum chemistry [25–28], and nuclear and particle physics
[29–32]. Further applications of higher-order interactions can
be found in entanglement generation [33–36] and error cor-
rection [37–39], among others [40–43]. Thus, the search for
many-body interactions plays a significant role for both quan-
tum foundations and future quantum technologies [44–49].
With rising demand for the implementation of many-body-
interaction Hamiltonians, it has become interesting to study
their verification [43]. A universal method solving this task
could probe new physical effects and give insights into how
to engineer the desired Hamiltonians. Furthermore, it would
be useful for Hamiltonian-learning protocols because they
often require prior knowledge of the maximal degree of an
interaction graph (see, e.g., [50]). On the other hand, it would
answer the question of whether the Hamiltonian is even worth
learning if we are interested in its many-body-interaction
properties. In this work, we demonstrate that the existence
of genuine many-body interactions can be verified through

*Contact author: pawel.cieslinski@phdstud.ug.edu.pl

quantum Fisher information (QFI), thus possibly paving the
way for a new area of nonlocal-interaction research.

QFI has been studied in various contexts [51–61], includ-
ing quantum phase transitions [62–67] and, most notably,
quantum metrology [68,69]. For a given Hamiltonian it al-
lows one to find states that guarantee measurement precision
beyond the classical limit [68,69]. An experimental measure-
ment, or estimation, of QFI can be performed via several
techniques. The proposed theoretical protocols take advan-
tage of the dynamical susceptibility [70], projections onto the
initial state (Loschmidt-echo protocol) [71], overlap detec-
tion [72], randomized measurements [73–75], and adiabatic
perturbation theory [76]. A direct QFI (or its lower bound)
measurement was performed in, e.g., [74,77,78].

In the standard metrological scenario, Hamiltonians under
consideration are strictly local. However, many-body interact-
ing systems were also examined in terms of improved scaling
[69]. Here, to make our presentation as simple as possible, we
study the family of k-local permutationally invariant Ising-like
Hamiltonians of N particles. For them, we illustrate the main
premise behind this paper, which is that QFI can be used
to detect the interaction order. Based on this observation,
we derive bounds on the Hamiltonians with at most two-
body-interaction terms, showing the possibility of witnessing
the presence of k-body interactions with product states (see
Fig. 1). As a possible extension, we also discuss an example
of a similar study for the XY model.

II. MOTIVATING EXAMPLE

First, we start with a simple example that motivates our
work. Consider a system of three qubits on a triangle that
interact in the σz direction. Fixing the order of interaction at
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FIG. 1. Motivation. In this work, we explore the order of interac-
tions, i.e., the maximal number of simultaneously coupled qubits in
a Hamiltonian, through the use of quantum Fisher information. For
symmetric Ising-like Hamiltonians Hk (7), we show that quantum
Fisher information calculated in a product state is bounded with a
bound dependent on k. This allows one to detect whether Hk mani-
fests interactions beyond the k′-body case, where k > k′. The basic
idea is as follows. Starting from an arbitrary separable state, we let
the particles interact via Hk , and then we measure its quantum Fisher
information. Based on our findings, we check whether the result is
greater than the maximally allowed value for the chosen k′. If the
answer is positive, we can claim that Hk contains terms of at least
(k′ + 1)th order.

2, the two-body-interaction Hamiltonian is given as

H2 = 1
2 (σz ⊗ σz ⊗ 1 + 1 ⊗ σz ⊗ σz + σz ⊗ 1 ⊗ σz ),

where, in order to keep the correspondence with standard
metrological notation, the prefactor was chosen such that the
maximal eigenvalue does not exceed N/2 = 3/2. On the other
hand, focusing on only the three-body couplings, we get

H3 = 3
2 (σz ⊗ σz ⊗ σz ).

Now, let us consider the maximization of quantum mechanical
variance (�H )2 = 〈H2〉 − 〈H〉2 over the set of pure prod-
uct states. For H2 the optimal product state, i.e., the state
that maximizes the variance, is given as |ψprod〉 = (

√
p|0〉 +√

1 − p|1〉)⊗3, where |0〉 and |1〉 are eigenstates of σz and
p = (3 + √

3)/6. See the Appendix for direct calculations.
The exact value of the maximal variance is (�H2)2

max = 1. It
is straightforward to show that for trivial Hamiltonians with
one-body terms the variance is given as (�H1)2

max = N/4.
Consequently, for three qubits we get (�H1)2

max = 3/4, which
is smaller than in the two-body case. Moving on to the higher-
order-interaction Hamiltonian, the optimal state is no longer
a tensor product of identical local states |ψ〉⊗3. It might seem
that the form of the state that maximizes the variance for the
two-body interaction is trivially obtained from the symmetry,
but it is not. In fact, the only condition arising from it is that
〈ψ1ψ2ψ3|H |ψ1ψ2ψ3〉 = 〈ψ2ψ1ψ3|H |ψ2ψ1ψ3〉, with similar
conditions for all other permutations of indices. This can be
seen clearly in the three-body-interaction case. Examining the
spectrum of H3, we can construct a product state which is
a superposition of eigenstates associated with the maximal
and minimal eigenvalues (see the Appendix). Namely, we
have |ψprod〉 = |00〉 ⊗ 1/

√
2 (|0〉 + |1〉) and the correspond-

ing (�H3)2
max = 9/4. Limiting ourselves to the product states

being a tensor product of identical one-qubit states, we would
arrive at the value accessible for k = 2. From these results, it

is apparent that

LS = (�H1)2
max < (�H2)2

max

< (�H3)2
max ← LH,

where we denote the values of variances coinciding with the
standard limit and the Heisenberg limit for one-body Hamil-
tonians and entangled states as LS and LH, respectively. Here,
it is also worth noting that the ordering of maximal variance
is not due to the possibility of obtaining higher eigenvalues
by changing the interaction type or the number of terms in the
Hamiltonian since they are all normalized in the same manner.
This simple example shows that variance of a Hamiltonian
calculated in a product state may be exploited as a tool for
detecting many-body-interaction terms.

III. PHYSICAL MODEL AND PRELIMINARIES

In the following, to make our considerations more general,
instead of the variance of a Hamiltonian, we will focus on
the quantum Fisher information. For any Hermitian operator
A and state ρ it is defined as

F [ρ, A] = 2
∑
k,l

(λk − λl )2

(λk + λl )
|〈k|A|l〉|2, (1)

with |k〉 and λk being the eigenvectors and eigenvalues of
a density matrix ρ, respectively, and the sum being evalu-
ated only when the denominator is different from zero. Most
commonly, it is used in quantum metrology because it al-
lows one to find a suitable state that one can use to boost
phase-measurement sensitivity. It was shown that for local
Hamiltonians QFI in product states is bounded by N [79].
Introducing entangled states moves this bound to N2, leading
to the so-called Heisenberg limit [79,80]. Moreover, for any
quantum state ρ a pure state |ψ〉 exists for which [68]

F [ρ, A] � 4(�A)2
|ψ〉 = F [|ψ〉, A]. (2)

Hence, any maximization of QFI can be performed only
among the pure states. This justifies the choice of variance
and calculations presented in the previous section.

Our task is to construct a model and derive a bound on
the quantum Fisher information in a product state that is an
increasing function of an interaction order. Now, let us pre-
cisely define the notion of higher-order interactions. A given
Hamiltonian

Hk =
∑

j

h(k)
j (3)

is considered to be k-local if each h(k)
j acts nontrivially on

at most k particles. Hamiltonians which act exactly on k
or at most on K particles will be denoted as Hk and H(K ),
respectively. By this definition, we will use the k-locality
and kth order of interactions interchangeably. Measurements
enhanced with Hamiltonians that are nonlinear in operators
have been studied in terms of sensing and scaling in the past
[69]. They include, for example, products of photon creation
and annihilation operators [81–84], angular momentum and
its components [85–88], many-body models [59,60,89–92],
and, more generally, powers of the sum of local operators
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[93], as well as the general k-body [94] and symmetric k-
body-interaction Hamiltonians [93,95], with no comparison
between entangled and separable states in the latter cases.
However, in this work, we study a specific scenario which
resembles the standard metrological approach but will be
used in a far different context. For such means, we will
consider only the symmetric Ising-like Hamiltonians. First,
we define the auxiliary Hamiltonians that contain only the
k-body-interaction terms as

Hk = N
∑

(i1,··· ,ik )∈Gk

σ i1
z σ i2

z · · · σ iN
z , (4)

where N is a normalization constant and Gk is a fully
connected interaction graph for k-body interactions; the sum-
mation is performed over all k-partite subsets of particles,
making it permutationally invariant. In the case of k = 1 we
retrieve the standard metrological Hamiltonians

H1 = 1

2

N∑
i=1

σ i
z (5)

if proper normalization is chosen. Another example can be
given for k = 2 and N = J , namely,

H2 = J
N∑

i< j

σ i
zσ

j
z . (6)

Note that the above Hamiltonian represents a long-range-
interaction Ising model on a complete interaction graph. For
more examples see Secs. II and V. Now, a general symmetric
Ising-like Hamiltonian containing at most k-body interactions
can be constructed as

H(K ) = N
∑
k�K

αkHk, (7)

where, again, N is a normalization constant and αk are real
numbers. Throughout most of this paper, we will focus on
∀k αk = 1 and discuss its modifications in the examples. It
is worth noting that all of the results presented here hold
for any Hamiltonian equivalent under local unitary opera-
tions. This follows from the property of QFI which states
that F [ρ,U †AU ] = F [UρU †, A] and local unitary invariance
of entanglement. Hamiltonians from a different class will be
discussed in Sec. VI.

Before we move on to our results, we need to specify a
proper normalization for H(K ). Our motivation is to test the or-
der of interactions present in the system. Moreover, we would
like to compare our results with the metrological approach
and stay consistent with its results. In order not to break the
classical and Heisenberg scaling we choose to set the operator
norm ||H(K )|| = maxφ ||H(K )|φ〉|| = N/2. Note that we want
the Hamiltonian to appear as if no k-body interactions were
present in it. If we dropped this assumption, we would obtain
the nonlinear Hamiltonians scalings N∼k (see, e.g., [81–93]).
Our approach leads to an upper bound on variance and QFI
which cannot exceed N2 for any k and quantum state |ψ〉,
entangled or not. We implement this norm by setting N to
N/(2 maxi |Ei|), where Ei is an eigenvalue of H(K ). As this
normalisation is multiplication by a constant, there still is an

overlap between the previous research and our results. This
will be commented on in Sec. V.

IV. INTERACTION-DEPENDENT BOUNDS
ON QFI FOR PRODUCT STATES

For the considered model it is possible to derive the explicit
formulas for the eigenvalues based on its symmetry. For the
k-local Hamiltonian defined in (7) and included normalization
we get

	N,K
e =

∑
k�K

ωN,k
e , ωN,k

e =
e∑

j=0

N

2

(e
j

)(N−e
k− j

)
(N

k

) (−1) j, (8)

where e is the number of excitations, i.e., the number of
|1〉 elements in the N-qubit state. Here, ωN,k

e represents the
eigenvalues of a Hamiltonian with only k-body terms.

As a first step, we will limit ourselves to a scenario with
a fixed k, i.e., Hk . In such a case, the maximization of vari-
ance and hence the QFI (2) over pure product states can be
performed as follows. Since variance is the function of the
square modulus of amplitudes and Hamiltonian eigenvalues,
we can consider only product states of the following form:

|ψprod〉 =
N⊗
i

(
√

pi|0〉 +
√

1 − pi|1〉).

Using this parametrization and calculating the variance, we
get

(�Hk )2 =
∑

l1,...,lN =0,1

N∏
i=1

pli
i (1 − pi )

1−li
(
ωN,k

l1+···+lN

)2

−
⎛
⎝ ∑

l1,...,lN =0,1

N∏
i=1

pli
i (1 − pi )

1−liωN,k
l1+···+lN

⎞
⎠

2

.

A necessary condition for the existence of a multivariable
function extremum is the disappearance of its first derivatives.
Taking derivatives of (�H )2 over pi, we arrive at the system
of N equations linear in pk ,

0 = ∂ (�Hk )2

∂ pk

=
∑

l1,...,lN =0,1

(−1)1−lk
N∏

i �=k

pli
i (1 − pi )

1−li
(
ωN,k

l1+···+lN

)2

− 2

( ∑
l1,...,lN =0,1

N∏
i=1

pli
i (1 − pi )

1−liωN,k
l1+···+lN

)

×
∑

l1,...,lN =0,1

(−1)1−lk
N∏

i �=k

pli
i (1 − pi )

1−liωN,k
l1+···+lN

, (9)

where the dependence on pk is only in the term in the paren-
theses. Since we know all ω’s, this can be solved directly,
and the resulting set of (p1, . . . , pN ) satisfying 0 � pi � 1
is the solution to our optimization problem. We present a
step-by-step solution for N = 3 in the Appendix.
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V. TESTING k-BODY INTERACTIONS

The most interesting case for higher k-body-interaction
terms would be to find an explicit bound on QFI for k = 2.
For fixed k = 1 we once again refer to the fundamental result
obtained for local Hamiltonians [79]. One of its many conse-
quences is the classical scaling with max|ψprod〉 4(�H1)2 = N .
It is straightforward to see that our approach is consistent
with that. With direct solutions of (9) and numerical calcu-
lations, for k = 2 we notice that up to N = 13, the solution
to the given optimization problem is obtained with |ψprod〉 =
(
√

p|0〉 + √
1 − p|1〉)⊗N . For more discussion see the Ap-

pendix. This result is known to hold asymptotically when
the number of particles is much greater than the interaction
order, here n � 2 [93]. It is valid in our approach because
a nonlinear Hamiltonian (

∑
i H1)2 for which this result was

derived is equal to N1 · · · 1 + NH2 and thus holds in our
case. Furthermore, it is consistent with the results obtained
for the Lipkin-Meshkov-Glick (LMG) model and the nearest-
neighbor (as well as fully connected) Ising model with an
interaction parameter smaller than its critical value (general
parameter range) [91,92]. This will also be elaborated on later.
For the given state, the variance reduces to

(�H2)2 = 4

N − 1
[−2N (2N − 3)p4 + 4N (2N − 3)p3

− N (5N − 7)p2 + N (N − 1)p]. (10)

By finding zeros of its derivative we get three unique roots,
from which the one that maximizes the variance is given as

pmax = 2N − 3 + √
2N2 − 7N + 6

4N − 6
. (11)

The resulting maximal QFI in a product state, i.e., the solution
to (9) obtained with the above pmax, for k = 2 is

Fmax[|ψprod〉, H2] = 2N (N − 1)

2(N − 2) + 1
. (12)

The results presented here coincide with the ones obtained
for the LMG model in the limit of large coupling constant
γ and the context of statistical speed (see the Supporting
Information of [91]). This is due to the fact that once the
coupling constant is large, the single-qubit terms in the LMG
model can be neglected. Then, up to a constant, the LMG
Hamiltonian is equivalent to H2 studied here. Note that (12)
is an increasing function of N which bounds, from the above,
the one-body scaling. Explicit results for k � 5 and N � 10
are presented in Fig. 2. As expected, for k = 1 the maximal
QFI scales as N [79]. For k > 1, the results clearly show
that the maximal Fisher information in a product state is
ordered with respect to the fixed interaction order k. This
observation motivates our goal of testing the presence of k-
body interactions with QFI and product states. We should also
mention that for k = N the QFI in a product state is maxi-
mal, as in [89], and a constant trend for N < 2k is observed
(see Fig. 2).

A natural extension of the above considerations is to fix
the number of qubits N and study bounds on maximal QFI
with Hamiltonians Hk containing at most k-body couplings.
Technically, knowing the eigenvalues of such Hamiltonians
[see (8)], we can once again maximize the variance and hence

FIG. 2. Maximal quantum Fisher information of k-local Hamil-
tonian Hk in a product state as a function of the number of particles
N . Numerical solutions of (9) for different choices of k are plotted
in different colors, and dashed lines are guides to the eye. Values as-
sociated with k = 1 scale linearly with N [79], while for k = 2 their
behavior is described by (12). From the plot, one can see that a clear
ordering of the maximal QFI with respect to the fixed interaction
order exists. This observation allows one to formulate criteria which
would distinguish the minimal order of k-body interactions present
in the Hamiltonian using separable states. According to our choice
of normalization when N = k, Heisenberg scaling of N2 is achieved
as expected. Note that for N < 2k the trend is constant. Then, once
the number of particles is equal to 2k the QFI grows. This change in
the behavior of QFI is necessary because it would be impossible for
it to remain constant since it would eventually yield values smaller
than the ones obtained with local Hamiltonians and would lead to a
contradiction.

QFI directly. Here, however, we do not want to examine a sum
of k-local Hamiltonians, but its behavior when the many-body
couplings are varied. To detect interactions of order k > 2 it
is always sufficient to violate the bound for H(2) = H1 + H2.
Again, by solving (9) we can calculate the desired limits on
QFI. As before, the optimal solution is found to be realized
by pi = p for all i. For our problem, the exact calculations
and numerical optimization for up to N = 13 give rise to the
extrapolated pattern

B1+2 = max
|ψprod〉

F [|ψprod〉,H(2)]

= max

(
−16N p(p − 1)

(N + 1)2
{(N − 2)2

+ 2(N − 1)p[(2N − 3)p − (2N − 5)]}
)

(13)

and allow us to formulate the following criterion:

if F [ρ,H(K )] > B1+2 ⇒ K � 3. (14)

The polynomial to be maximized is fourth order, and a closed
formula for the maxima can be found explicitly. However, due
to its extensive structure, we chose to present the result in the
above form. Explicit values of B1+2 for chosen N are shown
in Table. I. It is worth noting that B1+2 never exceeds the
maximal QFI for only two-body interactions, and if needed,
a stricter bound can be chosen. Furthermore, the presented
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TABLE I. Explicit values of the maximal quantum Fisher in-
formation B1+2 (13) attainable in product states for a two-body
Hamiltonian from the studied family. For each N , violation of this
bound with any separable state yields the presence of at least three-
body terms in the Hamiltonian.

N

2 3 4 5 6 7 8 9 10

B1+2 1.78 2.68 3.61 4.57 5.53 6.51 7.49 8.47 9.46

approach, in principle, can be performed for any k. Neverthe-
less, we will focus on the first physically interesting scenario
presented above.

A. Example

As an example, consider an Ising chain on a complete in-
teraction graph with a uniform external field in the z direction
(k � 2). Tuning the field according to the coupling strength,
as well as normalizing an entire Hamiltonian, we get

HI = N J

⎛
⎝ N∑

i< j

σ i
zσ

j
z +

N∑
i

σ i
z

⎞
⎠, (15)

where N = 1/J (N + 1). Suppose now that this system con-
tains some amount of three-body interactions of the same
symmetry and the actual Hamiltonian is, up to normalization,
H(3) = HI + γ3H3. In Fig. 3 we plot the maximal QFI in
product states for different N and varying γ3. Clearly, even
for small γ3, higher-order interaction is detected. Moreover,
let us examine a case in which we set different values of
γ3 = {0.1, 0.5, 0.7, 1} and, for each choice, compute the QFI
in a random pure three-qubit product state. In this scenario, it
is also possible to violate B1+2. Namely, for 105 samples the

FIG. 3. Maximal quantum Fisher information in a product state
for Hamiltonian HI (15) with three-body contribution γ3H3 for N =
3, 4, 5 and varying γ3 (solid line). Bounds B1+2, which allow one to
verify the presence of higher-order interactions, are plotted by dashed
lines. One can see that it is possible to make statements about the
order of interactions based on the presented results. If the bound of
B1+2 is violated, then within the studied family of Hamiltonians, the
interaction is at least 3-local.

estimated frequency of violation is {0.23%, 4.3%, 6.1%, 8%}
for the respective choices of γ3. Although, as ex-
pected, this frequency is small, it is still significant, and
one can make conclusions about the present interaction
type.

An interesting thing to comment on is the change in eigen-
levels structure. In general, the state that maximizes variance
is given as 1/

√
2(|Emin〉 + |Emax〉). This, however, does not

need to be a product state, and indeed, it is not in most
cases. Nevertheless, if the order of interaction increases, the
structure of eigenlevels changes, and Heisenberg scaling is
available with product states. In fact, increasing γ3 causes an
attraction of the lowest energy levels, resulting in stronger
degeneracy when all couplings are equal. The resulting system
is effectively a two-level structure, and it is possible to form
many product states which are a uniform superposition of two
levels; hence, the maximal value of variance and QFI can be
achieved.

The discussed protocol could be especially useful for
verifying whether the many-body couplings have been en-
gineered in a quantum simulator or another setup without
direct comparison of evolution with a specific k-local Hamil-
tonian. The importance of such tasks was discussed in the
Introduction.

VI. POSSIBLE EXTENSIONS

Here, we will briefly discuss the problem of k-body-
interaction verification outside of the discussed class of
Hamiltonians. Let us consider the long-range-interaction
transverse-field XY model

HXY = N
{

J
∑
i< j

[
(1 + δ)σ i

xσ
j

x + (1 − δ)σ i
yσ

j
y

] + b
∑

i

σ i
z

}
,

where N is a normalization constant, J is an exchange con-
stant, δ is an anisotropy parameter, and b stands for an external
magnetic field. For a similar discussion on the transverse-field
Ising model on a complete interaction graph see [92]. The
above Hamiltonian differs significantly from the ones studied
before, and in principle, the conclusions drawn in the previous
sections may not hold.

While working with the XY model we need to specify
the free parameters. We choose to set J = 1 and scan over
different δ and b. The choice of J is arbitrary due to the
normalization and scanning over different field and anisotropy
values. The physical range of δ is [−1, 1]. For large val-
ues of the external transverse field, the interaction terms’
contribution decreases, and the results should converge to
the case of local Hamiltonians. Thus, we choose to restrict
b to a significant region of ±√

J2 + δ2
max, i.e., b ∈ [−2, 2].

Performing a numerical optimization over the set of pure
product states for the case of N = 3, we obtain the data
plotted in Fig. 4(a), where the step of the parameter change
is chosen to be 1/5. Note that for N = 3 particles, the long-
range-interaction term is equivalent to the periodic boundary
condition and makes it more feasible experimentally. In gen-
eral, we observe that the maximal QFI in a product state,
i.e., BXY , is given as 5.97. This corresponds to δ = 0.6 and
b = ±1.6. For the δ = 0 cut (the XX model) the maximal
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(a)

(b)

FIG. 4. (a) Maximal quantum Fisher information in a three-qubit
product state for the normalized transverse-field XY Hamiltonian and
different values of the external field b and anisotropy parameter δ.
The free parameters were scanned within the region of ±1 for δ

and ±2 for b with a step of 1/5. The maximal QFI in a product
state was found to be BXY = 5.97. For δ = 0, the XX model, it
yields a maximal value of 5.51. Since the QFI values plotted here
do not saturate the upper bound of N2 = 9, our reasoning can be
used for higher-order-interaction verification. (b) Maximal quantum
Fisher information in a product state for the normalized Hamiltonian
H̃(3) = HXY + γ̃3H̃3 with a varying γ̃3 and the optimal XY model
parameters δ = 0.6 and b = −1.6 (solid line). The value of BXY is
plotted by a dashed line. Its violation allows one to verify that a
three-body-interaction term is present in a system where one- and
two-body terms are described with the XY model. Here, this is
clearly possible.

QFI in a product state is found to be 5.51. Both of these
numbers are essentially smaller than N2 = 9, which is needed
to verify the higher-order interactions. Later in this section we
will consider HXY with the optimal parameters δ = 0.6
and b = −1.6.

First, we will examine a specific example of the many-
body-interaction verification problem within the studied
model. Then, a more general approach will be presented.
Consider a three-body Hamiltonian H̃3 which yields a QFI
in a product state for the normalized H̃(3) = HXY + H̃3 that
violates BXY = 5.97. One possible choice is simply H̃3 =

σ 1
x σ 2

x σ 3
x , as it leads to the maximal QFI in a product state for

H̃(3) equal to 6.74. Similar to what we did in the previous
section, we vary the amount of the H̃3 contribution as a func-
tion of the coupling strength γ̃3. Once again, we conclude that
the presence of higher-order interaction terms can be verified
through QFI, as illustrated in Fig. 4(b).

Choosing the three-body Hamiltonian in the XY model is
far more arbitrary. Hence, an additional interesting question
arises. What if the underlying many-body-interaction Hamil-
tonian could contain any three-body terms? For this reason,
let us consider a three-body Hamiltonian of the general form
H̃3 = ∑3

i, j,k=1 γi jkσi ⊗ σ j ⊗ σk . Now, we introduce small ran-
dom couplings by sampling γi jk from a uniform distribution
on (−γmax, γmax) and choose γmax = 0.5. This leads to multi-
ple violations of BXY for N (HXY + H̃3) in the fixed optimal
XY -model product state with a frequency of 1.4%, estimated
on 105 runs. Consequently, it shows the ability of a more gen-
eral three-body-interaction verification within the XY model
using the QFI.

VII. CONCLUSIONS

We examined the possibility of detecting higher-order in-
teractions with the use of quantum Fisher information. For
normalized symmetric Ising-like Hamiltonians, we showed
that the maximal QFI in product states is ordered with respect
to the fixed interaction order. Moreover, we calculated the
maximal QFI obtained in the product states for the most nat-
ural scenario in which one- and two-body terms are present.
This allowed us to verify the presence of at least three-body
interactions in the chosen family of Hamiltonians through the
violation of this bound. As a possible extension, we analyzed
an example concerning the three-body-interaction verification
in the XY model.

The considered problem has a strong foundational mean-
ing because it paves the way for a better understanding of
the nature of interactions. Furthermore, it encompasses some
practical applications for Hamiltonian learning and could pro-
vide new perspectives for many-body-interaction engineering.
As argued before, we emphasize that QFI can be measured
experimentally via multiple techniques.

Future research on this problem could focus on general-
izing this observation to an arbitrary Hamiltonian class. We
note that a different approach that contains no assumptions
on the symmetry and interaction strength is possible. How-
ever, it would require the possibility of the mean energy
measurement in an arbitrary state and a presumably unknown
Hamiltonian.

Note added. Very recently, we became aware that a similar
problem is being examined independently in a different man-
ner by Bluhm et al. (see [96] for their proposed solution to this
task).
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APPENDIX: MAXIMAL QFI IN PRODUCT STATES

To perform an exact maximization of QFI for N = 3 and
k = 2 let us consider the extremum conditions (9) explicitly:

G2,3[1 + 2p2(p3 − 1) − 2p3 + 2p1(p2 + p3 − 1)] = 0,

G1,3[1 + 2p2(p3 − 1) − 2p3 + 2p1(p2 + p3 − 1)] = 0,

G1,2[1 + 2p2(p3 − 1) − 2p3 + 2p1(p2 + p3 − 1)] = 0,

where Gi, j = 4(1 − pi − p j ). Discarding the minimum solu-
tions generated by eigenstates and limiting ourselves to pi ∈
[0, 1], from Gi, j we get

p1 = p2 = p3 = 1
2 , (A1)

which is a local minimum with QFI equal to 3. Assuming that
the first term is nonzero, we obtain

p1 = 1 + 2p2(1 − p3) + 2p3

2(1 − p2 − p3)
. (A2)

This leads to QFI of 4 and can also be satisfied if all pi are
taken to be equal. Indeed, taking pi = p for all i, we get

F [|ψ〉⊗3, H2] = 2(−18p4 + 36p3 − 24p2 + 3p), (A3)

with a maximum of 4 for p = 1/6(3 + √
3). For the three-

body-interaction Hamiltonian H3 the calculations can be
performed in an alternative manner. The spectrum of H3

consists of only two levels. The energy of −1/3 is as-
sociated with the eigenstates |111〉, |100〉, |010〉, |001〉 and
|000〉, |110〉, |101〉, |011〉 for the corresponding eigenvalue of
1/3. The maximal algebraically allowed variance is given
as the square of the energy bandwidth (Emax − Emin)2. Most
often, it is associated with highly entangled states; for the
studied family of Hamiltonians it is a Greenberger-Horne-
Zeilinger state. Here, however, due to additional degeneracies
arising from the three-body couplings (see the discussion at
the end of Sec. V), a product state that saturates the variance
can be constructed. Taking a uniform superposition of |000〉
and |001〉, we obtain |0〉 ⊗ |0〉 ⊗ 1/

√
2 (|0〉 + |1〉). From the

symmetry of the Hamiltonian any permutation of 1/
√

2 (|0〉 +
|1〉) among |0〉 is an equally valid solution.

Now, we give another example for N = 4 and k = 2. Here,
we want to solve the set of four equations arising from (9).
We do not report their explicit forms here, but one can easily
generate them by calculating the variance in a parameterized
product state. We find the following families of solutions to
the given problem:

pi1 = 1

2
− 1√

2
, pi2 = 1

2
− 1√

2
, pi3 = 1

2
, pi4 = 1

2
,

(A4a)

pi1 = 1

2
+ 1√

2
, pi2 = 1

2
+ 1√

2
, pi3 = 1

2
, pi4 = 1

2
,

(A4b)

pi1 = pi2 = 1

2
− 1√

2
, pi3 = pi4 = 1

2
+ 1√

2
, (A4c)

p1 = p2 = p3 = p4 = 1

2
, (A4d)

pi1 = 1

2
− 1√

10
, pi2 = 1

2
−

√
5

2
, pi3 = 1

2
, pi4 = 1

2
,

(A4e)

pi1 = 1

2
− 1√

10
, pi2 = 1

2
−

√
5

2
, pi3 = 1

2
, pi4 = 1

2

(A4f)

pi1 = 1

2
+ 1√

10
, pi2 = 1

2
+

√
5

2
, pi3 = 1

2
, pi4 = 1

2
,

(A4g)

p1 = p2 = p3 = p4 = 1

2
± 1√

10
, (A4h)

where the trivial (eigenstate) solutions were discarded. These
families are indexed with (i1, i2, i3, i4), which take distinct
values from [1,4]. This resembles the symmetric structure
of the studied Hamiltonians. One can check directly that
the last solution with ∀i pi = p gives rise to the high-
est QFI, as reported in the main text, i.e., Fmax[|ψprod〉,
H2] = 24/5 = 4.8.

For N > 3, solutions of the form (A2) do not guarantee
the vanishing derivatives for all parameters, as shown for
N = 4. Nevertheless, the more complicated solutions also
contain the one for which the optimal state is a tensor product
of single-qubit states (see the main text). To further check
our results and examine N � 5, we found the upper bound
on the QFI with standard numerical and symbolical opti-
mization techniques built in Wolfram Mathematica (version
13.3). All of the results obtained by solving the extremum
conditions are in agreement with the numerical calculations.
It is worth noting that the problem under consideration is
exactly solvable. One can express the variance of a Hamil-
tonian on two state copies, i.e., Tr[(1 ⊗ H2 − H ⊗ H )ρ ′],
with ρ ′ = ρ ⊗ ρ, which reduces it to a linear form. Con-
straints on the reduced states can ensure that the maximization
is performed over the separable states ρ and hence solves
the problem.
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M. D. Lukin, Phys. Rev. Lett. 123, 170503 (2019).

[47] M. Khazali and K. Mølmer, Phys. Rev. X 10, 021054 (2020).
[48] Y. Kim, A. Morvan, L. B. Nguyen, R. K. Naik, C. Jünger, L.

Chen, J. M. Kreikebaum, D. I. Santiago, and I. Siddiqi, Nat.
Phys. 18, 783 (2022).

[49] O. Katz, L. Feng, A. Risinger, C. Monroe, and M. Cetina, Nat.
Phys. 19, 1452 (2023).

[50] A. Anshu, S. Arunachalam, T. Kuwahara, and M. Soleimanifar,
Nat. Phys. 17, 931 (2021).

[51] P. Zanardi, M. G. A. Paris, and L. Campos Venuti, Phys. Rev. A
78, 042105 (2008).

[52] P. Hyllus, W. Laskowski, R. Krischek, C. Schwemmer, W.
Wieczorek, H. Weinfurter, L. Pezzé, and A. Smerzi, Phys. Rev.
A 85, 022321 (2012).

[53] G. Tóth, Phys. Rev. A 85, 022322 (2012).
[54] N. Li and S. Luo, Phys. Rev. A 88, 014301 (2013).
[55] H. Song, S. Luo, N. Li, and L. Chang, Phys. Rev. A 88, 042121

(2013).
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