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Potential realization of a quantum thermometer operating in the nanokelvin regime, formed by a few-fermionic
mixture confined in a one-dimensional harmonic trap, is proposed. Thermal states of the system are studied
theoretically from the point of view of fundamental sensitivity to temperature changes. It is pointed out that the
ability to control the interaction strength in such systems allows obtaining high-temperature sensitivity in the
regime where the temperature is much lower than the characteristic temperature scale determined by a harmonic
confinement. This sensitivity is very close to the fundamental bound that involves optimal engineering of level
separations. The performance of practical measurement schemes and the possible experimental coupling of the
thermometer to the probe are discussed.
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I. INTRODUCTION

The variety and sophistication of present-day temperature
measurement techniques are stunning [1]. While most practical
techniques rely on the quantum features of matter or light in an
indirect way, the recent rapid development of quantum tech-
nology related to experimental techniques has presented both
new possibilities and challenges to temperature measurements.
Among others, submillikelvin thermometry techniques have
been developed for the purpose of assessing the efficiency of
cooling in ion trap experiments [2,3], properties of nitrogen-
vacancy centers have been utilized for high-sensitivity all-
optical thermometry with potential application in biomedical
research [4,5], and different techniques to measure the temper-
ature of quantum dots [6–9], cold degenerate quantum gases
[10], optomechanical systems [11], atoms in optical lattices
[12], or quantum impurity in Bose-Einstein condensates [13]
have been proposed. In parallel, there has been a growing
interest in understanding theoretical limits to temperature
estimation precision from a fundamental point of view of
quantum estimation theory [14–24]. Most prominently, in [17]
the optimal level structure for an M-level thermalized quantum
system was identified that leads to the highest sensitivity
to temperature changes. The structure consists of a single
nondegenerate ground state and an (M − 1)-fold degenerate
excited state with an energy gap proportional to the temper-
ature. It turns out that an energy structure with M isolated
levels is naturally present in the systems of two-component
fermionic mixtures confined in a one-dimensional harmonic
traps [25,26]. Although the level structure is different from
the optimal one predicted in [17], these kinds of systems can
be deterministically prepared, precisely controlled, and deeply
analyzed in present-day experiments [27–30]. In consequence,
a different path of exploration of few-body problems in the
context of ultracold atoms is opened (for a review see, for
example, [31,32]).

Motivated by these observations in this paper, we study
the temperature sensitivity of a fully thermalized system

consisting of a few interacting fermions in a harmonic trap,
already thermalized with the probe. In case of noninteracting
particles and in the very low-temperature limit, kBT � h̄�

(� being the harmonic trap frequency), small variations of
temperature will not affect the harmonic trap populations.
However, the possibility to tune the interaction strength in
such systems allows changing the energy level structure in
such a way that the lowest-energy states become almost
degenerate with a well-controlled energy gap. We show that
this system manifests temperature sensitivity that approaches
surprisingly close the fundamental theoretical bound from
[17]. Furthermore, while optimal measurement extracting the
full temperature information may not be practical, we show
that simple single-particle population measurements still allow
reaching high-temperature sensitivities surpassing the nonin-
teracting reference case by many orders of magnitude.

The paper is organized as follows. In Sec. II we comment
on the fundamental bound for the accuracy of the temper-
ature measurements in the language of the quantum Fisher
information (QFI). In Sec. III we introduce an experimentally
realizable quantum thermometer formed by an ultracold two-
component mixture of a few fermions confined in a harmonic
trap and we compare its QFI with the optimal system con-
sidered in [17]. In Sec. IV we discuss three different protocols
indicating an experimentally accessible measurement. We also
deliberate on a possible coupling of the thermometer to a probe
of unknown temperature. We summarize in Sec. V.

II. FUNDAMENTAL BOUND

Let us consider an M-level quantum system prepared in a
thermal state described by the density matrix

ρ̂T = 1

Z e−βĤ = 1

Z

M∑
i=1

e−βEi |Ei〉〈Ei |, (1)

where |Ei〉 are eigenstates of the system Hamiltonian Ĥ with
respective energies Ei , β = 1/kBT , and the partition function

2469-9926/2018/97(6)/063619(5) 063619-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.97.063619&domain=pdf&date_stamp=2018-06-21
https://doi.org/10.1103/PhysRevA.97.063619


MARCIN PŁODZIEŃ et al. PHYSICAL REVIEW A 97, 063619 (2018)

Z = ∑
i e

−βEi . The maximal information on temperature vari-
ations that can be extracted from this state is quantified with
the QFI [33,34]

FQ(ρ̂T ) = 4
∑
m,n

pm

|〈Em|∂T ρ̂T |En〉|2

(pm + pn)2
= ΔH2

T 4
, (2)

where pi = 〈Ei |ρ̂T |Ei〉 = Z−1e−βEi and ΔH2 = Tr[ρ̂T Ĥ2] −
Tr[ρ̂T Ĥ]2 is the variance of the thermal expectation value of
the system Hamiltonian [35]. In the energy eigenbasis this
coincides with the classical Fisher information (FI) for the
state energy probability distribution

FQ(ρ̂T ) = F({pi}) =
∑

i

1

pi

(
dpi

dT

)2

. (3)

Given ν repetitions of an experiment, the QFI yields a fun-
damental lower bound on the minimal temperature estimation
precision via the quantum Cramér-Rao inequality

�T � 1√
νFQ

. (4)

The bound can always be saturated in the ν → ∞ limit,
and in the considered case the optimal measurement is the
measurement in the energy eigenbasis.

As discussed in [17], for a given temperature T , the
optimally engineered level structure in an M-level system leads
to the QFI and the respective temperature sensitivity bound (we
write it here in a bit more explicit way than in the original paper)

Fmax
Q (T ) = f (M)

T 2
,

�T

T
� 1√

f (M)
, (5)

where f (M) = (M − 1)(M − 1 + ex)−2exx2, with x � 0 the
solution of the transcendental equation ex = (M − 1)(2 +
x)/(2 − x). To get an intuition of the above result, we inspect
the M → ∞ limit in which case x ≈ ln M and f (M) ≈
(ln M)2/4. Consequently, �T/T � 2/ ln M reflects a loga-
rithmic reduction of the relative uncertainty of temperature
measurements with the increasing size of the system. The
optimal level structure leading to the above QFI involves a
single ground state and an M − 1 degenerate excited state with
the optimal energy gap equal to E2 − E1 = xkBT [17].

Equation (5) can be regarded as the fundamental bound
for thermometry utilizing thermalized quantum states. Note,
however, that there are other approaches to thermometry
that assume nonthermalized thermometer scenarios, such as
temperature influencing indirectly the phase of light traveling
through an interferometer [14,18] or temperature affecting the
dissipative character of quantum state evolution [15]. In such
scenarios, one will arrive at different model-specific bounds
for temperature estimation which often involve nontrivial
optimization over a large class of input probe states. In the
case of thermometry utilizing thermalized quantum states that
we consider here, the only means of adjusting the probe state is
via modification of the level structure of the system. While this
may be viewed as a deficiency of the approach, as we do not
benefit from the typical quantum metrological enhancements
offered by entangled or squeezed states, the advantage here
is that the considerations are model independent and they

are based on a simple and natural physical assumption of
thermalization.

III. SYSTEM

The considered energy level structure with quasidegeneracy
is naturally present in the system of an interacting two-
component mixture of a few ultracold fermions confined in a
one-dimensional harmonic trap, where the Hamiltonian reads
[25,26]

Ĥ =
∑

σ

∫
dx 
̂†

σ (x)

(
− h̄2

2m

d2

dx2
+ m�2

2
x2

)

̂σ (x)

+ g

∫
dx 
̂

†
↓(x)
̂†

↑(x)
̂↑(x)
̂↓(x). (6)

Here 
̂σ (x) is a fermionic field operator corresponding to the
component σ ∈ {↑ , ↓} and obeying anticommutation rela-
tions {
̂σ (x),
̂†

σ ′(x ′)} = δσσ ′δ(x − x ′) and {
̂σ (x),
̂σ ′(x ′)} =
0. The interaction strength g is an effective parameter related to
the three-dimensional s-wave scattering length between atoms
and it can be tuned experimentally with huge accuracy almost
on demand [27,28,36–38]. The Hamiltonian (6) commutes
with the operators counting numbers of particles in a given
spin N̂σ = ∫

dx 
̂†
σ (x)
̂σ (x). Consequently, a whole analysis

can be performed in subspaces of a given number of particles
in individual components N = N↑ + N↓. It is convenient to
perform an analysis on the basis of single-particle orbitals
ϕi(x) being eigenstates of the corresponding single-particle
Hamiltonian. On this basis the many-body Hilbert space is
spanned by Fock states constructed as

|Fk〉 ≡ |n1,n2, . . . ; m1,m2, . . .〉
∼ (â†

↑1)n1 (â†
↑2)n2 · · · (â†

↓1)m1 (â†
↓2)m2 · · · |vac〉, (7)

where the operator âσ i annihilates a particle with spin σ in
a state ϕi(x). Due to the fermionic statistics and conserved
numbers of particles the following constrains have to be
applied: ni,mi ∈ {0,1}, ∑

i ni = N↑, and
∑

i mi = N↓. We
perform numerically exact diagonalization of the Hamiltonian
(6) in the Fock basis {|Fk〉} appropriately cropped to states with
the lowest energies [39,40]. In this way we obtain the lowest
many-body eigenstates |Ei〉 and corresponding eigenenergies
Ei (see Fig. 1). The most pronounced feature of the spectrum
is the quasidegeneracy of the ground-state manifold in the
regime of strong interactions, with degeneracy M = N!

N↓! N↑!

[25,41]. Intuitively, the larger the degeneracy is, the higher the
sensitivities that can be expected, but only in the regime where
kBT is comparable to the energy width of the degenerated
manifold corresponding to a given g. For a given number
of particles N the largest degeneracy is to be expected for
balanced partition of particles into different spin components,
N↓ = N↑ = N/2, and in the following, we focus on this
configuration with N = 4. Qualitatively, the behavior for other
cases will be analogous, but some appropriate rescaling of the
QFI needs to be performed, according to the change in the
number of quasidegenerate states.
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FIG. 1. Energy spectrum of the many-body Hamiltonian (6) for
different numbers of particles as a function of interaction strength
g. Note the quasidegeneracy of the many-body states for strong
repulsions. The energies and the interaction strengths are measured
in units of h̄� and (h̄3�/m)1/2, respectively.

IV. MEASUREMENT PROTOCOLS

In order to get an understanding of the maximum potential
temperature sensitivity of the system, in Fig. 2 we plot QFI as
a function of temperature for different g. We also provide the
envelope curve (solid blue) which corresponds to the ultimate
limit where g is optimally chosen for a given temperature in
order to ensure that the energy gap is optimal. Additionally,
on top of this, we plot the fundamental bound given by (5)
for M = 6 states, chosen so that it equals the quasidegeneracy
of the ground manifold of our system in the strong repulsion
regime g → ∞. The envelope obtained for the few-fermion
system is always below the fundamental bound. This is a direct
consequence of the structure of the energy spectrum, which in
the case studied is different from the optimal structure dis-
cussed in [17]. The energy levels form a degenerate manifold
rather than the gap structure between the isolated state and
M − 1 degenerated states. However, the discrepancy between
the fundamental bound and the envelope is less than 40% for
any temperature. This is a surprisingly good result, taking into
account that we consider a naturally appearing level structure
with only a single tuning parameter g.

Naturally, reaching the sensitivity predicted by the QFI
requires measurements projecting the system onto energy
eigenbasis and it may be very difficult in practice. From
the experimental perspective, a much more feasible option is
particle population measurement on respective single-particle
orbitals. For the considered system the most general basis of
this type is spanned by the Fock states of the two-component
mixture (7). In the following, we consider three types of
measurements prepared in the Fock basis. Each of these

FIG. 2. Quantum Fisher information for a balanced system of
N = 4 fermions, as a function of temperature T , for different
interaction strengthsg. The blue envelope corresponds to optimization
of g for each value of T and approaches very closely the fundamental
bound (5) for M = 6, which is the quasidegeneracy of the ground
state. For T � 0.1 (shaded area), when kBT becomes comparable to
h̄�, higher energy levels start to contribute and hence the envelope
may surpass the fundamental bound where only M = 6 levels are
considered. The QFI and temperature are measured in units of
(h̄�/kB )−1/2 and h̄�/kB , respectively.

measurements depends on the resolution available in the many-
body basis. Next, in Fig. 3 we compare the Fisher information
obtained for these different measurement schemes and with
the QFI encoding the impassable bound for given experimental
realization.

The most general measurement in the Fock basis (7) is
based on simple projections of the many-body thermal state
ρ̂T on a single many-body Fock state |Fi〉, i.e., pi(T ) =
Tr(ρ̂T |Fi〉〈Fi |). The corresponding FI FFock(T ) is shown in
Fig. 3 with a solid thin line. As suspected, some reduction of
the temperature sensitivity is present. Although this approach
is very general, it requires many accurate and demanding
measurements of occupations on all possible single-particle
levels. Therefore, it is more reasonable to assume that one has
only limited access to many-body Fock states and rather it is
only possible to perform measurements of coarse probabilities
on some low-lying single-particle orbitals. In the considered
case of four fermions, the simplest measurement of this kind
gives as an output the probability Pk of finding exactly k =
0, . . . ,4 particles occupying two of the lowest orbitals of the
harmonic trap [27]. This kind of measurement corresponds to
coarse-grained projectors Pk = ∑

i |Fk
i 〉〈Fk

i |, where summa-
tion runs over all Fock states having exactly k particles in the
two lowest orbitals. Simply, the probabilities Pk are calculated
straightforwardly by dividing the Fock basis {|Fi〉} into five in-
dependent subsets having exactly k particles in chosen orbitals.
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FIG. 3. Different Fisher information as a function of temperature
T calculated for a strongly interacting system (g = 14) of N↑ = N↓ =
2. The solid thick line corresponds to the quantum Fisher information
FQ(T ), which defines an upper limit for other Fisher information
obtained via particular measurement schemes. Other lines represent
different variants of the Fock basis measurement: FFock(T ), the com-
plete Fock state projection (solid thin line);Fcoarse(T ), measurement of
the total occupation of the two lowest single-particle orbitals (dotted
line); FFermi(T ), binary measurement of the presence of a particle
just above the Fermi level (dash-dotted line). See the text for details.
The Fisher information and temperature are measured in units of
(h̄�/kB )−1/2 and h̄�/kB , respectively.

We denote the corresponding FI as Fcoarse(T ) and we plot it
in Fig. 3 with the dotted line. Obviously, the coarse-grained
measurements significantly reduce the number of possible
outcomes from the dimension of considered Hilbert space to
only five numbers. Therefore, reduction of FI is suspected.
Surprisingly, as seen in Fig. 3, this reduction is only by one
order of magnitude when compared to measurements based on
individual Fock states. These results show that experimentally
accessible measurements may serve as appropriate and relevant
tools from the metrological point of view.

Finally, we also analyze the simplest measurement from the
experimental point of view. It is based on a direct measurement
of the probability of finding a particle with a given spin σ

on a first excited state above the Fermi sea of the noninter-
acting system. The measurement results in a binary outcome
{P,1 − P } related to a single-particle number operator n̂σ,iF =
â
†
σ,iF

âσ,iF , where iF is an index of the first single-particle orbital
above the Fermi level of the noninteracting system (in the
case of N↑ = N↓ = 2 particles iF = 3). The corresponding
FI FFermi(T ) is displayed with the dash-dotted line in Fig. 3.
As can be seen, the FI obtained for a binary outcome is of the
same order of magnitude as the FI obtained via coarse-grained
Fock space measurements and is only two orders of magnitude
smaller when compared to the optimal QFI. Although the

information obtained with available experiments is reduced
when simpler measurement schemes are considered, even the
elementary binary measurement provides sensitivity that is
three orders of magnitude higher than in the noninteracting
case. As such, the considered system forms a relatively good
quantum thermometer operating in the regime of tens of
nanokelvin (for standard trapping frequencies operating on the
order of kilohertz [27]).

The quantum thermometer can be practically utilized only
if there exists a route for weak coupling and thermalization
with some other quantum system (in this case some other
ultracold gas) serving as a probe of unknown temperature. In
the considered case such a coupling is indeed possible and
can be carried out by any long-range interaction leading to
the unconstrained energy transfer between systems without
introducing significant correlations. One of the possible paths
is to exploit the Rydberg-dressing technique [42,43], i.e.,
the off-resonant coupling of the probe and thermometer to
two different high-lying Rydberg states with different orbital
quantum numbers. Although symmetric dressing results only
in an overall static energy shift in both systems [44,45], an
asymmetric off-resonant coupling to different Rydberg states
results in weak Rydberg-dressed dipole-dipole interactions
[46]. In consequence, a direct exchange of angular momentum
and energy is present and may lead to the thermalization.
Nevertheless, it should be pointed that the general problem
of the thermalization in quasi-one-dimensional systems is still
a long-standing goal and it is far beyond the scope of this work
[47–50].

V. CONCLUSION

Based on a parameter estimation theory, we analyzed the
thermal sensitivity of a two-component mixture of ultracold
fermions confined in a one-dimensional harmonic trap in
terms of quantum Fisher information. We showed that the
natural quasidegeneracy of the many-body spectrum makes
the system a good candidate for the experimental realization
of the quantum thermometer which was recently proposed
theoretically by Correa et al. [17]. An essential advantage of
the considered setup is its potential tunability in the regime
of temperatures on which the thermometer operates. The
sensitivity of the system can be controlled straightforwardly
by tuning interparticle interactions and the trapping frequency.
Controllability is increased since the number of states forming
a quasidegenerate manifold can be engineered by changing the
number of particles. In principle, the system can be determin-
istically coupled to other quantum systems via the Rydberg-
dressing mechanism, which allows performing experimental
validation of the system. As shown, the Fisher information
predicted for experimentally accessible measurements is only
two orders of magnitude smaller than the fundamental bound
determined by the quantum Fisher information.

ACKNOWLEDGMENTS

This work was supported by the (Polish) National Science
Center Grants No. 2016/22/E/ST2/00555 (M.P. and T.S.) and
No. 2016/22/E/ST2/00559 (R.D.-D.). We thank Michał Tomza
for fruitful discussions.

063619-4



FEW-FERMION THERMOMETRY PHYSICAL REVIEW A 97, 063619 (2018)

[1] P. R. N. Childs, J. R. Greenwood, and C. A. Long, Rev. Sci.
Instrum. 71, 2959 (2000).

[2] S. Knünz, M. Herrmann, V. Batteiger, G. Saathoff, T. W. Hänsch,
and Th. Udem, Phys. Rev. A 85, 023427 (2012).

[3] B. G. Norton, E. W. Streed, M. J. Petrasiunas, A. Jechow, and
D. Kielpinski, New J. Phys. 13, 113022 (2011).

[4] G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K.
Lo, H. Park, and M. D. Lukin, Nature (London) 500, 54 (2013).

[5] T. Plakhotnik, M. W. Doherty, J. H. Cole, R. Chapman, and
N. B. Manson, Nano Lett. 14, 4989 (2014).

[6] U. Marzolino and D. Braun, Phys. Rev. A 88, 063609
(2013).

[7] F. Seilmeier, M. Hauck, E. Schubert, G. J. Schinner, S. E. Beavan,
and A. Högele, Phys. Rev. Appl. 2, 024002 (2014).

[8] F. Haupt, A. Imamoglu, and M. Kroner, Phys. Rev. Appl. 2,
024001 (2014).

[9] E. A. Chekhovich, A. Ulhaq, E. Zallo, F. Ding, O. G. Schmidt,
and M. S. Skolnick, Nat. Mater. 16, 982 (2017).

[10] R. S. Lous, I. Fritsche, M. Jag, B. Huang, and R. Grimm,
Phys. Rev. A 95, 053627 (2017).

[11] M. Brunelli, S. Olivares, and M. G. A. Paris, Phys. Rev. A 84,
032105 (2011).

[12] J. Ruostekoski, C. J. Foot, and A. B. Deb, Phys. Rev. Lett. 103,
170404 (2009).

[13] C. Sabín, A. White, L. Hackermuller, and I. Fuentes, Sci. Rep.
4, 6436 (2014).

[14] T. M. Stace, Phys. Rev. A 82, 011611(R) (2010).
[15] A. Monras and F. Illuminati, Phys. Rev. A 83, 012315 (2011).
[16] M. Brunelli, S. Olivares, M. Paternostro, and M. G. A. Paris,

Phys. Rev. A 86, 012125 (2012).
[17] L. A. Correa, M. Mehboudi, G. Adesso, and A. Sanpera,

Phys. Rev. Lett. 114, 220405 (2015).
[18] M. Jarzyna and M. Zwierz, Phys. Rev. A 92, 032112 (2015).
[19] M. G. A. Paris, J. Phys. A: Math. Theor. 49, 03LT02 (2016).
[20] V. Mukherjee, A. Zwick, A. Ghosh, and G. Kurizki,

arXiv:1711.09660.
[21] P. P. Hofer, J. B. Brask, and N. Brunner, arXiv:1711.09827.
[22] L. A. Correa, M. Perarnau-Llobet, K. V. Hovhannisyan, S.

Hernández-Santana, M. Mehboudi, and A. Sanpera, Phys. Rev.
A 96, 062103 (2017).

[23] K. V. Hovhannisyan and L. A. Correa, arXiv:1712.03088.
[24] S. Campbell, M. G. Genoni, and S. Deffner, Quantum Sci.

Technol. 3, 025002 (2018).
[25] T. Sowiński, T. Grass, O. Dutta, and M. Lewenstein, Phys. Rev.

A 88, 033607 (2013).

[26] S. E. Gharashi and D. Blume, Phys. Rev. Lett. 111, 045302
(2013).

[27] F. Serwane, G. Zürn, T. Lompe, T. Ottenstein, A. N. Wenz, and
S. Jochim, Science 332, 336 (2011).

[28] A. N. Wenz, G. Zürn, S. Murmann, I. Brouzos, T. Lompe, and
S. Jochim, Science 342, 457 (2013).

[29] G. Zürn, F. Serwane, T. Lompe, A. N. Wenz, M. G. Ries, J. E.
Bohn, and S. Jochim, Phys. Rev. Lett. 108, 075303 (2012).

[30] G. Zürn, A. N. Wenz, S. Murmann, A. Bergschneider, T. Lompe,
and S. Jochim, Phys. Rev. Lett. 111, 175302 (2013).

[31] D. Blume, Rep. Prog. Phys. 75, 046401 (2012).
[32] N. T. Zinner, EPJ Web Conf. 113, 01002 (2016).
[33] C. W. Helstrom, Quantum Detection and Estimation Theory

(Academic, New York, 1976).
[34] S. L. Braunstein and C. M. Caves, Phys. Rev. Lett. 72, 3439

(1994).
[35] L. Jing, J. Xiao-Xing, Z. Wei, and W. Xiao-Guang, Commun.

Theor. Phys. 61, 45 (2014).
[36] M. Olshanii, Phys. Rev. Lett. 81, 938 (1998).
[37] C. Chin, R. Grimm, P. S. Julienne, and E. Tiesinga, Rev. Mod.

Phys. 82, 1225 (2010).
[38] E. Haller, M. Gustavsson, M. J. Mark, J. G. Danzl, R. Hart, G.

Pupillo, and H.-C. Nägerl, Science 325, 1224 (2009).
[39] T. Haugset and H. Haugerud, Phys. Rev. A 57, 3809 (1998).
[40] M. Płodzień, D. Wiater, A. Chrostowski, and T. Sowiński,

arXiv:1803.08387.
[41] L. Guan, S. Chen, Y. Wang, and Z.-Q. Ma, Phys. Rev. Lett. 102,

160402 (2009).
[42] J. E. Johnson and S. L. Rolston, Phys. Rev. A 82, 033412 (2010).
[43] J. Honer, H. Weimer, T. Pfau, and H. P. Büchler, Phys. Rev. Lett.

105, 160404 (2010).
[44] J. B. Balewski, A. T. Krupp, A. Gaj, S. Hofferberth, R. Löw, and

T. Pfau, New J. Phys. 16, 063012 (2014).
[45] M. Płodzień, G. Lochead, J. de Hond, N. J. van Druten, and S.

Kokkelmans, Phys. Rev. A 95, 043606 (2017).
[46] S. Wüster, C. Ates, A. Eisfeld, and J. M. Rost, New J. Phys. 13,

073044 (2011).
[47] L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol, Adv. Phys.

65, 239 (2016).
[48] M. Rigol, V. Dunjko, and M. Olshanii, Nature (London) 452,

854 (2008).
[49] E. Kaminishi, T. Mori, T. N. Ikeda, and M. Ueda, Nat. Phys. 11,

1050 (2015).
[50] A. M. Kaufman, M. E. Tai, A. Lukin, M. Rispoli, R. Schittko,

P. M. Preiss, and M. Greiner, Science 353, 794 (2016).

063619-5

https://doi.org/10.1063/1.1305516
https://doi.org/10.1063/1.1305516
https://doi.org/10.1063/1.1305516
https://doi.org/10.1063/1.1305516
https://doi.org/10.1103/PhysRevA.85.023427
https://doi.org/10.1103/PhysRevA.85.023427
https://doi.org/10.1103/PhysRevA.85.023427
https://doi.org/10.1103/PhysRevA.85.023427
https://doi.org/10.1088/1367-2630/13/11/113022
https://doi.org/10.1088/1367-2630/13/11/113022
https://doi.org/10.1088/1367-2630/13/11/113022
https://doi.org/10.1088/1367-2630/13/11/113022
https://doi.org/10.1038/nature12373
https://doi.org/10.1038/nature12373
https://doi.org/10.1038/nature12373
https://doi.org/10.1038/nature12373
https://doi.org/10.1021/nl501841d
https://doi.org/10.1021/nl501841d
https://doi.org/10.1021/nl501841d
https://doi.org/10.1021/nl501841d
https://doi.org/10.1103/PhysRevA.88.063609
https://doi.org/10.1103/PhysRevA.88.063609
https://doi.org/10.1103/PhysRevA.88.063609
https://doi.org/10.1103/PhysRevA.88.063609
https://doi.org/10.1103/PhysRevApplied.2.024002
https://doi.org/10.1103/PhysRevApplied.2.024002
https://doi.org/10.1103/PhysRevApplied.2.024002
https://doi.org/10.1103/PhysRevApplied.2.024002
https://doi.org/10.1103/PhysRevApplied.2.024001
https://doi.org/10.1103/PhysRevApplied.2.024001
https://doi.org/10.1103/PhysRevApplied.2.024001
https://doi.org/10.1103/PhysRevApplied.2.024001
https://doi.org/10.1038/nmat4959
https://doi.org/10.1038/nmat4959
https://doi.org/10.1038/nmat4959
https://doi.org/10.1038/nmat4959
https://doi.org/10.1103/PhysRevA.95.053627
https://doi.org/10.1103/PhysRevA.95.053627
https://doi.org/10.1103/PhysRevA.95.053627
https://doi.org/10.1103/PhysRevA.95.053627
https://doi.org/10.1103/PhysRevA.84.032105
https://doi.org/10.1103/PhysRevA.84.032105
https://doi.org/10.1103/PhysRevA.84.032105
https://doi.org/10.1103/PhysRevA.84.032105
https://doi.org/10.1103/PhysRevLett.103.170404
https://doi.org/10.1103/PhysRevLett.103.170404
https://doi.org/10.1103/PhysRevLett.103.170404
https://doi.org/10.1103/PhysRevLett.103.170404
https://doi.org/10.1038/srep06436
https://doi.org/10.1038/srep06436
https://doi.org/10.1038/srep06436
https://doi.org/10.1038/srep06436
https://doi.org/10.1103/PhysRevA.82.011611
https://doi.org/10.1103/PhysRevA.82.011611
https://doi.org/10.1103/PhysRevA.82.011611
https://doi.org/10.1103/PhysRevA.82.011611
https://doi.org/10.1103/PhysRevA.83.012315
https://doi.org/10.1103/PhysRevA.83.012315
https://doi.org/10.1103/PhysRevA.83.012315
https://doi.org/10.1103/PhysRevA.83.012315
https://doi.org/10.1103/PhysRevA.86.012125
https://doi.org/10.1103/PhysRevA.86.012125
https://doi.org/10.1103/PhysRevA.86.012125
https://doi.org/10.1103/PhysRevA.86.012125
https://doi.org/10.1103/PhysRevLett.114.220405
https://doi.org/10.1103/PhysRevLett.114.220405
https://doi.org/10.1103/PhysRevLett.114.220405
https://doi.org/10.1103/PhysRevLett.114.220405
https://doi.org/10.1103/PhysRevA.92.032112
https://doi.org/10.1103/PhysRevA.92.032112
https://doi.org/10.1103/PhysRevA.92.032112
https://doi.org/10.1103/PhysRevA.92.032112
https://doi.org/10.1088/1751-8113/49/3/03LT02
https://doi.org/10.1088/1751-8113/49/3/03LT02
https://doi.org/10.1088/1751-8113/49/3/03LT02
https://doi.org/10.1088/1751-8113/49/3/03LT02
http://arxiv.org/abs/arXiv:1711.09660
http://arxiv.org/abs/arXiv:1711.09827
https://doi.org/10.1103/PhysRevA.96.062103
https://doi.org/10.1103/PhysRevA.96.062103
https://doi.org/10.1103/PhysRevA.96.062103
https://doi.org/10.1103/PhysRevA.96.062103
http://arxiv.org/abs/arXiv:1712.03088
https://doi.org/10.1088/2058-9565/aaa641
https://doi.org/10.1088/2058-9565/aaa641
https://doi.org/10.1088/2058-9565/aaa641
https://doi.org/10.1088/2058-9565/aaa641
https://doi.org/10.1103/PhysRevA.88.033607
https://doi.org/10.1103/PhysRevA.88.033607
https://doi.org/10.1103/PhysRevA.88.033607
https://doi.org/10.1103/PhysRevA.88.033607
https://doi.org/10.1103/PhysRevLett.111.045302
https://doi.org/10.1103/PhysRevLett.111.045302
https://doi.org/10.1103/PhysRevLett.111.045302
https://doi.org/10.1103/PhysRevLett.111.045302
https://doi.org/10.1126/science.1201351
https://doi.org/10.1126/science.1201351
https://doi.org/10.1126/science.1201351
https://doi.org/10.1126/science.1201351
https://doi.org/10.1126/science.1240516
https://doi.org/10.1126/science.1240516
https://doi.org/10.1126/science.1240516
https://doi.org/10.1126/science.1240516
https://doi.org/10.1103/PhysRevLett.108.075303
https://doi.org/10.1103/PhysRevLett.108.075303
https://doi.org/10.1103/PhysRevLett.108.075303
https://doi.org/10.1103/PhysRevLett.108.075303
https://doi.org/10.1103/PhysRevLett.111.175302
https://doi.org/10.1103/PhysRevLett.111.175302
https://doi.org/10.1103/PhysRevLett.111.175302
https://doi.org/10.1103/PhysRevLett.111.175302
https://doi.org/10.1088/0034-4885/75/4/046401
https://doi.org/10.1088/0034-4885/75/4/046401
https://doi.org/10.1088/0034-4885/75/4/046401
https://doi.org/10.1088/0034-4885/75/4/046401
https://doi.org/10.1051/epjconf/201611301002
https://doi.org/10.1051/epjconf/201611301002
https://doi.org/10.1051/epjconf/201611301002
https://doi.org/10.1051/epjconf/201611301002
https://doi.org/10.1103/PhysRevLett.72.3439
https://doi.org/10.1103/PhysRevLett.72.3439
https://doi.org/10.1103/PhysRevLett.72.3439
https://doi.org/10.1103/PhysRevLett.72.3439
https://doi.org/10.1088/0253-6102/61/1/08
https://doi.org/10.1088/0253-6102/61/1/08
https://doi.org/10.1088/0253-6102/61/1/08
https://doi.org/10.1088/0253-6102/61/1/08
https://doi.org/10.1103/PhysRevLett.81.938
https://doi.org/10.1103/PhysRevLett.81.938
https://doi.org/10.1103/PhysRevLett.81.938
https://doi.org/10.1103/PhysRevLett.81.938
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1126/science.1175850
https://doi.org/10.1126/science.1175850
https://doi.org/10.1126/science.1175850
https://doi.org/10.1126/science.1175850
https://doi.org/10.1103/PhysRevA.57.3809
https://doi.org/10.1103/PhysRevA.57.3809
https://doi.org/10.1103/PhysRevA.57.3809
https://doi.org/10.1103/PhysRevA.57.3809
http://arxiv.org/abs/arXiv:1803.08387
https://doi.org/10.1103/PhysRevLett.102.160402
https://doi.org/10.1103/PhysRevLett.102.160402
https://doi.org/10.1103/PhysRevLett.102.160402
https://doi.org/10.1103/PhysRevLett.102.160402
https://doi.org/10.1103/PhysRevA.82.033412
https://doi.org/10.1103/PhysRevA.82.033412
https://doi.org/10.1103/PhysRevA.82.033412
https://doi.org/10.1103/PhysRevA.82.033412
https://doi.org/10.1103/PhysRevLett.105.160404
https://doi.org/10.1103/PhysRevLett.105.160404
https://doi.org/10.1103/PhysRevLett.105.160404
https://doi.org/10.1103/PhysRevLett.105.160404
https://doi.org/10.1088/1367-2630/16/6/063012
https://doi.org/10.1088/1367-2630/16/6/063012
https://doi.org/10.1088/1367-2630/16/6/063012
https://doi.org/10.1088/1367-2630/16/6/063012
https://doi.org/10.1103/PhysRevA.95.043606
https://doi.org/10.1103/PhysRevA.95.043606
https://doi.org/10.1103/PhysRevA.95.043606
https://doi.org/10.1103/PhysRevA.95.043606
https://doi.org/10.1088/1367-2630/13/7/073044
https://doi.org/10.1088/1367-2630/13/7/073044
https://doi.org/10.1088/1367-2630/13/7/073044
https://doi.org/10.1088/1367-2630/13/7/073044
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1038/nature06838
https://doi.org/10.1038/nature06838
https://doi.org/10.1038/nature06838
https://doi.org/10.1038/nature06838
https://doi.org/10.1038/nphys3478
https://doi.org/10.1038/nphys3478
https://doi.org/10.1038/nphys3478
https://doi.org/10.1038/nphys3478
https://doi.org/10.1126/science.aaf6725
https://doi.org/10.1126/science.aaf6725
https://doi.org/10.1126/science.aaf6725
https://doi.org/10.1126/science.aaf6725



