
PHYSICAL REVIEW A 101, 033603 (2020)

Unconventional pairing in one-dimensional systems of a few mass-imbalanced ultracold fermions
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Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668, Warsaw, Poland

(Received 14 November 2019; accepted 18 February 2020; published 6 March 2020)

We study the ground-state properties of a two-component fermionic mixture effectively confined in a one-
dimensional harmonic trap. We consider scenarios when numbers of particles in components are the same but
particles have different masses. We examine whether it is possible to detect signatures of an unconventional
pairing between opposite-spin fermions in the presence of attractive interactions. For this purpose, we perform
the exact diagonalization of the many-body Hamiltonian and study the two-particle reduced density matrix.
In agreement with expectations, we confirm that the many-body ground state is dominated by conventional
pairs with a negligible total momentum for a small mass imbalance. Furthermore, we show that for sufficiently
large mass ratios the domination of fundamentally different pairs is established and the Fulde-Ferrell-Larkin-
Ovchinnikov phase is supported. Finally, we argue that the two mechanisms can coexist in the regime of moderate
mass ratios. Due to the current experimental progress in obtaining ultracold fermionic systems in a few-body
regime, our predictions may have some importance for the upcoming experiments.
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I. INTRODUCTION

The discovery of superconductivity by Onnes [1] provided
one of the most challenging phenomena for a theoretical
explanation. After many unsuccessful attempts and failed
theoretical propositions [2], Cooper made a luminous ob-
servation that the effective attraction between opposite-spin
particles can lead to the spontaneous formation of correlated
two-particle states above the Fermi sea [3]. This opened a path
towards the appropriate theory of superconductivity, which
was finally formulated by Bardeen, Cooper, and Schrieffer
[4]. In the simplest case of a balanced mixture of fermions,
paired particles have opposite spins and momenta (i.e., a
negligible center-of-mass momentum). The pairing is possible
since the Fermi spheres of both components are identical.
More specifically, single-particle excitations from one sur-
face can be adjusted to excitations from another surface.
Although the initial theory concerned electrons moving in
metallic crystals, it quickly became apparent that the pairing
mechanism is fundamental and present in various strongly
correlated systems, like heavy nuclei [5,6], neutron stars [7,8]
(for comprehensive review, see [9]), or ultracold mixtures of
fermions [10–12]. What is more, footprints of correlated pairs
have been experimentally found in the ultracold system of a
few 6Li atoms confined in the almost perfect one-dimensional
harmonic trap [13]. These experimental findings are consis-

*patrycja.lydzba@pwr.edu.pl
†tomsow@ifpan.edu.pl

tent with the theoretical description in terms of the Cooper
pairing mechanism [14–16].

The picture is more complicated when components do
not comprise the same numbers of particles and the Fermi
surfaces are not compatible. Then, as independently predicted
by Fulde and Ferrell [17] and Larkin and Ovchinnikov [18]
(FFLO), the formation of correlated pairs requires a relative
shift of the Fermi spheres. Consequently, the pairing with a
nonzero total momentum is supported. It is currently believed
that both phases (i.e., the standard Cooper pairing and the
FFLO pairing) can be established in the same regime of pa-
rameters, but the FFLO phase is energetically favorable [19].
Although the latter still awaits a clear experimental evidence,
recent results of measurements in ultracold quantum gasses
are promising [20]. Moreover, it was shown theoretically that
the FFLO phase is supported and should be detectable in one-
dimensional spin-imbalanced fermionic systems containing
only a few atoms [21].

It has been argued that the FFLO mechanism of pair
formation is also present in two-component systems with bal-
anced numbers of particles but different masses [22,23]. This
scenario is rather rare in standard solid-state systems since it
can only be achieved effectively by forcing the component-
dependent dispersion relations [24,25]. On the other hand,
it can be obtained directly in ultracold atomic systems by
preparing mixtures of atoms with different masses, like
lithium-potassium [26–28] or dysprosium-potassium [29].
Although the transitions to unconventional superconducting
phases in systems with a nonzero polarization have been thor-
oughly investigated using different methods [30–34], they are
less explored in systems with a nonzero mass imbalance [35].
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All the above facts motivated us to further explore the
properties of attractively interacting fermionic mixtures with
a mass imbalance. In this paper, we focus on a particular
and exotic system, in which specific signatures of the
FFLO phase can be captured. Namely, we focus on a few
ultracold fermions confined in a one-dimensional external
trap. We analyze their properties mostly in terms of the
Penrose-Onsager criterion for the condensation of correlated
pairs [11,36]. More specifically, we study the occupations
and momentum correlations of dominant orbitals of the
two-particle reduced density matrix. In this way, we extend
recent results on the Cooper-like pairing in mass-balanced
systems [14] and in mass-imbalanced systems [37]. In the
latter case, the shot-noise correlations and intercomponent
entropies were examined.

II. SYSTEM

In our theoretical model, we consider a two-component
system of interacting fermions moving in a one-dimensional
harmonic trap of frequency ω. We assume that the trap is iden-
tical for both components containing fundamentally different
atoms (with a different mass, spin, etc.). This is encoded in
a generalized quantum number σ ∈ {↑,↓}. The many-body
Hamiltonian can be written in the real-space representation as

Ĥ =
∑

σ

∫
dx �̂†

σ (x)hσ �̂σ (x)

+ g
∫

dx �̂
†
↑(x)�̂†

↓(x)�̂↓(x)�̂↑(x), (1)

where hσ is the single-particle Hamiltonian of the component
σ comprising kinetic- and potential-energy terms

hσ = − h̄2

2mσ

d2

dx2
+ mσω2

2
x2. (2)

We assume that interactions between particles from different
components can be modeled with a zero-range δ-like potential
of strength g. This approximation is reasonable and relevant
to experiments in ultracold quantum gases [38]. It should
be emphasized that the methods originating in the Feshbach
resonance phenomenon and based on varying the external
confinement in perpendicular directions allow one to tune the
effective one-dimensional scattering length between atoms,
and consequently the strength of contact interactions in these
systems [39–41]. These interactions are prohibited for par-
ticles with the same spin by the Pauli exclusion principle.
Let us mention that �̂σ (x) is a fermionic field operator,
which annihilates a σ -spin fermion at position x and obeys
conventional fermionic anticommutation relations,

{�̂σ (x), �̂σ ′ (x′)} = 0,
(3)

{�̂†
σ (x), �̂σ ′ (x′)} = δσσ ′δ(x − x′).

Furthermore, the many-body Hamiltonian (1) commutes with
the number operators, N̂σ = ∫

dx �̂†
σ (x)�̂σ (x). As a result,

the two-component mixture can be studied in the independent
subspaces in which populations of atoms, N↑ and N↓, are
individually fixed. In the following, we consider a balanced

number of particles (N↑ = N↓ = N/2) and attractive interac-
tions (g < 0).

For convenience, we rewrite all quantities in the dimen-
sionless units, i.e., we express all energies in h̄ω, lengths in the
harmonic-oscillator length of a spin-up particle

√
h̄/(m↑ω),

and the interaction strength in
√

h̄3ω/m↑ . With this conven-
tion, the mass m↑ is set to unity and only the mass ratio
μ = m↓/m↑ is a relevant parameter. Without losing generality,
we assume that μ � 1.

In this work we investigate the ground-state properties of a
two-component fermionic system in the exact diagonalization
approach. First, we rewrite the many-body Hamiltonian (1) in
a convenient representation, in which a single-particle basis
comprises eigenstates of hσ ,

Ĥ =
∑

iσ

εiâ
†
iσ âiσ + g

∑
i, j,k,l

Ii jkl â
†
i↑â†

j↓âk↓âl↑, (4)

where εi = (i + 1
2 ) is a single-particle energy independent of

spin and âiσ is the operator annihilating a σ -spin particle
from the ith harmonic-oscillator state described by the wave
function φiσ (x). Furthermore,

Ii jkl =
∫

dx φ∗
i↑(x)φ∗

j↓(x)φk↓(x)φl↑(x). (5)

The representation (4) is obtained when a decomposed field
operator,

�̂σ (x) =
∑

i

φiσ (x)âiσ , (6)

is introduced into (1). Next, we perform the exact diagonal-
ization of the many-body Hamiltonian using the implicitly
restarted Arnoldi method [42]. For this purpose, we restrict
the single-particle basis to the K lowest-energy eigenstates of
hσ . As discussed in [37], K = 10 provides reliable results for
one-dimensional systems with at most Nσ = 5 particles and
interactions considered here. We independently confirm this
observation in Figs. 1 and 2, where we reproduce the most
important results for different cutoffs K and determine how
they are affected by the increased K. Finally, we obtain the
lowest-energy eigenstate |G0〉 of the many-body Hamiltonian
Ĥ and exploit it to determine the ground-state properties of a
two-component fermion system.

III. VARYING THE MASS RATIO

We aim to determine the ground-state properties of a
two-component fermion system for different mass ratios. In
particular, we want to establish whether the conventional
paired phase undergoes a transition to any of the unconven-
tional paired phases (e.g., the fragmented phase with more
than one dominant eigenvalue of a two-body reduced density
matrix [43] or the FFLO phase with Cooper-like pairs moving
with a nonzero center-of-mass momentum [44,45]). It is not
trivial to describe the condensation of Cooper-like pairs in
a one-dimensional system of a few fermions, since the off-
diagonal long-range order is replaced by the power-decaying
law [44,45]. As a result, the mean-field considerations are of
a limited benefit. Nevertheless, some research in this direction
has been performed. For example, the conventional paired
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FIG. 1. (Top) Spectrum of a two-body reduced density matrix
for a system with N = 8 particles. Red (points), blue (squares), and
black (diamonds) lines correspond to the three largest eigenvalues λ0,
λ1, and λ2, respectively. The horizontal line marks the noninteracting
value (N↑N↓)−1. The first vertical line marks the mass ratio μ1

for which the approximation of ρ2 by a single projection operator
|λ0〉〈λ0| is no longer valid, while the second line marks the mass
ratio μ2 for which the dominance of an eigenvalue is recovered but
in another orbital |λ1〉. We suspect that a different pairing mechanism
is supported in this regime of parameters (i.e., for g ≈ −5 and above
μ2). Note that it is less effective than the conventional mechanism
(i.e., fewer particles form Cooper-like pairs) and it is related to a dif-
ferent eigenstate of a two-body reduced density matrix |λ1〉. (Inset)
Eigenvalues λα of the two-body reduced density matrix as functions
of interactions g for a mass-balanced situation μ = 1. (Bottom) The
relative corrections |λK+1 − λK|/λK for the three largest eigenvalues
introduced after increasing the cutoff from K = 10 to K = 11 (colors
correspond to upper panel). Note that their values are below 2.5%
for the entire range of mass ratios. It means that the spectrum of
the density matrix ρ2 is almost unaffected by the increased cutoff
K and it can still be divided into the three regimes separated by the
vertical gray lines. The lines are only slightly shifted when a greater
K is used. This observation confirms the validity of our results.
Interaction strength is expressed in natural units of the harmonic
oscillator

√
h̄3ω/m↑ .

phase has been studied in terms of a two-particle reduced
density matrix of opposite-spin fermions in the mass balanced
scenario [14]. In the case of atoms with a different mass, it has
been demonstrated that the system displays an apparent spa-
tial separation of components for repulsive interactions [46].
Simultaneously, the intercomponent correlations are quickly
suppressed with increasing μ for attractive interactions. All
this means is that the unconventional paired phase can be
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FIG. 2. (Left column) Probability density of finding a pair of
atoms occupying the dominant orbital |λα〉 in a momentum config-
uration |�α (p, k)|2. For a minor mass imbalance, the distribution
is nonvanishing only in a close vicinity of a diagonal line k = −p
(marked by a gray dashed line). Simultaneously, for a major mass
imbalance, the distribution develops two elongated maxima. They
are located on both sides and equally spaced from a diagonal line
k = −p. (Right column) The probability density integrated over a
momentum of a single atom. Red solid lines and red dots correspond
to results obtained for cutoffs K = 10 and K = 11, respectively. Note
their precise agreement proving a satisfactory convergence of the
results. See the main text for details. All momenta and probability
densities are measured in natural units of the harmonic oscillator,√

h̄m↑ω and 1/
√

h̄m↑ω, respectively.
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dominant in a narrow, if any, regime of mass ratios μ. In the
following, we examine this possibility.

The pairing of opposite-spin fermions, as a two-particle
correlation phenomenon, is encoded in a two-particle reduced
density matrix,

ρ2(i j; kl ) = 1

N↑N↓
〈G0| â†

i↑â†
j↓âl↓âk↑ |G0〉 . (7)

This density matrix can be expressed in a diagonal form,
i.e., as a linear combination of projection operators onto its
eigenstates |λα〉,

ρ2 =
∑

α

λα |λα〉 〈λα| . (8)

The probabilities that eigenstates are occupied correspond to
λα and satisfy the condition

∑
α λα = 1. Two-particle orbitals

|λα〉 can be represented by corresponding wave functions
�α (x, y) and �α (p, k) in the position and the momentum
representation, respectively. They are defined as

�α (x, y) =
∑

i j

C(α)
i j φi↑(x)φ j↓(y), (9a)

�α (p, k) =
∑

i j

C(α)
i j φ̃i↑(p)φ̃ j↓(k). (9b)

Here C(α)
i j are the decomposition coefficients of a two-

particle orbital |λα〉 = ∑
i j Cα

i j â†
i↑â†

j↓|vac〉 obtained from the

diagonalization of the density matrix (7), while φ̃iσ (p) =∫
dx φiσ (x)exp(−ipx) is the Fourier transform of a wave

function of a single-particle orbital.
Along with the Penrose-Onsager criterion [47,48], if a

certain eigenvalue λ0 dominates in the decomposition (8),
the two-particle reduced density matrix ρ2 can be approxi-
mated by a single projection operator |λ0〉 〈λ0|. Namely, the
system can be described as a condensate of pairs occupying
orbital |λ0〉. As a result, the collective pairing of opposite-spin
fermions is characterized by a significant domination of a
certain orbital over other orbitals.

To make further analysis as clear as possible, we first
investigate eigenvalues of a two-body reduced density matrix
ρ2 for a mass-balanced system (μ = 1). When interactions are
negligible (i.e., in the limit g → 0), exactly N↑N↓ eigenvalues
equal to (N↑N↓)−1 are nonzero. However, only one increases
with increasing attraction g and quickly dominates the spec-
trum (i.e., λ0). This behavior of the eigenvalues has been
observed previously [14] and it is in line with expectations,
since atoms are more willing to form pairs when the attraction
is stronger (see inset in Fig. 1).

Subsequently, we select the interaction strength for which
the dominance of |λ0〉 is significant (we take g = −5), and
we explore the evolution of all eigenvalues in a varying mass
ratio μ. The latter is presented in Fig. 1 for the three largest
λα and systems of N = 8 particles. For clarity, we keep the
order of λ’s as established for μ = 1 in Fig. 1 and throughout
the paper. For example, regardless of their order and relative
values, red and blue lines always correspond to λ0 and λ1,
respectively. It is clearly visible that the gap λ = λ0 − λ1 is
diminishing with an increasing mass ratio μ. Consequently,
the approximation of a two-body reduced density matrix by

a single projection operator becomes less justified for larger
mass ratios μ until it completely breaks down. Eventually,
when μ > μ1 ≈ 2.5 is exceeded (marked by the first vertical
gray line in Fig. 1), the second largest eigenvalue surpasses
its noninteracting value (N↑N↓)−1 (marked by the horizontal
gray line in Fig. 1). Therefore, the system can no longer be
described as a condensate of pairs in |λ0〉. A similar transition
was observed in previous studies in terms of intercomponent
correlations [37]. The situation is slightly different when the
mass ratio μ is further increased. It turns out that above μ2 ≈
3.5 (marked by the second vertical gray line in Fig. 1), the
initially largest eigenvalue λ0 drops below its noninteracting
value (N↑N↓)−1 and the dominance of the initially second
eigenstate |λ1〉 is established. It is worth noting that in this
regime the dominance is much weaker than in the regime of a
small mass imbalance. Furthermore, the order of eigenvalues
is changed, i.e., the role of a dominant orbital is taken over
by another eigenstate of a two-body reduced density matrix.
The occupation of a different two-particle orbital signals that
another pairing mechanism can be activated. Only when this
mechanism becomes inefficient, heavier atoms de-correlate
from lighter atoms as argued in [37].

IV. MOMENTUM CORRELATIONS

If the hypothesis outlined above is correct and another pair-
ing mechanism is supported in a two-component fermion sys-
tem above μ2, it should manifest in the correlations between
momenta of atoms occupying the dominant orbital (when
|λ1〉 starts to dominate over |λ0〉). These can be established
by considering the probability density of finding a pair in a
given momentum configuration |�α (p, k)|2. We present this
distribution in the left column of Fig. 2 for systems comprising
N = 8 particles and different mass ratios μ. Note that, due
to the space reflection symmetry of the system, two-body
distributions are point-reflection symmetric, |�α (p, k)|2 =
|�α (−p,−k)|2. For a minor mass imbalance (when |λ0〉 dom-
inates) the distribution |�0(p, k)|2 is nonvanishing only in a
close vicinity of a diagonal line k = −p (marked by the gray
line in Fig. 2). Furthermore, it slowly spreads over the con-
figuration space with increasing μ, and finally slightly shifts
towards a nonzero center-of-mass momentum for large values
of k and p. Recall that the off-diagonal long-range order is
replaced by the power decaying law ( i.e., the algebraically
decaying off-diagonal long-range order) in one-dimensional
systems [49]. Therefore, a perfect anticorrelation between
momenta of opposite-spin fermions is not expected.

In contrast, the probability density is abruptly modified for
a major mass imbalance (μ > μ2 where |λ1〉 is dominating).
Strictly speaking, it is negligible for configurations with zero
center-of-mass momentum, and comprises maxima located on
both sides of a diagonal line k = −p. This modification seems
to be present for systems comprising different numbers of
particles and it is more pronounced for larger N . For a mass
ratio μ = 3.5 and interactions g = −5 considered in Fig. 3,
the modification is fully developed for more than N = 6
particles. It indicates that the FFLO-like pairing mechanism is
activated in a two-component fermion system [17,19]. More
specifically, Cooper-like pairs with a nonzero center-of-mass
momentum, either +Q or −Q, are formed.
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FIG. 3. Comparison of probability densities of the dominant
orbital |�α (p, k)|2 for attractively interacting systems g = −5 with a
large mass imbalance μ = 3.5 which comprise N = 2, . . . , 10 parti-
cles. Maxima located on both sides of a diagonal line k = −p signal
the appearance of the Fulde-Ferrell-Larkin-Ovchinnikov phase for
more than N = 6 particles. All momenta and probability densities
are measured in natural units of the harmonic oscillator,

√
h̄m↑ω and

1/
√

h̄m↑ω, respectively.

At this point we remark that the probability density of a
dominant orbital |�α (p, k)|2 reflects some properties of the

so-called shot-noise correlations G(p, k) published in [50],
which can be measured in the expansion experiments [51–53].
As argued in [50], the separation of the distribution G(p, k) for
a spin-imbalanced system signals the appearance of the FFLO
phase (see [21] for details). However, signatures of Cooper-
like pairs with a nonzero total momentum have not been found
in the shot-noise correlations of a mass-imbalanced system
[37]. This should not be surprising since the FFLO signal is
proportional to the number of paired particles (determined by
the dominant eigenvalue λ1), which is significantly smaller
in the regime of a major mass imbalance. Recall that an
analogous reduction has been predicted for a superconducting
order parameter, at least in quasi-one-dimensional systems
with a nonzero polarization [45,54,55]. Nevertheless, we have
closely examined the shot-noise correlations published in [37]
(see Fig. 2 therein). When momenta of atoms are small,
the particular pattern confirming the existence of Cooper-
like pairs cannot be seen in the shot-noise picture. In other
words, there are no correlations between k and p. However,
two robust maxima located in the opposite corners of the
configuration space can be distinguished. They are equally
spaced from a diagonal line p = −k and related by the in-
version symmetry. Therefore, we are convinced that subtle
signatures of the Fulde-Ferrell-Larkin-Ovchinnikov pairing
are present in the distribution G(p, k), although they have
not been previously recognized. This suggests that the un-
conventional paired phase realized in one-dimensional mass-
imbalanced systems can be observed in ultracold quantum gas
experiments.

V. TOTAL MOMENTUM OF A PAIR

Cooper-like pairs with a nonzero center-of-mass momen-
tum, Q, are formed when opposite-spin components have
incompatible Fermi surfaces [19]. In polarized systems, the
incompatibility is provided by unequal particle numbers or
chemical potentials of opposite-spin components. Further-
more, it has been demonstrated that the center-of-mass mo-
mentum Q is proportional to the difference in Fermi momenta
[49]. This can be easily translated into the dependence on par-
ticle numbers or chemical potentials. In the considered one-
dimensional system placed in a harmonic trap, the definition
of a Fermi momentum is not straightforward. Nevertheless,
the mass imbalance leads to unequal densities of opposite-
spin components [19]. As a result, the incompatibility as
well as the Fulde-Ferrell-Larkin-Ovchinnikov phase, as we
have demonstrated in the previous paragraph, is obtainable.
It is natural to wonder whether there is a simple dependence
between the center-of-mass momentum Q and the mass ratio
μ. To find the answer to this question, we have integrated the
probability density of a dominant orbital |�α (p, k)|2 over a
momentum of a single atom. In this way, we have obtained
the following function:

γ (Q) =
∫ ∞

−∞
d p |�α (p, p − Q)|2. (10)

The latter is presented in the right column of Fig. 2 for
systems comprising N = 8 particles and different mass ratios
μ. In line with expectations, for a minor mass imbalance μ <

μ1, the probability density γ (Q) is strongly peaked around
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PATRYCJA ŁYDŻBA AND TOMASZ SOWIŃSKI PHYSICAL REVIEW A 101, 033603 (2020)

-4 -3 -2 -1 0 1 2 3 4
0.00

0.05

0.10

0.15

0.20

0.25

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

1.56

1.59

1.62

1.65

1.68

1.71

1.74

Pr
ob
ab
ilit
y
de
ns
ity

γ

Momentum Q

 μ=3.5
 μ=3.65
 μ=3.8
 μ=4
 μ=4.15
 μ=4.3
 μ=4.5

(a)

(b)

M
om
en
tu
m
Q
m
ax

Mass ratio μ

FIG. 4. (Top) Probability density γ (Q) for different mass ratios
μ > μ2 and N = 8. (Bottom) The most probable FFLO momentum
Qmax as a function of mass ratio. The linear dependence is clearly
visible. All momenta and probability density are measured in natural
units of the harmonic oscillator,
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Q = 0 and vanishes with increasing center-of-mass momen-
tum. However, the peak splits into two maxima when the mass
ratio exceeds μ2. These maxima are symmetrically arranged
around Q = 0. We have established that their relative distance
is almost independent from the strength of interactions g. Si-
multaneously, it grows with the mass ratio μ as demonstrated
in Fig. 4(a). Moreover, the most probable FFLO momentum
Qmax [i.e., the value of Q for which the function γ (Q) is
maximal] fits almost perfectly to the linear function of a mass
ratio μ [Fig. 4(b)].

VI. COEXISTENCE OF PAIRED PHASES

According to [45], the conventional paired phase and the
Fulde-Ferrell-Larkin-Ovchinnikov phase can coexist in a nar-
row range of parameters. Motivated by these results, we es-
tablish whether this is the case also in the considered systems,
i.e., strictly one dimensional with the incompatibility of Fermi
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FIG. 5. Coexistence of pairing mechanisms. The probability den-
sity γ (Q) calculated for |λ0〉 (top) and |λ1〉 (bottom). These two-body
orbitals correspond to the two largest eigenvalues of a two-body
reduced density matrix, respectively. Systems comprising N = 8 par-
ticles for moderate mass ratios μ ∈ [2.5, 3.5] have been considered.
All momenta and probability densities are measured in natural units
of the harmonic oscillator,

√
h̄m↑ω and 1/

√
h̄m↑ω, respectively.

surfaces provided by the mass imbalance. For this, we search
for nontrivial correlations between momenta of opposite-spin
particles in a range of moderate mass ratios μ1 < μ < μ2

for which λ0 and λ1 are comparable. This is demonstrated in
Fig. 5. When the probability density γ0(Q) calculated for one
orbital is maximal near Q = 0, the probability density γ1(Q)
calculated for another orbital comprises two maxima located
on opposite sides and at the same nonzero distance from
Q = 0. It means that, for the moderate mass ratios, the two-
component fermion mixture is in a fragmented state, in which
a two-body reduced density matrix ρ2 can be approximated
as a linear combination of two projection operators [43]. In
other words, different pairing mechanisms are simultaneously
active, and different condensates of Cooper-like pairs coexist
in the system. It should be emphasized that these momentum
correlations cannot be simultaneously found for minor as
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well as major mass ratios, even if two-body orbitals |λ〉 with
negligible probabilities λ are taken into account.

VII. CONCLUDING REMARKS

We investigated the evolution of the ground-state proper-
ties of a two-component fermion system with a mass ratio
of components μ. In agreement with previous studies [37],
we observed that one eigenstate of a two-body reduced den-
sity matrix ρ2 is dominant for a minor mass imbalance μ.
Therefore, the matrix ρ2 can be approximated as a single
projection operator, while the mixture can be described as
a condensate of Cooper-like pairs with a negligible center-
of-mass momentum. We also showed that the dominance
of another two-particle orbital is established for a major
mass imbalance. Studies of correlations between momenta of
atoms revealed that, in this case, the pairing mechanism is
not conventional. More specifically, the Fulde-Ferrell-Larkin-

Ovchinnikov phase—in which Cooper-like pairs move with
a nonzero momentum—is supported. This momentum is a
linear function of a mass ratio. Additionally, it is independent
of the strength of attractive interactions. Finally, we demon-
strated that conventional and unconventional pairing mecha-
nisms can coexist for the intermediate mass imbalances. In
this case, the mixture is in a fragmented state, in which a
two-body reduced density matrix can be approximated as a
linear combination of two projection operators.
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