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Quantum state preparation is vital to quantum computation and quantum information processing tasks. In
adiabatic state preparation, the target state is theoretically obtained with nearly perfect fidelity if the control
parameter is tuned slowly enough. As this, however, leads to slow dynamics, it is often desirable to be able
to carry out processes more rapidly. In this work, we employ two global optimization methods to estimate the
quantum speed limit for few-fermion systems confined in a one-dimensional harmonic trap. Such systems can be
produced experimentally in a well-controlled manner. We determine the optimized control fields and achieve a
reduction in the ramping time of more than a factor of four compared to linear ramping. We also investigate how
robust the fidelity is to small variations of the control fields away from the optimized shapes.
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I. INTRODUCTION

Quantum optimal control is essential to manipulate and
engineer complex quantum systems in quantum information
processing and quantum computation [1–3]. Operations in
experiments are often executed adiabatically to guarantee the
transition to the target state with almost-perfect fidelity [4].
The adiabatic process, however, needs to be done slowly, and
it is therefore interesting to look for ways to achieve a speedup,
which is a topic of the field of quantum optimal control [5,6].

The minimal allowed time for driving such transitions
with perfect fidelity is known as the quantum speed limit
(QSL) [7,8]. The QSL is a lower bound for the duration in
which the quantum system can be completely steered to the
target state [8–13]. For durations shorter than the QSL, defects
emerge that lead to a drop in fidelity between the target state
and the obtained state. The quantum optimal control theory
is important to obtain the QSL [14] and has been applied
using certain numerical methods in many quantum systems
like NMR [15], Bose-Einstein condensates [16–18], and spin
chain models [19,20].

Except for a few special cases in which analytical results
are available, one has to perform numerical calculations, which
are highly nontrivial, due to the high dimensionality of the
Hilbert space. Generally, quantum control theory relies on
numerical techniques including local optimization algorithms,
such as Krotov, GRAPE, and CRAB [21–24], as well as global
optimization methods like differential evolution (DE) [25–
27] and the covariance matrix adaptation evolution strategy
(CMA-ES) [28,29]. In Ref. [30], it is proposed that numerical
optimization relies on an appropriate balance between local
and global optimization approaches and problem representa-
tion. When the quantum system is fully controllable and free
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of constraints, there are no traps in the form of suboptimal
local extrema [31]. In such cases, the local algorithms are
preferred, as the computational cost of local optimization
methods is lower than that of global ones. When the duration
of the process is short or if there are constraints on the control
field, local algorithms are often stuck in local suboptimal traps
in the quantum control landscape. For the low-dimensional
quantum system, the computational cost of multistarting the
local optimization algorithms, which gives sufficiently good
results, is comparable with that of multistarting the global
ones. In Ref. [25], local optimization methods fail to obtain a
satisfactory result determined by a certain threshold infidelity
for quantum gates, though global optimization methods suc-
ceed. The superiority of global optimization methods is also
highlighted for the high-dimensional Hamiltonians studied in
Ref. [26].

The ultimate goal is to fully control any many-body quan-
tum system. In cold-atom experiments, one can influence
the interparticle interaction with an external magnetic field
thanks to Feshbach resonances. Due to the adiabatic change
of the interaction it is possible to obtain, for example, a
highly correlated state known as a Tonks-Girardeau gas starting
from the noninteracting state [32–34]. Unfortunately, full
control of systems with a large number of particles is very
challenging. A possible way to overcome the difficulty of
such complex systems is to fully control smaller physical
systems and use them to build real many-body systems. A
possible candidate to serve this purpose is quantum systems of
a few ultracold atoms [35–41]. In two-component mixtures of
fermions one can deterministically prepare a system confining
a well-established number of atoms with astonishing precision.
The properties of few-body ultracold systems were also studied
recently theoretically, including energy spectra and density
profiles [42–50]. The two different flavors in a mixture of
same-mass fermions are realized experimentally by using two
different hyperfine states of ultracold lithium 6Li. A natural
way to generalize this idea is to change the hyperfine states
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to two completely different species, for example, lithium and
potassium [51,52]. Such an experiment on a two-flavor mixture
of lithium and potassium on a many-body scale has been
performed [53]. Recently, few-body mass-imbalanced systems
were broadly explored theoretically [54–60].

In this paper, we employ two global optimization
algorithms, the CMA-ES [28,29] and self-adaptive DE
(SaDE) [26,27], to numerically estimate the quantum speed
limit for few-fermion mass-imbalanced systems and show the
optimized control field for various durations. We consider
the fidelity of the final state with respect to the target state
as the fitness function to be optimized. As proof of concept
we show how to fully control a system of a few fermions and
drive it from the noninteracting state to the strongly correlated
one.

II. THE MODEL

We consider a two-flavor system of a few ultracold fermions
confined in a one-dimensional harmonic trap. Here we assume
that the frequencies ω of the harmonic trap are the same for
both flavors. Fermions of opposite flavors interact in the ul-
tracold regime via short-range forces modeled by the deltalike
potential U (x − x ′) = gδ(x − x ′), where g is the interaction
strength [61]. In this approximation fermions of the same
type do not interact as a consequence of the Pauli exclusion
principle. Fermions of opposite flavors are fundamentally
distinguishable and may have the same or different masses
(in the following we denote the mass ratio μ = m↑/m↓).
The Hamiltonian of the mass-imbalanced system reads (see
[54–56])

Ĥ =
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i=1
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All quantities are measured in appropriate harmonic oscillator
units, i.e., positions are measured in units of

√
h̄/(m↓ω), time

in units of 1/ω, energies in h̄ω, and the interaction strength g

is measured in units of (h̄3ω/m↓)1/2.
We employ the exact diagonalization approach to study the

dynamics of the few-fermion system (see Ref. [54] for details
of the numerical method). The interaction g is controlled
experimentally with the help of the magnetic field B, so by
changing the magnetic field in time, one can also modify
the interaction g(B(t)). Thus, it is convenient to treat the
interaction strength g(t) as the control field. The many-body
spectrum for the system of three fermions is shown in Fig. 1. In
this paper, we focus on the transformation from the ground state
of the noninteracting Hamiltonian Ĥ(g = 0) to that of Ĥ(g =
10), where strong correlations are present. By increasing the
interaction adiabatically, one can transfer the noninteracting
state �g=0 to the interacting one �g=10. Note that depending
on whether mass imbalance is present in the system, and on
the specific configuration, the ground state of the system might
be quasidegenerated in the strong interaction limit. For the
equal-mass system there is a threefold degeneracy, while for

FIG. 1. Energy spectrum of the system of three fermions for three
scenarios, namely, 1Li-2Li, 2K-1Li, and 1K-2Li. The thick orange
line gives the ground-state energy. The noninteracting ground state
g = 0 and the strongly correlated target state g = 10 are shown by
the red circles. For the 1Li-2Li and the 2K-1Li systems, there are,
respectively, two and one other states that have energies close to the
ground-state energy in the strong coupling limit. These states do,
however, have different symmetries than the ground state, and the
population of these states remains 0 throughout the dynamics. The
energies and the interaction strengths are measured in units of h̄ω and
(h̄3ω/m↓)1/2, respectively.

the system 1K-2Li the ground state is not degenerated. For
the dynamics considered below, there is no coupling to these
additional low-energy states, because they have a different
symmetry. The time scale for adiabatic ramping is hence
determined not by the energy of these states relative to the
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ground state, but by the energy of the higher lying states relative
to the ground state.

For a typical quantum control problem, the Hamiltonian
depends on a time-dependent control field H = H(g(t)). We
wish to optimize the fidelity as a fitness function,

F (g(t),T ) = |〈�g=10|T exp

(
−i

∫ T

0
H(g(t))dt

)
|�g=0〉|2,

(2)

with the time evolution driven by the control field g(t),
where T is the time-ordering operator and the duration T

is discretized with time-step size δt = 10−3 for numerical
evaluation of the time evolution. It is noteworthy that the
most time-consuming part during the numerical calculation
is the time evolution, which consists of a long sequence of
evaluations of exponentials of large Hamiltonian matrices (see
Sec. V). Therefore the maximal number of iterations is set to
be 500 for the CMA-ES and SaDE.

To perform this optimization systematically, we choose
g(t) to be decomposed into a truncated Fourier basis (CRAB
method; see [16] and [21]),

g(t) = g0(t)

[
1 + 1

N (t)

Nc∑
n=1

(An cos(ωnt) + Bn cos(ωnt))

]
,

(3)

where g0(t) is the initial guess of the control field and N (t) =
T 2/2t(T − t) is a time-dependent function to fix the initial and
final control field values at g(t = 0) = 0 and g(t = T ) = 10.
{An,Bn} are Fourier coefficients, ωn = 2πn(1 + rn)/T are
“randomized” Fourier harmonics, and rn ∈ [0,1]. The choice
of the cutoff number Nc of the Fourier basis may vary from
one case to another: it may depend on the Hamiltonian, the
fitness function, and the optimization algorithm. The parameter
space (search space) consists of the Fourier coefficients and
harmonics {An,Bn,ωn}, which can be numerically obtained
using an optimization method, e.g., the simplex method,
gradient-based strategies, and global optimization algorithms.
In this paper, we restrict ourselves to nonnegative interactions
g(t) � 0 by simply setting the negative values of g(t) to be 0, in
which case the local optima in the quantum control landscape
are usually not global optima.

III. GLOBAL OPTIMIZATION

We employ two evolutionary computation techniques, the
CMA-ES and SaDE, as global optimization methods. We
compare the CMA-ES with the SaDE for three systems:
(i) a mixture of three 6Li atoms with two different hyperfine
states (N↑ = 1, N↓ = 2, μ = 1); (ii) a mixture of one 40K
atom and two 6Li atoms (N↑ = 1, N↓ = 2, μ = 40/6); and
(iii) a mixture of two 40K atoms and one 6Li atom (N↑ = 2,
N↓ = 1, μ = 40/6). We numerically estimate the duration
TQSL for which the fidelity F (TQSL) = 0.99. We then compare
the control field g(t) for various durations T and depict the
deviations between the optimized control field and nonoptimal
ones. For simplicity, we present results on the 1K-2Li system
unless stated otherwise.

The CMA-ES and SaDE are variants of the evolution
strategy (ES) and DE, respectively. Both the ES and DE belong
to the class of evolutionary algorithms and are stochastic,
derivative-free algorithms for global optimization of fitness
functions. An evolutionary algorithm works through a loop of
variations (including recombination and mutation) and selec-
tion in each iteration (also called generation). New candidates
are generated by variation of current parent individuals in each
iteration. Then some candidates are selected, based on their
fitness, to be parents for the next generation. In this way, search
points with better and better values of the fitness function are
generated over the sequence of iterations.

In the CMA-ES, new search points (parameter vectors) are
sampled according to a multivariate normal distribution in
the parameter space. The CMA-ES begins with a randomly
initiated population of search points in the parameter space
with the initial mean and covariant matrix. The population
size Np is the number of search points in each iteration. In the
selection and recombination step, the search points with the
best m fitness, where m is the parent size and not larger than
the population size, are chosen as the parents to update the new
mean, step-size, and covariant matrix. Recombination amounts
to selecting a new mean value for the multivariate normal
distribution. In the mutation step, the parameter vectors are
further added by random vectors with zero mean and updated
covariance matrix. The fitness function evolves iteratively
towards its optimal state. In contrast to most other evolutionary
algorithms, the CMA-ES is quasi-parameter-free: one needs
only to randomly choose an initial value of the step size.
In addition, the population size Np does not depend on the
dimension of the parameter space and can hence be chosen
freely (which is in contrast to the DE). In general, large
population sizes help to circumvent local optima, while small
population sizes usually lead to faster convergence. Therefore,
the trade-off between the computational cost and the perfor-
mance needs to be carefully determined if the computational
time for each iteration is considerably long. See [29] for a
review of the CMA-ES method.

In Table I we list the values of fidelity for various com-
binations of Nc and Np of duration T = 0.1 obtained using
the CMA-ES method for the 1K-2Li system. The maximal
fidelity in Table I is F = 0.605 37 with (Nc = 15, Np = 60).
It is hardly possible to infer the optimal combination (Nc,
Np) to obtain the maximal fidelity for arbitrary durations or
reasonable to try all possible combinations of (Nc, Np), as the

TABLE I. Fidelity for various combinations of cutoff number
Nc and population size Np of duration T = 0.1 using the CMA-ES
method for a 1K-2Li system. The maximal fidelity value is indicated
by boldface font, and the corresponding pair of values is Nc = 15 and
Np = 60, respectively.

Nc

Np 5 10 15 20

20 0.5995 0.5869 0.5933 0.5857
40 0.6021 0.5984 0.5924 0.5848
60 0.5968 0.6015 0.6053 0.5940
80 0.5963 0.5972 0.5987 0.5894
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computational cost is huge. Therefore we fix the population
size to NES

p = 60 and the cutoff number of the Fourier basis
Nc = 15 for all durations in the three few-fermion systems.

In the SaDE, an initial population of parameter vectors
(called genome or chromosome) is randomly sampled. Then
the mutant chromosomes are obtained from the differential
mutation operation (origin of the term “DE”). In the mutation
step, three mutually exclusive parameter vectors are generated
randomly. The new set of parameter vectors is generated by
adding one of these three vectors to the difference between
the other two vectors with the mutation scale factor S, which
controls the differential variation. In the recombination step, an
offspring is formed by recombining the original and these mu-
tant chromosome in a stochastic way, where the crossover rate
Cr controls the probability of recombination. In the selection
step, comparison of values of the fitness function determines
whether the offspring or the original chromosome survives to
the next generation. See Ref. [63] for a review of DE.

In the conventional DE algorithm, there are two free param-
eters, S, Cr, which are fixed through the iterations. In SaDE,
however, S and Cr are adapted in each iteration to enhance
the convergence rate for the high-dimensional optimization
problem and to obtain better-quality solutions more efficiently,
compared with the conventional DE. A reasonable value of Np

for the DE and its variants is usually chosen between 5D and
10D (D = 3Nc is the dimension of the parameter space), as
suggested in the field of evolutionary computation science [62].
Note, however, that this has not been tested in great detail for
physically motivated quantum systems. In this work, we fix the
population size Np = 5D and set the cutoff number to Nc = 5,
thus NDE

p = 75, for the SaDE to reduce the computational cost.
Details of the SaDE can be found in [26] and [27].

IV. RESULTS

First, we numerically compute the fidelity obtained for
optimized and nonoptimal control fields, when the duration
T of the time evolution is fixed to a certain value. We use the
constraint that the interactions must be nonnegative at all times.
We consider two typical nonoptimal rampings: linear ramping
and exponential ramping. The latter is described by

g(t) = gmax
1 − et/τ

1 − eT/τ
, (4)

where τ = T/5. (In [17], the exponential ramping with par-
ticular values of T and τ is representative of quasiadiabatic
ramping of the lattice depth used in experiments on optical
lattices.) In Fig. 2, we take the 1K-2Li system and compare
the fidelity (as a function of the duration) for the optimized
ramping obtained using the CMA-ES method with that for
exponential ramping and linear ramping. The shortest duration
with fidelity F = 0.99 is TExp = 6.5 for exponential ramping
and TLin = 11 for linear ramping, whereas TOpt = 2.7 for
optimized ramping (note that the time unit is 1/ω). Thus
the shortest duration obtained by the optimized control is
approximately one-fourth of that using linear ramping, and
two-fifths of that using exponential ramping, in the 1K-2Li
system. This means that by controlling the interaction in
the optimized way, one can significantly reduce the time for
preparation of the system in the strongly correlated state.

0 5 10 15 20
0.6

0.7

0.8

0.9

1

Optimized
Exponential
Linear

FIG. 2. Fidelity versus duration for the 1K-2Li system using
different control fields: optimized (solid blue line), exponential
(dashed red line), and linear (dash-dotted black line). The curve
for the optimized control field is obtained using the CMA-ES
algorithm. The stars mark the shortest durations for which a fi-
delity of F = 0.99 is reached: TOpt = 2.7, TExp = 6.5, and TLin = 11
(the time unit is ω−1).

In Fig. 3, we show the optimized control field and the control
fields of linear ramping and exponential ramping for different
durations. For a very short duration (T = 0.5), the optimized
control field shows a few large oscillations, while g(t) remains
0 for most of the time. [Note the requirement that g(t) � 0]. As
the duration approaches TOpt = 2.7, which is an estimate of the
quantum speed limit T ≈ TQSL [Fig. 3(b)], more oscillations
emerge to make the transformation as fast as possible and
the fidelity as high as possible. The deviation between the
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FIG. 3. Control field for different durations in a 1K-2Li system.
(a) T = 0.5, (b) T = 2.7, (c) T = 5, and (d) T = 15 (the time unit is
ω−1). Solid blue lines are the optimized control fields obtained using
the CMA-ES method; dashed red lines, exponential rampings; and
dash-dotted black lines, linear rampings.
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FIG. 4. Comparing the CMA-ES and SaDE. Top left: The infi-
delity (IF = 1 − F ) as a function of the duration T using the CMA-ES
(squares) and SaDE (asterisks) for 1Li-2Li (solid blue line), 1K-2Li
(dashed red line), and 2K-1Li (dash-dotted black line), where the
vertical axis is on the logarithm scale. Top right: Red squares represent
numerical data, which are obtained using the CMA-ES method, for the
infidelity IF as a function of the duration T for the 1K-2Li system,
while solid blue lines show the fitting obtained using the function
k cos2( T π

2β
) for the numerical results, where k and β are free fitting

parameters. Bottom: Comparisons of log-infidelity versus iterations in
the 1K-2Li system are shown between the CMA-ES (solid cyan line)
and the SaDE (dashed magenta line) for durations T = 2.6 (bottom
left) and T = 5 (bottom right), with the time unit ω−1.

optimized control field and the linear and exponential ones is
thus large for such durations. When the duration is much larger
than TOpt, e.g., T = 5 [Fig. 3(c)] and T = 15 [Fig. 3(d)], the
highly oscillating components are no longer necessary and the
deviations between different rampings are much smaller than
in the cases in which T < TOpt. Also, the fidelities at the longer
durations do not depend that much on the way we approach the
strong interaction. This observation means that for long enough
times, the exact shape of the control field does not matter.
This is why slow enough processes are quasiadiabatic and
the quantum state can be transferred when carefully managed.
Since we require the interaction strength to be nonnegative,
g � 0, the lower bound of the control field is 0, but there
is no upper bound. As mentioned above, if g(t) [as given
in Eq. (3)] is negative in some time interval, we put g(t)
equal to 0 in that interval, as shown in Fig. 3. Such processes
introduce the possibility of sharp peaks in the control fields
and thereby high Fourier components. Given the particular
experimental constraints of the system, one may perform an
analog optimization with appropriate constraints included.

The comparisons between CMA-ES and SaDE for three
few-fermion systems are shown in Fig. 4. To reduce the
computational cost, we set the maximal number of iterations
to 500. In addition, we set up halt criteria for the CMA-ES
and SaDE methods. For both of them, the calculations stop
if the distance between the minimal and the maximal fidelity
in the population is smaller than a threshold value (Error =
10−6). The top-left panel depicts the infidelity IF = 1 − F

as a function of the duration T for three systems using the
CMA-ES and SaDE methods. For short durations, T < 1.5,
the infidelities obtained using the CMA-ES and SaDE are very
close. For long durations, T > 1.5, however, the infidelities
obtained with the CMA-ES are smaller than those with the
SaDE (apart from T = 4 for the 1Li-2Li system), which means
that the performance of the CMA-ES is better than that of
the SaDE in terms of the best infidelity with the specific
parameters (Np,Nc) used for both global optimization methods
in this work. It is noteworthy that the estimate of the QSL
is approximately proportional to the inverse of the energy
gap, i.e., TQSL ∼ π/	, where 	 ≈ 1 is the energy gap to the
nearest coupled excited state for all three few-fermion systems
(see Fig. 1). This fact agrees with the conclusion obtained
in Ref. [21]. In the top-right panel, we show the numerical
results for the infidelity IF as a function of the duration T

for the 1K-2Li system using the CMA-ES method and the
curve fitting using the cosine square function k cos2( T π

2β
) with

two free fitting parameters (k,β). The single cosine square
function does not fit well for the numerical results. Such
deviations or discrepancies are also found in different quantum
systems [13,18,64].

In the bottom panel in Fig. 4, we demonstrate the log-
infidelity versus iterations (also called generation in evolu-
tionary computation) for durations T = 2.6 (bottom left) and
T = 5 (bottom right) in the 1K-2Li system. We observe that
the log-infidelity starts to converge after a certain number of
iterations (several tens to several hundreds) in the CMA-ES
method, while a “staircase” pattern emerges in most cases with
the SaDE method. From the lower panel in Fig. 4, the CMA-ES
method performs better than the SaDE method in terms of
the best infidelity and convergence rate. The reason why the
CMA-ES performs better than the SaDE might be that the
cutoff number of the Fourier basis of the CMA-ES, NES

c = 15,
is larger than that of the SaDE, NDE

c = 5, such that the search
space of the CMA-ES is larger than that of the SaDE. Note,
however, that the population size of the CMA-ES (NES

p = 60)
is smaller than that of the SaDE (NDE

p = 75).
Since the numerical calculations studied in this work are

considerably time-consuming, the convergence rate of the op-
timization method is one of the most important considerations.
Therefore, the CMA-ES is preferable to the SaDE because
the CMA-ES does not require the use a large population
size [29]. When the computational cost is low, the primary
consideration is whether a satisfactory result, e.g., a certain
threshold value of the fitness function, is achieved by the
optimization method [25].

From the experimental point of view a very important
question arises: How sensitive is the final fidelity with respect
to small changes in the optimal control field? To demonstrate
the robustness of the optimized control field obtained using
global optimization methods, we depict in Fig. 5 comparisons
between optimized control fields and the corresponding mod-
ification for the durations T =2.6 and T =5. The modified
optimized control fields are obtained by mixing the optimized
control field and linear ramping with different values of
weight w ∈ [0.1, 0.9], i.e., g(t) = wgLin(t) + (1 − w)gOpt(t).
As shown in the top panel in Fig. 5, the differences between
the fidelity of the optimized control field Fo and that of the
modification Fw increases as the weight of linear ramping
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FIG. 5. Effects of deviations from the optimized control fields,
which are obtained by mixing the optimized control field and linear
ramping with a certain weight. Top: The deviation between the fidelity
of the modified optimized control field Fw and that of the optimized
control field Fo are shown as a function of the weight for T = 2.6
(left) and T = 5 (right), with the time unit ω−1. Bottom: Both the
optimized control field (solid blue line) and its modification whose
weight is 10% (dash-dotted red line) are shown for T = 2.6 (left) and
T = 5 (right). The fidelity of the optimized control field Fo and that
of the modified one Fw are also shown, and the difference between
them is of order 10−3 for both durations.

grows (note that Fw < Fo). For a special case where the weight
is 10%, as shown in the bottom panel in Fig. 5, the differences
between the fidelities are of order 10−3 for T =2.6 and T =5.
This means that the optimized control fields obtained are robust
to the imperfection or external noise which is naturally present
in experiments. Thus, the scheme may be especially relevant
in future experiments.

V. DISCUSSION

As two of the most promising evolutionary algorithms,
the CMA-ES method and the SaDE method outperform other
evolutionary computational algorithms and local optimization
algorithms for high-dimensional optimization problems in
certain quantum systems [28,29,63]. Both algorithms, how-
ever, have their own advantages and disadvantages, and the
preferences may vary from one case to another. The CMA-
ES method is quasi-parameter-free, while the SaDE method
requires the user to determine more initial parameters. For
the SaDE method, as mentioned in Sec. III, the population
size Np is fixed to be 5D, which is suggested as a lower
bound and has been tested in great detail in the field of
computational science (but not as extensively for physically
motivated quantum systems). For the CMA-ES method, there
is no guide for choosing the value of Np, thus we choose
Np = 60, which is large enough to guarantee that the fidelity
is saturated. Therefore, in general, the population size of SaDE
is larger than that of CMA-ES, especially in high-dimension
parameter space, thus the computational time of the SaDE is
longer than that of the CMA-ES. As for the convergence rate, in

general, the CMA-ES converges more rapidly than the SaDE.
The slow convergence of the SaDE is depicted in Fig. 4 (bottom
right), where the width of the staircase indicates the stagnation
of the SaDE method. Note, however, if the Nc of the SaDE
is the same as that of the CMA-ES, the final fidelity obtained
using the SaDE method is generally higher than that using the
CMA-ES method, though the computational time of the SaDE
is much longer than that of the CMA-ES. For instance, suppose
that (Nc = 15, Np = 5D) is taken for the SaDE method, which
is the same as for the CMA-ES; then the computational time
of the SaDE is approximately three times longer than that of
the CMA-ES.

The calculations are performed in parallel using MATLAB

R2017a on cluster (Intel Xeon E5-2680 CPU with 28 cores
and 251 GB RAM). Take the CMA-ES, for instance; the
computational time of the CMA-ES method over 500 iterations
is about 31 h for T = 1.5 and 71 h for T = 2.5. For the same
process duration T and number of iterations, the computational
time ratio of CMA-ES to SaDE is roughly 60:75, which is
the ratio of the population size. This is because the maximal
number of cores in the cluster is 28. If the number of cores
is larger than the population size, then the computational time
ratio of CMA-ES to SaDE is approximately 1:1.

VI. CONCLUSION

We have given numerical estimates of the quantum speed
limit for three few-fermion systems confined in a one-
dimensional harmonic trap using the CMA-ES and the SaDE
methods and shown that the shortest duration obtained em-
ploying optimized, nonadiabatic processes is much faster than
in the case of linear ramping and exponential ramping. One
can achieve at least double speedup in obtaining the target
three-body ground state by using our optimized approach
compared to exponential ramping (see Fig. 2). Since the
Hilbert space increases greatly with the number of particles,
the speedup might increase even further for systems with
more than three particles. We observed that for durations
shorter than the estimate of the quantum speed limit the
optimized fields are of the oscillation type, while for longer
times, the optimized fields do not change drastically over time,
which is analogous to the linear ramping and the exponential
ramping. We have compared the performance of the CMA-ES
and the SaDE methods and found that the performance of
the CMA-ES is better than that of the SaDE in terms of
the best infidelity and convergence rate for the parameters
considered in this paper. In addition, we have explained the
advantages and disadvantages of the CMA-ES method, as
well as the SaDE method, and the preference varies from
one case to another. Moreover, we have also demonstrated the
robustness of the optimized control field to minor variations.
This stability of the above scheme to small variations led us to
believe that the obtained optimized fields are not just a purely
numerical prediction but can be useful in the noisy laboratory
environment.

The present work shows the encouraging result that control
theory can be used to obtain a significant speedup in producing
a target state with the same symmetry as the initial state. As the
next step, it would be very interesting to investigate how one
can design control protocols to produce any of the low-energy
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states in the spectrum with a high fidelity starting from the
ground state of the noninteracting system.
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