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Spin-flip-induced quadrupole resonance in odd-A exotic atoms
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We examine the possible existence of quadrupole resonances in exotic atoms containing odd-A nuclei. We find
that the spin flip of the deexciting exotic particle can induce a resonance, altering the orbital angular momentum
of the nucleus by one quantum. This process results in an excited nucleus with a suppression in x-ray photon
emissions during the exotic atom cascade. We provide specific cases of antiprotonic atoms of stable elements
where this resonance effect is expected to occur. The study of this phenomena may provide insight into the strong
interaction of deeply bound antiprotonic states in the proximity of the unpaired nucleon, and serve as a tool for
probing short-lived excited nuclear states.
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I. INTRODUCTION

Exotic atoms are formed by the substitution of an electron
with an exotic negatively charged particle such as an antipro-
ton, muon, pion, or kaon. These exotic particles, owing to their
greater mass, are deeply bound within the electron cloud, po-
sitioning them in close proximity to the atomic nucleus. This
renders them highly susceptible to short-range interactions,
such as the weak and strong nuclear forces, making them
invaluable tools for probing these fundamental interactions
[1,2]. While exotic atoms are typically short lived, either due
to the intrinsic lifetime of the exotic particle or resulting from
the annihilation with nucleons in the nucleus, spectroscopic
analysis of these atoms can offer unique insights into nuclear
properties such as mass, charge radii, shape, and neutron skin
[3–9]. A notable feature of exotic atoms is their significantly
higher transition energies compared to conventional electronic
systems. These energies often lie in the range of keV to MeV,
as opposed to the eV scale typical of the valence electrons
bound in neutral atoms [10]. Interestingly, these energies are
comparable with energy scales of nuclear phenomena. In the
case of an exotic atom containing a negatively charged hadron
orbiting the nucleus, such as a negatively charged pion, kaon,
or antiproton, the deeply bound states will be directly influ-
enced by the strong nuclear force. Once the orbiting hadron’s
wave function has sufficient overlap with the nucleus, it is
rapidly absorbed, hindering the spectroscopic investigation of
the deeply bound states that are most sensitive to the strong
interaction effects. However, in some cases, the energy of a
nuclear quadrupole (E2) excitation can be sufficiently close
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to that of the transition between states in the exotic atom,
resulting in a so-called E2 resonance effect [11]. This reso-
nance effect has been experimentally studied through x-ray
spectroscopy of hadronic atoms containing pions, kaons, and
antiprotons [6,12–18]. In these studies, the resonance effect
was used to probe the strong interaction shift and width of
the “hidden” deeply bound state, owing to the quadrupole-
induced mixing with a spectroscopically accessible state,
revealing information about the strong interaction potential as
well as the density distribution of the nuclear periphery. So
far, cases of this resonance effect have only been considered
for collective quadrupole (E2) excitations of the nucleus, such
as rotations and vibrations, leading to a change of the nuclear
spin by two quanta, typically favored as the first excited state
in even-A nuclei.

In this article, we extend the study of the nuclear resonance
effect to odd-A nuclei, with a focus on antiprotonic atoms.
We demonstrate that, in this case, the spin flip of the antipro-
ton may result in the excitation of the nuclear spin by one
quantum, typically associated with single-particle excitation
of the unpaired nucleon. Furthermore, we identify candidates
of stable nuclei where we anticipate this spin-flip-induced
nuclear resonance effect to occur. Finally, we discuss potential
scenarios where this phenomenon could be used as a probe for
nuclear structure and strong interaction effects.

It is worth mentioning that spin-flip-induced excitations
of the nucleus by an orbiting particle without changing their
orbital angular momentum was considered previously in the
context of heavy odd-A highly charged ions [19]. A plethora
of those effects concerns the mixing of different electronic
states and are manifested in spectra [20–23]. Here we extend
this approach to cases when a heavy orbiting particle, due to
the quadrupole interaction with the nucleus, changes also their
orbital angular momentum and principal quantum number. In
this scenario, the energy released is much larger and can be fit
to gamma transitions in the nuclear sector.
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II. THE SYSTEM

The most convenient way of considering corrections
coming from the quadrupole interactions is to write the Hamil-
tonian describing the system of deformed nucleus and orbiting
antiproton as

H = HR + Hr + HQ, (1)

where HR is the Hamiltonian acting solely in the nucleus
subspace while Hr is the Dirac Hamiltonian for the antiproton
in the spherically symmetric electric potential, V (r) = −Z/r.
Its bound eigenstates |n jmκ〉 are conveniently labeled with
the principal quantum number n, the total angular momentum
j, its projection m, and the sign of the relativistic quantum
number κ = ±1. Although in principle the combined integer
� = j + κ/2 is not a good quantum number, for interpretation
purposes, it can be viewed as an orbital angular momentum
number. In the nonrelativistic limit (Pauli approximation),
corresponding spinor wave functions have a form [24,25]

〈r|n jm+〉 = Rn
j+1/2(r)

⎛
⎜⎝

√
j−m+1
2 j+2 Ym−1/2

j+1/2 (ϑ)√
j+m+1
2 j+2 Ym+1/2

j+1/2 (ϑ)

⎞
⎟⎠, (2a)

〈r|n jm−〉 = Rn
j−1/2(r)

⎛
⎜⎝

√
j+m
2 j Ym−1/2

j−1/2 (ϑ)

−
√

j−m
2 j Ym+1/2

j−1/2 (ϑ)

⎞
⎟⎠, (2b)

where Rn
� (r) encodes radial probability amplitude while

Ym
� (ϑ) is a spherical harmonic function. In the following, we

consider the most typical experimental scenario when the an-
tiproton substitutes one of the innermost electrons, enters the
Rydberg-like orbit with the corresponding principal number
n ≈ 40, and then undergoes spontaneous transitions to lower
n states emitting x-ray photons [1,10]. Since Rydberg orbits
are spatially well localized we assume that � and m are as
large as possible, i.e., they are close to the principal quantum
number n.

Quantum description of the nucleus is not so straightfor-
ward, especially when odd-A nuclei are considered. Therefore
we work within the simplest possible framework capturing
the essence of the quadrupole resonance phenomena in odd-A
systems. This gives us a path to explain in detail all aspects
of the phenomena, to specify conditions for its observability,
and to estimate its basic measurable features. Of course, one
can use more sophisticated nuclear models, especially for
cases when quadrupole moments of the nucleus are essentially
dependent on its quantum state, to obtain more accurate pre-
dictions [26–31]. Nevertheless, the general scheme outlined
below will not change.

Our framework is based on the fundamental assumption
that the density of nuclear matter exhibits minimal depen-
dence on its quantum state and hosts also information about
nuclear charge distribution. Assuming additionally that the
nucleus is axially symmetric one finds that the deforma-
tions of the nucleus are characterized by the intrinsic nuclear
quadrupole moment while its rotational quantum states are de-
scribed within the Bohr-Mottelson collective rotational model
framework [32–35]. Moreover, all the eigenstates of HR are

expressed explicitly in terms of Wigner D matrices

〈�|JKM〉 =
√

2J + 1

16π2

[
ξK DJ

MK (�) + (−1)J+KξK̄ DJ
M−K (�)

]
.

(3)

Here we assumed that J is half-integer since we focus on odd-
A elements, similarly to its projections K, M.

III. QUADRUPOLE INTERACTIONS

The remaining part of the Hamiltonian, HQ, dominated
by the quadrupole interactions, essentially accounts for all
contributions not captured by the point-like approximation of
the nucleus. Within our framework, this Hamiltonian can be
decomposed into terms that act independently on the nucleus
and antiproton sectors, as follows [11]:

HQ = −2π

5
Q0Y0

2(�)r−3 Y0
2(ϑ), (4)

where Q0 is the reduced electric quadrupole transition am-
plitude which can be extracted from the reduced quadrupole
transition probabilities B(E2) measured experimentally [6,36]
or estimated theoretically using different nuclear many-body
methods [31,37]. We measure all energies and lengths in
natural units of the Coulomb problem α2mp̄c2 ≈ 50 keV and
h̄/(αmp̄c) ≈ 28.8 fm, while α ≈ 1/137 is the fine-structure
constant.

It is as long as purely spherically symmetric interaction is
considered (vanishing HQ), product states of orbiting antipro-
ton |n jmκ〉, and nucleus |JKM〉 diagonalize the Hamiltonian
H0 = HR + Hr . Since quadrupole interactions preserve total
angular momentum, it is convenient to work in the basis of
combined states of well-defined total angular momentum F
(| j − J| � F � j + J) and its projection M as

|FM; n jκJK〉
= (−1) j+J+M√

2F + 1

×
j∑

m=− j

(
j J F

m M−m −M
)

|n jmκ〉|JK (M − m)〉.

(5)

In this basis, all the matrix elements of the quadrupole Hamil-
tonian can be calculated using the decomposition rule [4,5,38]

〈FM; n jκJK|HQ|F ′M′; n′ j′κ ′J ′K ′〉

= −2π

5
Q0δMM′δFF ′ (−1) j′+J+F

{
j j′ 2

J ′ J F
}

× 〈JK||Y0
2(�)||J ′K ′〉〈n j|r−3|n′ j′〉〈 jκ||Y0

2(ϑ)|| j′κ ′〉.
(6)

Now it is clear that to obtain the transition amplitudes one
can calculate contributing parts independently in nuclear and
electronic sectors. However, due to the conservation of total
angular momentum F and its projection M, final contribu-
tions must combine to meet this constraint.
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A. Transitions in nuclear sector

Utilizing explicit expressions for the eigenfunctions of the
collective rotational model (3) one finds straightforwardly
matrix elements of the quadrupole moment operator in the
nuclear sector,

〈JKM|Y0
2(�)|J ′K ′M ′〉

= (−1)K−M

√
5(2J + 1)(2J ′ + 1)

4π

×
(

J 2 J ′
−M 0 M ′

)(
J 2 J ′

−K 0 K ′

)
. (7)

This matrix element is evidently consistent with the Wigner-
Eckart theorem and leads us directly to the first reduced matrix
element needed by the formula (6):

〈JK||Y0
2(�)||J ′K ′〉

= (−1)−J+K

√
5(2J + 1)(2J ′ + 1)

4π

(
J 2 J ′

−K 0 K ′

)
. (8)

Having this expression in hand, one deduces that
quadrupole interactions can trigger only a well-specified tran-
sition of the nucleus. For example, if the even-A element
is considered and the nucleus remains in its ground state

|0+), then the only nonvanishing transition amplitude (equal
to

√
5/(4π ) ≈ 0.63) couples to the first excited state of the

same band |2+). In this particular case the angular momentum
of the nucleus increases by two quanta (�J = 2) and, due to
the conservation of F , it must be compensated by a decrease
of the angular momentum of an orbiting particle by the same
amount. This is indeed possible since the quadrupole electric
field inherently couples electronic states of an orbiting particle
with �� = 2 (see the next subsection for details).

The situation is slightly different when odd-A elements
are considered. Then the nucleus, being a fermionic particle,
has nonvanishing half-integer spin with single-particle exci-
tations which typically result in the increase of spin by one
quantum. Fortunately, it is quite easy to verify that the matrix
element (7) is also nonzero in these cases. As an example, the
ruthenium-101 nucleus with ground state K = J = 5/2+ and
excited state J ′ = 7/2+ is equal to

√
25/(7π ) ≈ 1.07, i.e., is

of the same order as the matrix element for even-A nuclei.

B. Transitions of orbiting particle

Analysis of possible transitions in the orbiting particle sec-
tor is similar. By taking the central field solutions of Dirac
equation (2) for an orbiting antiproton, one finds angular
matrix elements of the electronic part of the quadrupole in-
teractions:

〈 jm + |Y20(ϑ)| j′m′+〉 = (−1)m−1/2

√
5

4π
δmm′

(
j+1/2 2 j′+1/2

0 0 0

)

×
[√

( j−m+1)( j′−m+1)

(
j+1/2 2 j′+1/2

−m+1/2 0 m −1/2

)
−

√
( j+m+1)( j′+m+1)

(
j+1/2 2 j′+1/2

−m−1/2 0 m+1/2

)]
, (9a)

〈 jm − |Y20(ϑ)| j′m′−〉 = (−1)m−1/2

√
5

4π
δmm′

(
j−1/2 2 j′−1/2

0 0 0

)

×
[√

( j+m)( j′+m)

(
j−1/2 2 j′−1/2

−m+1/2 0 m −1/2

)
−

√
( j−m)( j′−m)

(
j−1/2 2 j′−1/2

−m−1/2 0 m+1/2

)]
, (9b)

〈 jm + |Y20(ϑ)| j′m′−〉 = (−1)m+1/2

√
5

4π
δmm′

(
j+1/2 2 j′−1/2

0 0 0

)

×
[√

( j−m+1)( j′+m)

(
j+1/2 2 j′−1/2

−m+1/2 0 m −1/2

)
+

√
( j+m+1)( j′−m)

(
j+1/2 2 j′−1/2

−m−1/2 0 m+1/2

)]
. (9c)

These matrix elements can be simplified further by exploiting half-integer recursion relations for 3 j symbols [39] and their
symmetries [40,41]. Then they become manifestly consistent with the Wigner-Eckart theorem

〈 jmκ|Y20(ϑ)| j′m′κ ′〉 = (−1) j−m

(
j 2 j′

−m 0 m′

)
〈 jκ||Y20(ϑ)|| j′κ ′〉, (10)

where the reduced matrix elements read

〈 j+||Y20(ϑ)|| j′+〉 = (−1)− j−1/2

√
5(4+ j+ j′)( j+ j′−1)

4π

(
j+1/2 2 j′+1/2

0 0 0

)
, (11a)

〈 j−||Y20(ϑ)|| j′−〉 = (−1)− j+1/2

√
5(3+ j+ j′)( j+ j′−2)

4π

(
j−1/2 2 j′−1/2

0 0 0

)
, (11b)

〈 j+||Y20(ϑ)|| j′−〉 = (−1)− j+1/2

√
5(3+ j− j′)( j′− j+2)

4π

(
j+1/2 2 j′−1/2

0 0 0

)
. (11c)
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FIG. 1. Schematic chart of possible decays from electronic states
of an orbiting antiproton triggered by quadrupole interactions, having
orbital angular momentum �. Note that in addition to the typical
transitions with � j = 0 and � j = −2 caused by amplitudes (11a)
and (11b), transitions that change the total particle spin by � j = −1
are also possible due to the simultaneous change of the orbital angu-
lar momentum with �� = −2 and the flip of particle spin. They are
controlled by amplitudes (11c).

Essentially, there are three different types of nonvanishing
matrix elements (schematically presented in Fig. 1). The first
two involve transitions between states having the same sign of
relativistic quantum number κ . In these cases, the antiproton
experiences a small shift of the energy (matrix element with
� j = 0) or undergoes transition with � j = −2 keeping the
spin projection unchanged. During this transition, a whole
change of the angular momentum comes from the orbital
change �� = −2. As mentioned in the previous subsection,
due to the conservation of F , this transition must be accom-
panied by a corresponding change of angular momentum of
the nucleus, �J = +2. For exactly this reason, this transition
is typically considered for E2 resonance of even-A nuclei
between |0+) and |2+) internal states [6,11,17,18]. But of
course, it may be also considered in odd-A systems.

The third possibility exists between states of opposite κ .
Then, although the antiproton again undergoes transition with
a change of the orbital angular momentum �� = −2, the total
angular momentum change is � j = −1 due to simultaneous
flipping of antiproton spin. Note that this transition is also
possible without changing orbital angular momentum, �� =
0, and leads to the mixing of different spin states (see [19]
for details). Correspondingly, due to the conservation of total
angular momentum, these transitions must be accompanied by
excitations of the nucleus with spin change by one quantum.
Thus, the transitions with �J = 1 become typical for odd-
A elements. It is worth noticing here that these particular
transitions are possible since there is a spin-orbit coupling
between the electronic states of the orbiting particle. Thus,
its amplitude is evidently smaller when compared to the spin-
preserving transitions. However, since in odd-A antiprotonic
atoms the spin-preserving channels are locked, this transition
is the leading term forced by quadrupole interaction.

From the above discussion it follows that independently of
the parity of the nucleus only the transitions with �� = 2 are

FIG. 2. General scheme for matching the energetic condition for
quadrupole resonance using the example of an antiprotonic 101Ru.
The |7/2+) excited state 939 keV above the |5/2+) ground state
matches the energy difference between electronic states of an or-
biting antiproton, |n = 7, � = 6〉 and |n = 5, � = 4〉 (thin dashed
arrows). Due to required total angular momentum conservation, the
resonance is fully controlled by spin-flipping transitions (9c). In
this case the states |7, 11/2, +; 5/2, K〉 and |5, 9/2, −; 7/2, K〉 are
resonantly coupled by quadrupole interactions.

allowed. Therefore, if we consider a scenario of an exotic par-
ticle orbiting in a high Rydberg orbit, i.e., � ∼ n − 1, the most
probable transitions is |n, � = n − 1〉 → |n − 2, �′ = n − 3〉.
This observation is directly related to the fact that the prefactor
originating in the radial matrix element 〈n j|r−3|n′ j′〉 quickly
decays with increasing difference �n = n − n′. Here, one
should also note that this factor calculated for the most typical
scenario,〈n j|r−3|n − 2, j − 1〉, quickly decays with increas-
ing n (much faster than dipolar factor 〈n j|r−1|n − 1, j − 1〉).
Therefore, overall quadrupole transition amplitudes with large
initial n are strongly suppressed, thus we only consider n � 8
orbitals.

IV. THE RESONANCE

The matrix elements of the quadrupole Hamiltonian are
rather small when compared with typical energy spacings
between coupled electronic states, which are of the order of
�EP̄ = En j − En−2, j−2, where j = � ± 1/2 = n − 1 ± 1/2.
Thus, the correction is mainly reflected in a relatively small
mixing of states in the same (F ,M) subspace. However,
when the energy difference between relevant electronic states
of orbiting antiproton is close to the excitation energy of the
nucleus, �EN , one can suspect resonant behavior triggered by
this coupling. For even-A elements, this behavior is quite well
studied and explored experimentally [5,11,17,18]. In contrast,
for odd-A elements, due to nontrivial interplay between orbital
and spin degrees of motion, observation of the resonance has
not yet been explored. An exemplary case of mentioned 101Ru
is displayed in Fig. 2. It turns out that the energy differ-
ence between |n = 7, � = 6〉 and |n = 5, � = 4〉 states is very
close to the separation energy between nucleus ground state
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TABLE I. Examples of stable odd-A antiprotonic atoms where the spin-flip-induced quadrupole resonance is expected. The nuclear
transition energies were acquired from [42] and the antiproton transition energies were calculated from the Hamiltonian Hr . In parentheses,
we indicate tentatively assigned nuclear spins of the excited states. The calculated coupling matrix element 〈fin|HQ|ini〉/Q0 is presented for
each scenario. Follow text for more details.

Nuclear spin
�EN �EP̄

n 〈fin|HQ|ini〉/Q0

Isotope Z N Ground Excited (keV) (keV) Initial Final (eV b−1)

Nucleus Antiproton

101Ru 44 57 5/2 (7/2) 938.65 939.40 7 5 159
111Cd 48 63 1/2 3/2 1115.57 1119.20 7 5 92
123Sb 51 72 7/2 (9/2) 1260.80 1264.81 7 5 258
165Ho 67 98 7/2 (9/2) 2178.00 2189.96 7 5 584
169Tm 69 100 1/2 (3/2) 2312.2 2323.38 7 5 275
183W 74 109 1/2 (3/2) 2667.8 2667.47 7 5 339
203Tl 81 122 1/2 (3/2) 1988.88 1987.73 8 6 159

|5/2+) and the |7/2+) excited state at 939 keV. Moreover,
due to the required total angular momentum conservation,
this coupling is controlled solely by spin-flipping transitions
(11c) (the two others are forbidden by selection rules) and
the initial states |ini〉 = |7, 11/2,+; 5/2, K〉 are resonantly
coupled by quadrupole interactions with final states |fin〉 =
|5, 9/2,−; 7/2, K〉 for any quantum number K that obeys
angular momentum projection conservation. When calculated
for K = 5/2 in the maximal F = 8 subspace, the coupling
matrix element 〈fin|HQ|ini〉/Q0, is equal to 159 eV b−1.
Thus (provided that unknown Q0 is of the order of 1 b)
it is of the same order as the energy difference �EN −
�EP̄ and we expect the resonance effect to be of particular
relevance here.

Let us mention here, that in fact, the scenario discussed
above for antiprotonic ruthenium is not unique and in princi-
ple may be observed for different stable and unstable isotopes
as long as the conditions of the resonance phenomena are
satisfied. In Table I we list candidates of odd-A stable elements
for which the energy matching for quadrupole transition is
comparable with the corresponding quadrupole coupling ma-
trix element. More precisely, we assume that the effects of
quadrupole resonance can be experimentally relevant if the
coupling matrix element is not less than 5% of the energy
difference between coupled states. Obviously, due to the quick
decaying of the quadrupole matrix element 〈n j|r−3|n − 2, j′〉
with increasing n, the most interesting are these elements for
which the resonant n is small, since then the energy matching
may be less accurate. On the other hand, when n is sufficiently
small, the corresponding antiprotonic orbit is in close prox-
imity to the surface of the nucleus. In this case, the resonant
condition is affected by the influence of the strong interaction
which is neglected in these studies.

This spin-flip-induced resonance effect could be revealed
by performing x-ray spectroscopy of the antiprotonic atom
cascade, by impinging a low energy antiproton beam on a
target material. Similar to the observation of the standard E2
resonance effect, we anticipate that in the exemplary case of
101Ru, the n = 7 to n = 6 antiproton x-ray transition will be

attenuated due to spin-flip resonance mixing with the deeply
bound n = 5 state, as compared with its neighboring even-A
isotopes 100Ru and 102Ru. Thus, the spin-flip-induced reso-
nance effect could allow the study of the strong interaction
shifts and width of antiproton orbits in close proximity to
the nucleus, which may give further insight into the influence
of the unpaired nucleon on the nuclear periphery. The spin-
flip resonance effect should thus be taken into account when
studying the strong interaction width and shifts from mea-
sured x-ray spectra of antiprotonic atom cascades, especially
for odd-A nuclei. Furthermore, if the spin and moments of the
nuclear ground state are well understood then the observation
of this resonance effect may prove itself to be a comple-
mentary tool for decoupling the properties of the short-lived
excited nuclear state. For example, the spin of the upper-level
nuclear states of the proposed transitions have only been ten-
tatively assigned; see Table I. Hence, observing this resonance
effect could possibly yield insights into the nuclear spin and
quadrupole moment of the short-lived excited states, given
that an incorrectly assigned nuclear spin of the upper state
would preclude the occurrence of this phenomenon. However,
in order to decouple the strong interaction effects more de-
tailed calculations are required, which is beyond the scope of
this work.

V. FINAL REMARKS

This work extends the study of the nuclear resonance
effect of exotic atoms by focusing on odd-A nuclei with
half-integer ground-state spin. We show that �J = 1 nuclear
excitations can be directly triggered by �� = 2 transitions
of the decaying antiproton undergoing spin-flip. We present
cases of odd-A antiprotonic atoms where the spin-flip-induced
quadrupole resonance effect is expected to occur. The ob-
servation of this effect could reveal the strong interaction
influence on deeply bound antiproton orbitals on nuclei with
unpaired nucleons and potentially serve as a tool for bench-
marking the nuclear structure of short-lived excited nuclear
states. For completeness, let us also mention that the same
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spin-flip-induced quadrupole resonance could in principle be
observed for highly charged ions or other exotic atoms con-
taining fermionic particles.

The rapid development of new techniques at the
ELENA/AD antiproton decelerator facility at CERN, com-
bined with a growing interest in antimatter-matter bound
systems, sets the stage for numerous upcoming measurements
in the near future [43]. Recent technical developments at
the AEgIS experiment within this facility will enable the
controlled formation and study of antiprotonic atoms, includ-
ing the synthesis of highly charged nuclear fragments for
precision spectroscopy [44–47]. Furthermore, the upcoming
availability of antiprotons in portable traps will provide the
nuclear physics community with access to antiprotons [48],

facilitating new avenues for nuclear structure studies, such as
the one proposed in this work.
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