Dynamics and decoherence of two cold bosons in a 1D harmonic trap
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Abstract

We study dynamics of two interacting ultra cold Bose atoms in a harmonic oscillator potential in one spatial dimension.
eigenvalue problem of a particle in the delta-like potential we study time evolution of initially separable state of two particles.
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Making use of the exact solution of the
he corresponding time dependent single

particle density matrix i1s obtained and diagonalized and single particle orbitals are found. This allows to study decoherence as well as creation of entanglement during the
dynamics. The exact evolution Is then compared to the evolution according to the Gross-Pitaevskii equation. We show that if initially the center of mass and relative
degrees of freedom are entangled then the Gross-Pitaevskil equation fails to reproduce the exact dynamics and entanglement is produced dynamically.

Introduction

Hamiltonian separation

All energies are measured in hw, all lengths in \/h/mw, and all momenta
INn vV hmw. Hamiltonian of the system of two interacting bosons in the
harmonic trap has the form:
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where x1 and x» are positions of atoms interacting via a short range
potential modeled by the delta function. In 1D the parameter g is given
by g = —2/ag, where ag is a scattering length.

To demonstrate entanglement formation we study the evolution of two
bosons which initially are in a product quantum state

Wo(x1, X2) = Po(x1)Po(x2). (2)

Function ®p(x) is a one-particle wave function called the order param-
eter in the mean field context.

The two particle problem has to be first brought to a single particle one
by introducing the center of mass and the relative coordinates:

X = %(Xl + x2), a= %(Xl — X2) (3)

In these coordinates Hamiltonian (1) separates into two independent
parts — the center of mass part Hcy, and the relative part ‘Hgpr:
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As one can see, the dynamics of the center of mass Is described by
the standard one dimensional harmonic oscillator Hamiltonian with well
known eigenstates. The eigenstates of the Hamiltonian Hggr, are also
known and for one dimensional problem have a form
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where U(a, B, x) are confluent hypergeometric functions, and N, are
normalization coefficients. Since the wave function of identical bosons
must be symmetric under exchange of the two particles, therefore the
physical wave function i1s composed from functions with even m only.

Exact dynamics

The Initial wave function can be easily decomposed to the superposition
of the eigenstates of the Hamiltonian:

Wo(&, X) = Z anm Xn(X)©m(§) (6)

Obviously the evolution of the initial two boson state is given by:

W(E X, t) =Y apmxn(X)pm(€) e (EntEnlt, (7)

In the original coordinates the wave function reads:

X1+ X2 X1 = X2\ —i(Ex+Ep)t
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The wave function written in the momentum space of the two atoms
IS:
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Y(ky, ko, t) = / dX1/ dXQG_Iklxle_lk2X2\|f(X1, Xo, t). (8)
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In repeated single particle detections preceded by the ballistic expansion
of the system one-particle momentum distribution 1s monitored:

Nexact(K, t) = p(k, Kk, 1), (9)

where p(k, k', t) is the reduced one particle density matrix in the mo-
mentum representation:

k.0 = | T ko g (k ko YK ko t)  (10)
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By making its spectral decomposition we can determine the number of
orbitals and their relative occupations needed for accurate description
of the two bosons dynamics. Time dependence of the eigenvalues of
the density matrix is discussed below. Let us mention that the largest
eigenvalue Is a direct measure of the coherence of the system.

Mean field dynamics

We compare exact dynamics with the approximate one governed by the
Gross-Pitaevskil equation. In this approach generation of entanglement
between bosons during the evolution is neglected and therefore the quan-
tum state of the system remains separable:

\U(Xl, X2, t) = CD(Xl, t)cb(XQ, t). (11)

This assumption leads directly to the Gross-Pitaevskii equation which
determines the dynamics of the one-particle wave function ®(x, t):
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The probability density in momentum space reads:
nep(k, t) = |¢(k, )], (13)

where ¢(k, t) is the Fourier transform of the time dependent solution
of the GP equation, ¢(k, t) = [ dx e KX (x, t). We compare the ex-
act one-particle momentum distribution (9) with that predicted by the
Gross-Pitaevskii approximation (13). Moreover we compare the Gross-
Pitaevskii momentum distribution (13) with the momentum distribution
of the dominant orbital.

We concentrate on a one particular class of the initial states. We as-
sume that at the beginning each particle i1s in the state described by the
Schrodinger cat like wave function

Oo(x) =N {e_(X_L)z/Q + e_(XJFL)Q/Q} (14)
Parameter L measures the separation between two wave packets moving
In the opposite direction in the relative coordinates space. When L =0

then the initial state Is very close to the ground state of the system, for
large L the initial state is still separable but 1t 1s highly delocalized.

Dependence on delocalization

Fig. 1 shows time dependence of the eigenvalues of the one-particle den-
sity matrix and momentum distributions for generic interaction strength
g = —0.2and L = 1, 1.e. when the extension of the initial state Is
equal to the trap length unit. Because one of the eigenvalues Is inces-
santly much larger than the others the system coherence Is large and
the Gross-Pitaevskil description Is quite accurate in this case.

When L is large enough then a few orbitals can play the crucial role In
the dynamics and the mean field approximation is no longer valid. Fig.
2a shows the time dependence of the eigenvalues of the density matrix
for L = 3. As we see, the main orbital initially dominates, but later the
other orbital becomes much more important than the first one. The
dynamics 1s obviously much more complicated than 1t i1s predicted by
the mean field approach. It is clear when we compare the momentum
density distribution predicted by the exact and the mean field solutions
(Fig. 2b). We see also that Gross-Pitaevskii equation properly describes
the dynamics of the first orbital rather then the whole system.

Dependence on interaction strength

Time dependence of the eigenvalues for a moderate interaction strength
(g = —0.2) was discussed previously. For stronger interactions this
picture changes significantly. For strong interaction (g = —0.4) and
[ = 2, after a few trap periods, many different orbitals become impor-
tant. Moreover the orbital which dominates at the beginning becomes
unimportant after a very short time. Therefore we do not expect that
the Gross-Pitaevskil approximation may give correct predictions In this
case. On the other hand when the interaction is very weak we expect
that the production of entanglement is very slow even for highly delo-
calized states. Time dependence of the eigenvalues of the one-particle
density matrix in these two situations is presented In fig. 3.

Correlations

Mutual interactions between particles obviously leads to the quantum
correlations between particles. To study them we use the correlation
measure K and von Neumann entropy S:
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where \; are the eigenvalues of the one-particle density matrix p. Mea-
sure K has very simple interpretation. It gives an effective number of
single particle orbitals occupied in the given many body state. In particu-
lar when one-particle density matrix has n equal eigenvalues then K = n.
Time dependence of this two measures of entanglement in the system
for two different regimes of interaction strength are presented in Fig. 4.

We show that the two particle state, although nitially being a product
state does not preserve the product form during the evolution. The
reason Is that the initial state entangles the center of mass and relative
coordinates of the two particle system. These two degrees of freedom
evolve according to different Hamiltonians. This situation cannot be
correctly described by the GP equation.
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Figure 4: Time dependence of the number of dominant eigen-
values K and of the von Neumann entropy S for g = —0.04
(thick line) and g = —0.2 (thin line). Unit of time is equal to
the period of the trap. Obviously in the beginning, when the
system Is In separable state, entanglement and von Neumann
entropy are equal to 1 and O respectively. \We observe that cor-
relation K and entropy S increase in time and seem to saturate

for large time. Even though they have different physical in-
terpretation they behave very similarly which might seem quite
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Figure 1: (a) Eigenvalues of the one-particle density matrix 2 = °0 3 6 9 12 15 18 21 24 27 30 33 36
(10). Unit of time is equal to the period of the trap. In this = = Time
situation (parameters: g = —0.2, L = 1) the initial state is © O
o | | | | | = . . . . -
not far from the ground state of the system. One eigenvalue 5 0 . - 0 ; Figure 3: Eigenvalues of the one-particle density matrix as

by the mean field approximation. (b) Two plots present the
one-particle momentum distributions (in dimensionless units)
predicted by the exact (thick solid line) and the Gross-Pitaevskii
solutions (dotted line) in two interesting moments. Third (thin
solid) line comes from the exact solution and presents the mo-
mentum distribution of the first orbital. As was expected all
three predictions are almost the same for considered set of pa-
rameters.

Figure 2: Analogous situation as in Fig. 1 but for L = 3.
As long as the first eigenvalue dominates the predictions are
almost the same. After five periods (the second eigenvalue be-
come the largest) predictions are highly different. Solutions of
the exact and GP dynamics become similar when the first eigen-
value starts to dominate again. Notice that third line presenting
momentum distribution of first one-particle orbital of an exact
solution recovers predictions of the Gross-Pitaevskii equation.

in two interaction strength regimes: (a) g = —0.4 — interac-
tion between bosons is strong; many orbitals play a crucial role
during the evolution of the system; the exact dynamics can not
be recover by the mean field approximation. (b) g = —0.04 —
Interaction between bosons Is very week; during the first eigh-
teen trap periods only one eigenvalue dominates, therefore the
dynamics of the system can be quite correctly described by the
mean field approximation for a long time. Unit of time is equal
to the period of the trap.

surprising. They reach ‘stationary regime’ faster for stronger
Interactions. Every minimum observed in correlation function
corresponds to the moment when there I1s a dominant eigen-
value in the Schmidt decomposition of the one-particle density
matrix. Long time modulations of correlation functions are re-
lated to the quantum nature of the system and discreetness of
the energy spectrum. In such cases evolution Is always quasi-
periodic and due to the interference of amplitudes long time
scale oscillations do appear. In our case the number of modes
with no zero amplitudes is relatively small and therefore oscil-
lations of correlation functions appear on a time scale of few
hundred trap periods.




