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Signatures of quantum chaos in low-energy mixtures of few fermions
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The low-energy dynamics of mesoscopic systems strongly depends on the presence of internal equilibration.
For this reason, a better interpretation of ultracold atom experiments requires a more accurate understanding of
how quantum chaos manifests itself in these systems. In this paper, we consider a simple but experimentally
relevant one-dimensional system of a few ultracold fermions moving in a double-well potential. We analyze
its many-body spectral properties, which are commonly used to trace quantum chaos. We observe some sig-
natures of quantum chaos already in the system with three particles. Generally, these signatures become more
pronounced when fermions are evenly added to both components. In contrast, they become suppressed when the
particle imbalance is increased.
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I. INTRODUCTION

Spectral and dynamical peculiarities of isolated quantum
systems have been of interest for a long time. Early studies
focused mainly on single-particle systems having few degrees
of freedom. Prominent examples are billiards confined by
various types of boundaries [1–4] or a kicked rotor with a
varied strength of periodical kicks [5,6]. These and following
studies demonstrated that the so-called quantum chaotic mod-
els, which display the chaotic dynamics in the semiclassical
limit, have universal properties of energy eigenvalues [7–11]
and eigenvectors [12–16]. The universal properties are con-
sistent with the properties of random matrices drawn from
the Gaussian orthogonal ensemble (GOE), provided that the
time-reversal symmetry is present [17]. Among others, the
energy eigenvalues are correlated and avoid crossings [18,19],
the distribution of spacings is given by the Wigner-Dyson dis-
tribution [20], while the spectral form factor has a linear ramp
[21–23]. Usually, the aforementioned attributes are observed
far from the tails of the spectrum. In contrast, the so-called
quantum integrable systems, which have an extensive number
of local integrals of motion that confine the dynamics to
periodic orbits in the semiclassical limit, share some prop-
erties with the Poisson ensemble or are simply nonuniversal
[24–26]. When the attention shifted from single-particle to
many-body systems, the definition of quantum chaos had to
be made independent of the dynamical behavior in the semi-
classical limit, which is either very difficult or impossible to
determine. It has been replaced by the universal properties of
energy eigenvalues and eigenvectors [27–29].

Quantum chaos is not merely a theoretical concept. It is a
necessary ingredient for particular phenomena to occur (like
the thermalization of isolated quantum systems driven out of
equilibrium [30–36]) or not (like the many-body localization
in lattice systems with a correlated [37,38] or random [39–43]
disorder). This line of research has been further intensified by
recent advances in experiments with ultracold atoms. These

kinds of setups are almost perfectly isolated from the en-
vironment and have highly controllable internal parameters
[44–50]. The external confinements, atomic numbers, and
interatomic interactions can be tuned with great precision
[51–53]. The ultracold atom experiments allow adopting the
bottom-up approach, in which one witnesses how many-body
effects emerge in the system as one gradually increases the
particle number. Many papers have addressed this issue from
the theoretical point of view, also in the context of quan-
tum chaos [54–57]. Nevertheless, there is room for further
research, since the latter studies mainly focus on the high-
energy limit, which is not always justified for low-temperature
experiments.

Recently, ultracold setups with two-component mixtures
of few fermions loaded to a one-dimensional double-well
potential were realized [52,53]. Furthermore, full control of
their quantum state was achieved, e.g., the system could be
initialized with an arbitrary configuration of particles in two
wells, while tunneling rates and interactions could be in-
dependently controlled [58]. Subsequently, a corresponding
model was studied numerically [59,60]. Typically, the system
is considered as prepared in a state with fermions from dif-
ferent components occupying different wells. Therefore, the
initial interaction energy is almost negligible. However, when
particles tunnel through the barrier, interactions start to play a
significant role. For example, the time evolution of the number
of particles in wells depends on their strength. This effect
was experimentally studied in the fluorescence measurements
[58]. It turned out that in the minimal setup with two opposite-
spin fermions, the flow of particles is rather regular, with
the transmission rate dependent on the interaction strength.
However, the time evolution became highly unpredictable in
systems with a larger number of particles. By unpredictability
we mean that a small change of the interaction strength led to
an entirely different dynamics of the system. It was suggested,
but never demonstrated, that this may be explained by the
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quantum chaotic properties of the many-body spectrum. In our
paper we aim to verify this hypothesis.

This paper is divided as follows. We first introduce the
studied system in Sec. II, and then the exact diagonalization
method, which we implement to establish the low-energy tail
of the many-body spectrum in Sec. III. Next, in Sec. IV, we
introduce the well-known measures of quantum chaos, like
the ratio of level spacings and its distribution. The balanced
mixtures with different number of particles are considered in
Sec. V. In the minimal setup with two fermions, we witness
no signatures of quantum chaos. In the case of four fermions,
depending on the interaction strength, we observe the coex-
istence of pseudointegrable properties with quantum-chaotic
properties. Generally, the low-energy tail of the many-body
spectrum gradually becomes universal as the number of parti-
cles increases. Next, in Sec. VI, we focus on the imbalanced
mixtures having a single particle in one component, and a
varied number of particles in the other component. We show
that quantum chaos emerges more readily when the particle
numbers are balanced. Finally, in Sec. VII, we study the effect
of the shape of a confining potential on the spectral statistics,
and we conclude in Sec. VIII.

II. SYSTEM

We consider a one-dimensional two-component mixture of
few fermions confined in a double-well potential and interact-
ing via contact interactions. The Hamiltonian of this system
reads

Ĥ =
∫

dx

[∑
σ

ψ̂†
σ (x)H0ψ̂σ (x) + g n̂↑(x)n̂↓(x)

]
, (1)

where the fermionic field operator ψ̂σ (x) annihilates a σ -
component particle at x and n̂σ (x) = ψ̂†

σ (x)ψ̂σ (x) is the
corresponding density operator. The single-particle Hamilto-
nian is defined as

H0 = − h̄2

2m

d2

dx2
+ m�2

2
x2 + V0√

πx0
e−x2/x2

0 . (2)

Note that the mass m, the harmonic oscillator frequency �,
the barrier height V0, and the width x0 are the same for both σ

components. The Hamiltonian (1) commutes with the number
operators N̂σ = ∫

dx n̂σ (x). Therefore, we examine its spectral
properties in the subspaces with well-defined particle num-
bers N↑ and N↓. Let us emphasize that the quantum number
σ ∈ {↑,↓} is used to distinguish types of atoms trapped in
a double-well potential or it is related to a hyperfine degree
of freedom controllable by a magnetic field in ultracold atom
setups [61]. For further convenience, we express all energies,
momenta, and lengths in units of h̄�,

√
h̄m�, and

√
h̄/m�,

respectively. To make the discussion as clear as possible,
we first consider a particular potential barrier (V0 = 4 and
x0 = 0.2 in these units), and then briefly discuss the role of
its shape on the spectral properties.

The spectrum of the single-particle Hamiltonian (2) resem-
bles that of a simple harmonic oscillator in the high-energy
limit. Therefore, the many-body levels become regularlike
(i.e., quasiequidistant) for both small interactions and large
energies. In this paper, we consider a quite high barrier height

V0 = 4, and no more than N = 500 lowest many-body levels.
Therefore, we see its clear footprint in the considered part of
the spectrum, even in the noninteracting case (first column in
Fig. 1).

III. METHOD

We represent the single-particle Hamiltonian (2) as a
tridiagonal matrix on a dense spatial grid, and numeri-
cally determine its eigenenergies εi and eigenfunctions φi(x).
Next, we decompose the field operators ψ̂σ (x) = ∑

i âσ iφi(x),
rewrite the many-body Hamiltonian Ĥ = ∑

σ

∑
i εiâ

†
σ iâσ i +

g
∑

i jkl Ui jkl â
†
↑iâ

†
↓ j â↓kâ↑l , and perform its exact diagonaliza-

tion in a subspace of the Hilbert space spanned by the
appropriately selected Fock states. We abandon the conven-
tional orbital cutoff method, in which the many-body basis is
a set of Fock states with orbitals φi(x) restricted to i � imax.
Instead, we employ the energy cutoff method, in which the
many-body basis comprises all Fock states with noninteract-
ing energies lower than Emax. The latter method is numerically
more efficient, and has been employed in several studies
[62–64]. We select Emax ∈ [40, 45], so that the Hilbert sub-
space is spanned by 778 Fock states for the smallest system
N↑ = N↓ = 1, and 61 848 for the largest system N↓ = N↑ = 3.
The details of the energy cutoff method and the discussion
concerning its accuracy can be found in Appendix A.

It is known that the existence of internal symmetries may
lead to additional degeneracies in the many-body spectrum
and distort its properties. In order to witness signatures of
quantum chaos, it is thus necessary to limit considerations
to the symmetry-invariant subspaces of the Hilbert space.
The considered mixture of fermions has a few global sym-
metries. As already mentioned, the Hamiltonian commutes
with the number operators N̂σ = ∫

dx n̂σ (x). We examine its
spectral properties in the subspaces with well-defined particle
numbers N↑ and N↓. The Hamiltonian (1) is also invariant
under the left-right mirror Z2 symmetry. Hence, we divide its
Fock basis into two sectors with different parities p ∈ {+,−}
(even and odd sector, respectively). Finally, the Hamiltonian
is also SU (2) symmetric, since it commutes with Ŝ2 = ∑

i Ŝ2
i

and Ŝz operators, where Ŝi = h̄/2
∫

dx
∑

αα′ ψ̂†
α (x)σ i

αα′ψ̂α′ (x),
α, α′ ∈ {↑,↓}, i ∈ {x, y, z}, and σ i are three Pauli matrices.
It turns out, however, that lifting this symmetry is not neces-
sary to witness signatures of quantum chaos, as explained in
Appendix B. This is appealing, since restricting the evolution
of a quantum state to a single spin sector, i.e., with a fixed
magnitude of the total spin S, in the experimental setup is
difficult.

The Hamiltonian (1) is a sparse and block-diagonal (due
to the parity symmetry) matrix in the Fock basis obtained
with the energy cutoff method. Finally, we perform its ex-
act diagonalization and determine the low-energy part of the
many-body spectrum E (p)

i , which is divided into two parity-
invariant sectors p ∈ {+,−}.

IV. SPECTRAL STATISTICS

In our paper, we focus on the spectral properties of the
Hamiltonian (1) depending on the number of particles N↑
and N↓ as well as the interaction strength g. We consider
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FIG. 1. Spectral properties of balanced mixtures with N↑ = N↓ = 1, 2, 3 particles. The low-energy part of the many-body spectrum is
displayed in the first column, for clarity from one of the parity-invariant subspaces. The rescaled ratio 〈r̃〉n is presented in the second column.
We consider N = 50, 150, 250, and 500 (300 for N↑ = N↓ = 1), and numerical results for a larger N are marked by a brighter green color.
The histogram P(r̃) for a maximum of 〈r̃〉n and N = 150 is presented in the third column [together with the distribution from Eq. (6a)].
Simultaneously, the histogram P(r̃) for a minimum of 〈r̃〉n and N = 150 is presented in the fourth column [together with the distribution from
Eq. (6b)]. The interaction strength g corresponding to a maximum (minimum) of 〈r̃〉n is marked by a purple solid (red dashed) line in the first
two columns.

three spectral measures of quantum chaos. They are based on
the analysis of the spacings between the nearest energy lev-
els, δ

(p)
i = E (p)

i − E (p)
i−1, which are independently calculated in

parity-invariant sectors p = ±. The first two measures exploit
their ratios:

r̃ (p)
i = min

(
δ

(p)
i , δ

(p)
i+1

)
/max

(
δ

(p)
i , δ

(p)
i+1

)
. (3)

A significant advantage of the ratios over the spacings is that
0 � r̃ (p)

i � 1 for all i, so it is not necessary to perform the
so-called spectral unfolding to eliminate the influence of the
secular part of the density of states [43,65].

In the first attempt to unveil universal correlations between
energy levels, we determine the following average:

〈r̃〉 =
N∑
i=1

(
r̃ (+)

i + r̃ (−)
i

)
/(2N ). (4)

In the above averaging, the sum runs over N ∈ {50, . . . , 500}
lowest-energy states, except for the ground and first excited
states that are always well isolated from the rest of the many-
body spectrum. It has been numerically verified that for the
GOE, i.e., an ensemble of real matrices with Gaussian dis-
tributed entries, the average 〈r̃〉GOE ≈ 0.5307 [65], whereas
for the Poisson ensemble, i.e., uncorrelated energy levels,
the average 〈r̃〉P ≈ 0.386 29 [65]. Thus, it is convenient to
introduce the rescaled measure

〈r̃〉n = 〈r̃〉 − 〈r̃〉P

〈r̃〉GOE − 〈r̃〉P
(5)

which interpolates between two extreme cases—the Poisson
distribution typically established in integrable Hamiltonians
(〈r̃〉n = 0) and the Wigner-Dyson distribution which is a hall-
mark of quantum-chaotic Hamiltonians (〈r̃〉n = 1). We use
〈r̃〉n as the first measure of chaoticity in the considered mix-
ture of fermions.

Instead of considering the average ratio 〈r̃〉, one can deter-
mine the whole distribution of ratios P(r̃) and compare it to
the analytical expressions

PGOE(r̃) = 27

4

r̃ + r̃2

(1 + r̃ + r̃2)5/2 , (6a)

PP(r̃) = 2

(1 + r̃)2 . (6b)

The above expressions have been obtained for the GOE
of 3 × 3 matrices (the validity of which has been confirmed
for asymptotically large matrices) and for uncorrelated energy
levels, respectively [65]. When calculating this measure of
chaoticity, we establish the histograms P(r̃) from ratios gath-
ered from both parity-invariant sectors r̃ (±)

i .
In the third attempt, we determine the histogram of spac-

ings P (δ). This requires separating the oscillating part from
the secular part of the density of states, so that the mean
density of states is unity. The latter is known as spectral
unfolding [19,25,66,67]. We perform it separately in each
of the parity-invariant sectors. We begin with determining a
cumulative spectral function Np(E ) = ∑N

i=1 ϑ(E − E (p)
i ) that

counts the number of levels with energies lower than or
equal to E [ϑ (.) is the Heaviside step function]. Then, we
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separate the global trend Np(E ) by either fitting a high-order
polynomial with 15th degree [56,66,68] or considering lin-
ear fits on small intervals around E (p)

i and then the moving
average throughout the spectrum [69]. Both methods provide
consistent results for all considered systems, except for the
minimal balanced scenario N↑ = N↓ = 1 that is to some ex-
tent sensitive to the unfolding method. Finally, we perform the

mapping E (p)
i → Np(E (p)

i ) and calculate the histogram P (δ)
using spacings gathered from both parity-invariant sectors
δ

(±)
i . Next, we compare it with the so-called Brody distri-

bution [70]

Pγ (δ) = (γ + 1)bδγ exp(−bδγ+1) (7)

with γ standing for the Brody parameter and b = �γ+1[(γ +
1)/(γ + 2)] [�(.) is Euler’s gamma function]. Note that the
Poisson distribution and the Wigner-Dyson distribution are
recovered from the Brody distribution when γ = 0 and 1,
respectively. Therefore, the Brody parameter γ is a similar
measure of chaoticity as 〈r̃〉n. We establish the Brody pa-
rameter γ from the numerically obtained histograms by the
least-squares method, in which γ is gradually changed from
zero to one with a step 
γ = 0.001, and the sum of squares of
residuals is calculated. The best fit corresponds to the minimal
sum.

Let us highlight that although the spectral statistics is uni-
versal in the extreme cases (γ = 0 and 1) the intermediate
spectral statistics may depend on the details of the Hamilto-
nian [71]. Thus, the Brody distribution is not the only possible
choice for the intermediate situations (see also the Serbyn-
Moore model with power-law interactions between levels,
the β-Gaussian ensemble with fractional β, the Rosenzweig-
Porten ensemble with a standard deviation as a free parameter,
etc. [71–75]). Unfortunately, low-energy mixtures of few
fermions develop a noise on the top of the histograms of
level spacings (and other measures of quantum chaos), which
makes it difficult or even impossible to fully determine the
character of intermediate statistics. We have verified, however,
that the Brody distribution satisfactorily models the histogram
of levels spacings in our system.

Let us mention that, in order to reduce the noise, we av-
erage 〈r̃〉n, P(r̃), and P (δ) over the eight nearest interaction
strengths separated by 
g = 0.025.

V. BALANCED MIXTURES

We first consider the balanced mixtures N↑ = N↓ = N/2
with N = 2, 4, and 6 particles. Numerical results are collected
in Figs. 1 and 2. In the minimal example of two fermions
N↑ = N↓ = 1 (first row in Fig. 1), the ratio 〈r̃〉n differs from
zero in an extremely narrow range of interaction strengths
around g ≈ −2 when N = 50. However, its value increases
to 〈r̃〉n ≈ 0.5 for |g| � ±1.4 when the number of levels is
increased to N � 150. Simultaneously, the histogram of ra-
tios P(r̃) for the minimal 〈r̃〉n = 0 follows the distribution
for uncorrelated levels PP(r̃). It is almost unaffected by the
increasing N , except for the trivial smoothing of the noise (not
shown). On the other hand, the histogram of ratios P(r̃) for
the maximal 〈r̃〉n ≈ 0.6 does not resemble the distribution for
random matrices PGOE(r̃). It has a pronounced maximum near

0 2 40

0.5

1

0 2 40

0.5

1

0 2 40

0.5

1

0 2 40

0.5

1

0 2 40

0.5

1

0 2 40

0.5

1

0 2 4
0.01

0.1

1

0 2 4
0.01

0.1

1

FIG. 2. The histogram of spacings for N = 150 and the same
interaction strengths as in Fig. 1. The Brody distribution is marked
with a solid line, while the Brody parameter γ is indicated in the
legend. The inset shows the histogram and distribution from the main
panel in a logarithmic scale on the vertical axis.

〈r̃〉n = 0, and more of a picked-fence structure. We checked
that the latter features are robust against the increase of N .
These results agree with the complementary approach to un-
veil correlations between energy levels, which is based on the
histogram of spacings P (δ) (first row of Fig. 2). It is clear
that there are no correlation between energy levels. Recall that
P (δ) is somewhat sensitive to the unfolding method. Never-
theless, we have observed no level repulsion in all unfolding
methods, so the mentioned sensitivity does not affect the over-
all conclusion about the minimal example of two fermions,
i.e., that it lacks typical features of quantum chaotic systems
for all interaction strengths g. Throughout the paper, we do
not discuss the weak interactions limit, i.e., the close vicinity
of g = 0, in which massive degeneracies are observed, and
the histograms of ratios P(r̃) are not satisfactorily modeled by
either PGOE(r̃) or PP(r̃).

When a particle is added to each component and N↑ =
N↓ = 2, the ratio 〈r̃〉n becomes nonzero in a wide range
of interaction strengths g, even for N = 50 (second row in
Fig. 1). Note the behavior of alternating large and small val-
ues of 〈r̃〉n. The latter is somehow surprising, since it means
that for some integrability-breaking perturbations g a further
increase of g results in a suppression of quantum-chaotic
features. However, this behavior is lost when the number
of levels is increased to N � 150. The histograms of ratios
P(r̃) for the local minima of 〈r̃〉n in the region of moderate
interactions g ∈ (−3,−1) are characterized by a Poisson-like
tail for all N . This signals that correlations between energy
levels are highly local and weak. Therefore, the mixture is
pseudointegrable rather than quantum chaotic. In contrast,
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the histograms of ratios P(r̃) for the local maxima of 〈r̃〉n

follow the Wigner-Dyson distribution PGOE(r̃) for all N . The
analysis of correlation between energy levels based on the
histograms of spacings P (δ) (second row in Fig. 2) is in a full
agreement with these predictions. For example, the relative
difference between two measures of chaoticity, i.e., the Brody
parameter γ and the ratio 〈r̃〉n, remains in the range 0.02–0.12.
Therefore, we claim the coexistence of pseudointegrable and
quantum-chaotic features in the mixture of four fermions for
different interaction strengths g.

Finally, we address the largest studied example of six
fermions N↑ = N↓ = 3 (third row in Fig. 1). The ratio 〈r̃〉n

is characterized by an almost monotonic growth followed by
a saturation 〈r̃〉n ≈ 1 for g � 2.7. The histograms of ratios
P(r̃) for the small number of local minima of 〈r̃〉n in the
region of moderate interactions g ∈ (−3,−1) vanish for r̃ →
0. Furthermore, 〈r̃〉n increases and P(r̃) approaches PGOE(r̃)
with N (not shown). This indicates that correlations between
energy levels become stronger for higher energies. Simul-
taneously, the histograms of ratios P(r̃) for the remaining
interaction strengths g follow the Wigner-Dyson distribution
PGOE(r̃). It seems the mixture of six fermions N↑ = N↓ = 3
is quantum chaotic in the entire range of moderate interac-
tions g ∈ (−3,−1), provided that its energy is not too low.
The histograms of spacings P(δ) can be used to draw the
same conclusions, although the relative difference between
the Brody parameter γ and the ratio 〈r̃〉n can reach larger
values of 0.02–0.22 (third row in Fig. 2).

The statistics of level spacings is a conventional measure
of quantum chaos. However, it only recognizes correlations
between the nearest energy levels. To confirm our findings
with a complementary method, we calculate the averaged
spectral form factor [21–23]:

K (t ) =
〈∑

i, j

exp (−i(Ei − Ej )t )

〉
. (8)

The spectral form factor is not self-averaging, i.e., the univer-
sal properties of quantum-chaotic systems are revealed after
a moving average in a logarithmic time [log t − δ, log t + δ]
is performed [76,77]. The latter is marked as 〈...〉 in Eq. (8),
and it is preceded by the averaging over two symmetry sectors
and eight interaction strengths. We fix δ = 0.025, and we
calculate K (t ) out of N = 150 energy levels. Note that we
omit the spectral unfolding of the many-body spectrum, since
the secular part of the density has a nontrivial effect only on
the early-time part of K (t ) (see Refs. [78,79]).

It has been established that K (t ) of quantum-chaotic sys-
tems develops a correlation hole (a linear ramp) in a moderate
time, which is not observed in the case of integrable sys-
tems [39,54,78–80]. Generally, the time at which the averaged
spectral form factor enters a linear ramp, i.e., the Thouless
time, sets the time scale at which the dynamics of a system be-
comes universal. It is related to the inverse of the energy scale
at which the correlations between energy levels predicted by
the random matrix theory are no longer present. Interestingly,
K (t ) of quantum-chaotic quadratic systems (with the Wigner-
Dyson statistics in the single-particle sector but the Poisson
statistics in the many-body one [81,82]) develops an expo-
nential ramp [83,84]. The latter originates from correlations

FIG. 3. The spectral form factor for balanced mixtures with
N↑ = N↓ = 1, 2, 3 and N = 150. The same interaction strengths as
in Fig. 1 are considered. The black line corresponds to the moving
average of the spectral form factor in the logarithmic time window
[log t − δ, log t + δ] with δ = 0.025, while the gray points mark the
unaveraged data. The blue line marks the well-known moderate time
results for the Gaussian orthogonal ensemble KGOE ∝ αt − αt

2 ln(1 +
αt ) [22], which is rescaled so that the mean level spacing is consistent
with our spectrum [79]. The red dashed line is the long-time result,
which is the same for quantum chaotic and integrable systems.

between distant many-body levels, the separation of which is
comparable to the mean level spacing between single-particle
levels.

Spectral form factors for the same setups as in Fig. 1
are presented in Fig. 3. They confirm our previous findings.
In the minimal scenario of two fermions N↑ = N↓ = 1, the
correlation hole is absent in the entire range of interactions
g ∈ [−4, 2] (first column of Fig. 3). When the particle num-
bers are increased to N↑ = N↓ = 2, the pseudointegrable
regions of g coexist with the quantum-chaotic regions of g
(second row of Fig. 3). Nevertheless, the spectral form factor
enters the linear ramp at a relatively late time in the latter
region, signaling that the energy scale of correlations or the
fraction of correlated energy levels is relatively small. If the
considered part of the many-body spectrum has a sharp spec-
tral edge, the time of occurrence of the linear ramp can differ
from the Thouless time [78]. The latter is unavoidably present
in our low-energy mixtures of few fermions. Since we cannot
employ the Gaussian filtering introduced in Ref. [78], we
discuss the qualitative rather than quantitative behavior of the
linear ramp. Finally, in the largest system with N↑ = N↓ = 3,
the correlation hole is established in the entire range of inter-
actions g ∈ [−4, 2] (third row of Fig. 3).
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FIG. 4. Spectral properties of imbalanced mixtures with N↓ = 1
and N↑ = 2, 3, 4, 5 particles. The rescaled ratio 〈r̃〉n is presented
in the first column. We consider N = 50, 150, 250, and 500, and
numerical results for a larger N are marked by a brighter green
color. The histogram P(r̃) for the maximal 〈r̃〉n and N = 150 is
presented in the second column [together with the distribution from
Eq. (6a)]. The interaction strength g corresponding to the maximal
〈r̃〉n is marked by a purple solid line in the first column.

VI. IMBALANCED MIXTURES

Let us now deal with the scenario in which the number of
particles is increased in one component N↑ = 2, 3, 4, and 5,
while it is kept fixed in the other component N↓ = 1. Numer-
ical results are gathered in Fig. 4. When N↑ = 1 is changed
to N↑ = 2, the range of interactions g with the ratio 〈r̃〉n ≈ 0
clearly decreases. Moreover, the alternating minima and max-
ima of 〈r̃〉n are formed for N = 50. They are blurred for
N � 150. As apparent from the histogram of ratios P(r̃) for
the maximal 〈r̃〉n, the correlations between energy levels and,
so, the chaoticity are stronger when compared to the minimal
example of two fermions N↑ = 1. Moreover, the maximal 〈r̃〉n

slowly increases with N . It should be emphasized that even
for the largest number of levels N = 500 the histogram of ra-
tios P(r̃) is different than the distribution for random matrices
PGOE(r̃). It is worth mentioning that some (not fully devel-
oped) signatures of quantum chaos were recently observed in
a one-dimensional system of three particles, but in a different
potential and in the high-energy limit [54].

If particles are further added to the component (N↑ =
3, 4, 5), the chaoticity becomes suppressed. The maximal
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FIG. 5. The rescaled ratio 〈r̃〉n for a balanced mixture with N↑ =
N↓ = 2 and N = 150. Results for a fixed height V0 = 4.0 and differ-
ent widths x0 are presented in (a), while for a fixed width x0 = 0.2
and different heights V0 are presented in (b). The green area serves
as a reference result with V0 = 4.0 and x0 = 0.2. It has been already
presented in Fig. 1.

ratio 〈r̃〉n decreases with N↑, but slowly increases with N .
The histogram P(r̃) in the limit r̃ → 0 becomes more pro-
nounced and, so, the level repulsion becomes less effective
upon increasing N↑. At the same time, a slow opposite trend
is observed upon increasing N (not shown). Note that sharp
peaks appear on the top of P(r̃) for N↑ � 4 that signal the
restoration of the picket-fence structure.

As a result, we have determined that keeping the con-
sidered mixture of fermions close to the balanced scenario
enhances its chaoticity, and suggests that one should not ex-
pect robust quantum-chaotic correlations in the impurity limit
(N↑ → ∞). Note that this outcome lies in contrast to the
results for an impurity embedded in a bosonic bath restricted
to two modes of a double-well potential [85], and exposes the
importance of quantum statistics for unravelling the presence
of quantum chaos in ultracold ensembles.

VII. ROLE OF the CONFINING POTENTIAL

The shape of a confining potential usually has an effect
on the correlations between energy levels. Therefore, we
checked how the spectral statistics and, so, the chaoticity of
a two-component mixture of few fermions changes when the
parameters V0 and x0 of a double-well potential are varied. The
ratio 〈r̃〉n determined for the system with N↑ = N↓ = 2 parti-
cles and N = 150 levels is presented in Fig. 5. Despite some
quantitative differences, all plots are qualitatively similar. For
example, the global trend of 〈r̃〉n is independent of the barrier
height V0 (the right panel of Fig. 5) as well as the barrier
width x0 (the left panel of Fig. 5). Moreover, local extrema are
formed near similar interaction strengths g. As a result, the
discussion about the emergence of quantum chaos is hardly
affected by minor modifications of the confining potential.

VIII. CONCLUDING REMARKS

In the heart of the eigenstate thermalization hypothesis
(ETH) lies the assumption that individual energy eigenstates
of quantum-chaotic systems obey the laws of statistical me-
chanics, provided that their energies are not too low [27,29].
The main consequence of the ETH is that a quantum-chaotic
system can thermalize when driven out of equilibrium, even
if it is isolated from the external environment [30–36]. This
has been confirmed in recent ultracold atom experiments
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FIG. 6. The rescaled ratio 〈r̃〉n in the largest imbalanced system
N↑ = 5 and N↓ = 1 (left panel). Three cutoff energies Emax = 35
(gray lines), 40 (red lines), and 45 (blue lines) are considered.
Moreover, numerical results for two numbers of levels N = 150
(dark lines) and 500 (bright lines) are presented. Also shown is the
distribution of ratios P(r̃) for the interaction strength g = −3.6 and
N = 150 (right panel). The interaction strength g = −3.6 is marked
by the vertical line in the left panel. The (red) gray line-scatter
plot corresponds to Emax = 35(40), while the bar plot corresponds
to Emax = 45. The blue curve marks the Wigner-Dyson distribution.

[47,86–88]. The eigenstate thermalization hypothesis is
closely related to the random matrix theory (RMT) [28,68,89].
The existence or absence of RMT-like correlations in the
many-body spectrum has been investigated in many systems,
even mesoscopic ones [54–56], but rarely in the low-energy
limit. Note that the measurement of the spectral statistics is
tricky, but has been successfully performed using slow neu-
tron resonances of heavy nuclei and proton resonances of light
nuclei [90,91] (see also the measurement based on acoustic
resonances in quartz blocks [92]).

As pointed out in Ref. [55], the most recent experiments
often consist of working with few ultracold particles and
executing controlled operations on some of them. The max-
imum degree of control achievable in an arbitrary subsystem
is limited by the ability of a noncontrolled part of the system
to scramble information or act as an internal environment. The
possibility of an internal equilibration after a perturbation is a
property of quantum chaotic systems. In order to understand
and efficiently minimize errors in experimental implementa-
tions of controlled operations, it is necessary to understand
whether and how quantum chaos is manifested in mesoscopic
systems, and in the low-energy limit as well.

In this paper, we considered a two-component mixture of
few fermions, which interacted via contact interactions and
were confined in a one-dimensional double-well potential. We
studied spectral measures of quantum chaos, i.e., the averaged
rescaled ratio 〈r̃〉n, the distribution of the ratio P(r̃), the distri-
bution of the spacing P (δ), as well as the spectral form factor
K (t ). These studies were restricted to N = 50, 150, 250, and
500 levels in the low-energy tail of the many-body spectrum.
We observed some signatures of quantum chaos, i.e., the level
repulsion, already in the system with three particles N↑ = 2
and N↓ = 1. Generally, these signatures become weaker when
the number of particles is increased in the imbalanced sce-
nario, i.e., when fermions are added to one component N↑,
while the other component is fixed N↓ = 1. The latter suggests
that RMT-like correlations are not expected in the impurity
limit N↑ → ∞. In contrast, these signatures become more
pronounced when the number of particles is increased in the
balanced scenario N↑ = N↓. In the system with four particles

N↑ = N↓ = 2, the regimes of interactions with RMT-like cor-
relations between the nearest energy levels coexist with the
regimes of interactions with almost no correlations between
the nearest energy levels. Simultaneously, in the system with
six particles N↑ = N↓ = 3, signatures of quantum chaos are
witnessed in the entire range of interactions g ∈ [−4, 2].
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APPENDIX A: ENERGY CUTOFF METHOD

The energy cutoff method generates all Fock states with
noninteracting energy satisfying the inequality 〈Ĥ0〉 � Emax.
The simplest way to describe the procedure is to rep-
resent Fock states in the first quantization notation, i.e.,
with two algebraic vectors 
O↑ = (O↑1, . . . , O↑N↑ ) and 
O↓ =
(O↓1, . . . , O↓N↓ ) that gather indices of occupied single-
particle levels. By definition, the consecutive numbers in these
vectors are in ascending order. In this notation, the noninter-
acting ground state is represented by 
O↑ = (0, 1, . . . , N↑ − 1)
and 
O↓ = (0, 1, . . . , N↓ − 1). To generate all noninteracting
excited states with the energy bounded by Emax, one performs
the following steps.

(1) We take the ground state as a temporal state S.
(2) We set the index I to N↓.
(3) We determine whether the energy of the temporal state

S is smaller than Emax. If the bound is not violated, we go
to 5.

(4) We decrease the index, I → I − 1. If the index is
smaller than 1 the algorithm is finished. Otherwise we go to 6.

(5) We accept the temporal state S.
(6) We change the temporal state S according to the fol-

lowing rule. We excite the Ith particle in the ↓ component,
O↓I = O↓I + 1, and reset the state of all particles with higher
indices, i.e., for all k > I we set O↓k = O↓k−1 + 1.

(7) We go back to 3.
The described procedure allows us to determine all O↓, for

which the first component is in the ground-state configuration
and 〈Ĥ0〉 � Emax Subsequently, the protocol is repeated for
other possible configurations of the first component, which
can be determined in the same spirit as all possible configu-
rations of the second component. More details on the energy
cutoff method can be found in Ref. [63].

Before we finish this section, we demonstrate how two
measures of quantum chaos studied in the paper, i.e., the
rescaled ratio 〈r̃〉n and the distribution P(r̃), change with Emax.
Numerical results for the largest imbalanced system N↑ = 5
and N↓ = 1 are presented in Fig. 6. We consider three cutoff
energies Emax = 35 (gray lines), 40 (red lines), and 45 (blue
lines). The rescaled ratio 〈r̃〉n is presented for two numbers
of levels N = 150 (dark lines) and 500 (bright lines) (see the
left panel of Fig. 6). Minor differences between 〈r̃〉n obtained
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FIG. 7. Spectral properties of a balanced mixture with N↑ = N↓ = 2 particles in the lowest spin sector s = 0. The low-energy part of the
many-body spectrum is displayed in the first column. The rescaled ratio 〈r̃〉n is presented in the second column. We consider N = 50, 150, 250,
and 500, and numerical results for a larger N are marked by a brighter green color. The histogram P(r̃) for a maximum of 〈r̃〉n and N = 150
is presented in the third column [together with the distribution from Eq. (6a)]. Simultaneously, the histogram P(r̃) for a minimum of 〈r̃〉n

and N = 150 is presented in the fourth column [together with the distribution from Eq. (6b)]. The interaction strength g corresponding to a
maximum (minimum) of 〈r̃〉n is marked by a purple solid (red dashed) line in the first two columns.

with different Emax are revealed for g < −3. Nevertheless, the
general shape of the density P(r̃) remains independent of Emax

(see the right panel of Fig. 6).

APPENDIX B: SU (2) SYMMETRY

The Hamiltonian (1) is SU (2) invariant, i.e., it commutes
with Ŝz and Ŝ2 operators. In the following, we express the
projection and the squared magnitude of the total spin in units
of h̄ and h̄2, respectively. Commutation with spin projection
is insignificant, since Ŝz = 1

2 (N↑ − N↓). Thus, its eigenvalue
Sz is fixed in the subspaces with well-defined particle num-
bers N↑ and N↓. On the other hand, by taking advantage
of the decomposition of the field operator, one finds that
Ŝ2 = ∑

i j â†
↑iâ↓iâ

†
↓ j â↑ j + Ŝz(Ŝz − 1). This means that the en-

ergy spectrum comprises uncorrelated parts, each labeled
by a different eigenvalue S(S + 1) where S � Sz. When the
number of particles N = N↑ + N↓ is even, the magnitude
of the total spin S is an integer with S ∈ {0, 1, . . . , N/2}.
Simultaneously, when the number of particles N = N↑ +
N↓ is odd, the magnitude of the total spin S is a half
integer with S ∈ {1/2, 3/2, . . . , N/2}. Therefore, there are al-
ways two symmetry sectors in the imbalanced mixtures with
N↑ � 5 and N↓ = 1, and two, three, and four symmetry sec-
tors in the balanced mixtures with N↑ = N↓ = 1, 2, and 3
particles, respectively.

For all the systems considered in the main part of the paper,
we have calculated the expectation values of Ŝ2 in the many-
body states with the lowest energies. We have found out that
only spin sectors with S < N/2 have significant contributions
to the tail of the spectrum (there are at most few states with
S = N/2). Generally, the lower the magnitude of the total
spin S, the higher the population of many-body states. This
means that only one spin sector with S = Sz is active in the
imbalanced mixtures of fermions with N↑ � 5 and N↓ = 1.
On the other hand, it seems that up to two spin sectors are
active in the balanced mixtures of fermions with N↑ = N↓ =
1, 2, and 3.

In order to determine how the SU (2) symmetry modifies
the spectral statistics, we have diagonalized the following
matrix M̂ = Ĥ + βŜ2. The parameter β is selected so that the
expectation value of Ŝ2 is fixed in the tail of the spectrum,
i.e., S = Sz. Subsequently, we have calculated expectation
values of Ĥ and ordered them in ascending order. Finally,
we have recalculated the rescaled ratio 〈r̃〉n and the whole
distribution of ratios P(r̃). As expected, the latter measures of
quantum chaos are indistinguishable from the ones presented
in the main part of the paper for the imbalanced mixtures of
fermions. Although they do change at the quantitative level,
they remain the same at the qualitative level for balanced
mixtures of fermions. Numerical results for N↑ = N↓ = 2 are
presented in Fig. 7.
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