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Abstrat
We study dynamis of two interating ultra old Bose atoms in a harmoni osillator potential in one spatial dimension. Making use of the exat solution of theeigenvalue problem of a partile in the delta-like potential we study time evolution of initially separable state of two partiles. The orresponding time dependent singlepartile density matrix is obtained and diagonalized and single partile orbitals are found. This allows to study deoherene as well as reation of entanglement during thedynamis. The exat evolution is then ompared to the evolution aording to the Gross-Pitaevskii equation. We show that if initially the enter of mass and relativedegrees of freedom are entangled then the Gross-Pitaevskii equation fails to reprodue the exat dynamis and entanglement is produed dynamially.

Introdution
Hamiltonian separationAll energies are measured in �h!, all lengths in√�h=m!, and all momentain p�hm!. Hamiltonian of the system of two interating bosons in theharmoni trap has the form:

H = �12 �2�x21 � 12 �2�x22 + 12 (x21 + x22)+ gÆ(x1 � x2) (1)
where x1 and x2 are positions of atoms interating via a short rangepotential modeled by the delta funtion. In 1D the parameter g is givenby g = �2=a0, where a0 is a sattering length.To demonstrate entanglement formation we study the evolution of twobosons whih initially are in a produt quantum state	0(x1; x2) = �0(x1)�0(x2): (2)Funtion �0(x) is a one-partile wave funtion alled the order param-eter in the mean �eld ontext.The two partile problem has to be �rst brought to a single partile oneby introduing the enter of mass and the relative oordinates:

X = 1p2(x1 + x2); � = 1p2(x1 � x2) (3)
In these oordinates Hamiltonian (1) separates into two independentparts � the enter of mass part HCM, and the relative part HREL:

HCM = �12 d2dX2 + 12X2 (4a)
HREL = �12 d2d�2 + 12�2 + p22 g Æ(�) (4b)

As one an see, the dynamis of the enter of mass is desribed bythe standard one dimensional harmoni osillator Hamiltonian with wellknown eigenstates. The eigenstates of the Hamiltonian HREL are alsoknown and for one dimensional problem have a form
'm(�) = ��1=4p2mm! Hm(�) e��2=2; m odd (5a)'m(�) = Nm U(��m; 12; �2) e��2=2; m even (5b)

where U(�; �; x) are on�uent hypergeometri funtions, and Nm arenormalization oe�ients. Sine the wave funtion of idential bosonsmust be symmetri under exhange of the two partiles, therefore thephysial wave funtion is omposed from funtions with even m only.Exat dynamisThe initial wave funtion an be easily deomposed to the superpositionof the eigenstates of the Hamiltonian:	0(�;X) =∑nm �nm �n(X)'m(�) (6)
Obviously the evolution of the initial two boson state is given by:	(�;X; t) =∑nm �nm �n(X)'m(�) e�i(En+Em)t: (7)

In the original oordinates the wave funtion reads:
	(x1; x2; t) =∑nm �nm �n(x1 + x2p2 )� 'm(x1 � x2p2 ) e�i(En+Em)t
The wave funtion written in the momentum spae of the two atomsis:  (k1; k2; t) = ∫ 1�1 dx1 ∫ 1�1 dx2e�ik1x1e�ik2x2	(x1; x2; t): (8)
In repeated single partile detetions preeded by the ballisti expansionof the system one-partile momentum distribution is monitored:nExat(k; t) = �(k; k; t); (9)where �(k; k 0; t) is the redued one partile density matrix in the mo-mentum representation:

�(k; k 0; t) = ∫ 1�1dk2 �(k; k2; t) (k 0; k2; t) (10)
By making its spetral deomposition we an determine the number oforbitals and their relative oupations needed for aurate desriptionof the two bosons dynamis. Time dependene of the eigenvalues ofthe density matrix is disussed below. Let us mention that the largesteigenvalue is a diret measure of the oherene of the system.Mean �eld dynamisWe ompare exat dynamis with the approximate one governed by theGross-Pitaevskii equation. In this approah generation of entanglementbetween bosons during the evolution is negleted and therefore the quan-tum state of the system remains separable:	(x1; x2; t) = �(x1; t)�(x2; t): (11)This assumption leads diretly to the Gross-Pitaevskii equation whihdetermines the dynamis of the one-partile wave funtion �(x; t):

i�t�(x; t) = (�12 �2�x2 + 12x2 + gj�(x; t)j2)�(x; t): (12)
The probability density in momentum spae reads:nGP(k; t) = j�(k; t)j2; (13)where �(k; t) is the Fourier transform of the time dependent solutionof the GP equation, �(k; t) = ∫ dx e�ikx�(x; t). We ompare the ex-at one-partile momentum distribution (9) with that predited by theGross-Pitaevskii approximation (13). Moreover we ompare the Gross-Pitaevskii momentum distribution (13) with the momentum distributionof the dominant orbital. Results
We onentrate on a one partiular lass of the initial states. We as-sume that at the beginning eah partile is in the state desribed by theShrödinger at like wave funtion�0(x) = N [e�(x�L)2=2 + e�(x+L)2=2] (14)Parameter Lmeasures the separation between two wave pakets movingin the opposite diretion in the relative oordinates spae. When L = 0

then the initial state is very lose to the ground state of the system, forlarge L the initial state is still separable but it is highly deloalized.Dependene on deloalizationFig. 1 shows time dependene of the eigenvalues of the one-partile den-sity matrix and momentum distributions for generi interation strengthg = �0:2 and L = 1, i.e. when the extension of the initial state isequal to the trap length unit. Beause one of the eigenvalues is ines-santly muh larger than the others the system oherene is large andthe Gross-Pitaevskii desription is quite aurate in this ase.When L is large enough then a few orbitals an play the ruial role inthe dynamis and the mean �eld approximation is no longer valid. Fig.2a shows the time dependene of the eigenvalues of the density matrixfor L = 3. As we see, the main orbital initially dominates, but later theother orbital beomes muh more important than the �rst one. Thedynamis is obviously muh more ompliated than it is predited bythe mean �eld approah. It is lear when we ompare the momentumdensity distribution predited by the exat and the mean �eld solutions(Fig. 2b). We see also that Gross-Pitaevskii equation properly desribesthe dynamis of the �rst orbital rather then the whole system.Dependene on interation strengthTime dependene of the eigenvalues for a moderate interation strength(g = �0:2) was disussed previously. For stronger interations thispiture hanges signi�antly. For strong interation (g = �0:4) andL = 2, after a few trap periods, many di�erent orbitals beome impor-tant. Moreover the orbital whih dominates at the beginning beomesunimportant after a very short time. Therefore we do not expet thatthe Gross-Pitaevskii approximation may give orret preditions in thisase. On the other hand when the interation is very weak we expetthat the prodution of entanglement is very slow even for highly delo-alized states. Time dependene of the eigenvalues of the one-partiledensity matrix in these two situations is presented in �g. 3.CorrelationsMutual interations between partiles obviously leads to the quantumorrelations between partiles. To study them we use the orrelationmeasure K and von Neumann entropy S:
K(�) = ∑i �2i�1 ; S(�) = �∑i �i log�i (15)

where �i are the eigenvalues of the one-partile density matrix �. Mea-sure K has very simple interpretation. It gives an e�etive number ofsingle partile orbitals oupied in the given many body state. In partiu-lar when one-partile density matrix has n equal eigenvalues then K = n.Time dependene of this two measures of entanglement in the systemfor two di�erent regimes of interation strength are presented in Fig. 4.
Summary

We show that the two partile state, although initially being a produtstate does not preserve the produt form during the evolution. Thereason is that the initial state entangles the enter of mass and relativeoordinates of the two partile system. These two degrees of freedomevolve aording to di�erent Hamiltonians. This situation annot beorretly desribed by the GP equation.
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Figure 1: (a) Eigenvalues of the one-partile density matrix(10). Unit of time is equal to the period of the trap. In thissituation (parameters: g = �0:2, L = 1) the initial state isnot far from the ground state of the system. One eigenvaluestill dominates, therefore system should be quite well desribedby the mean �eld approximation. (b) Two plots present theone-partile momentum distributions (in dimensionless units)predited by the exat (thik solid line) and the Gross-Pitaevskiisolutions (dotted line) in two interesting moments. Third (thinsolid) line omes from the exat solution and presents the mo-mentum distribution of the �rst orbital. As was expeted allthree preditions are almost the same for onsidered set of pa-rameters.
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Figure 2: Analogous situation as in Fig. 1 but for L = 3.As long as the �rst eigenvalue dominates the preditions arealmost the same. After �ve periods (the seond eigenvalue be-ome the largest) preditions are highly di�erent. Solutions ofthe exat and GP dynamis beome similar when the �rst eigen-value starts to dominate again. Notie that third line presentingmomentum distribution of �rst one-partile orbital of an exatsolution reovers preditions of the Gross-Pitaevskii equation.
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Figure 3: Eigenvalues of the one-partile density matrix asfuntions of time for highly deloalized initial state with L = 2in two interation strength regimes: (a) g = �0:4 � intera-tion between bosons is strong; many orbitals play a ruial roleduring the evolution of the system; the exat dynamis an notbe reover by the mean �eld approximation. (b) g = �0:04 �interation between bosons is very week; during the �rst eigh-teen trap periods only one eigenvalue dominates, therefore thedynamis of the system an be quite orretly desribed by themean �eld approximation for a long time. Unit of time is equalto the period of the trap.
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Figure 4: Time dependene of the number of dominant eigen-values K and of the von Neumann entropy S for g = �0:04(thik line) and g = �0:2 (thin line). Unit of time is equal tothe period of the trap. Obviously in the beginning, when thesystem is in separable state, entanglement and von Neumannentropy are equal to 1 and 0 respetively. We observe that or-relation K and entropy S inrease in time and seem to saturatefor large time. Even though they have di�erent physial in-terpretation they behave very similarly whih might seem quitesurprising. They reah `stationary regime' faster for strongerinterations. Every minimum observed in orrelation funtionorresponds to the moment when there is a dominant eigen-value in the Shmidt deomposition of the one-partile densitymatrix. Long time modulations of orrelation funtions are re-lated to the quantum nature of the system and disreetness ofthe energy spetrum. In suh ases evolution is always quasi-periodi and due to the interferene of amplitudes long timesale osillations do appear. In our ase the number of modeswith no zero amplitudes is relatively small and therefore osil-lations of orrelation funtions appear on a time sale of fewhundred trap periods.
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