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Abstra
t
We study dynami
s of two intera
ting ultra 
old Bose atoms in a harmoni
 os
illator potential in one spatial dimension. Making use of the exa
t solution of theeigenvalue problem of a parti
le in the delta-like potential we study time evolution of initially separable state of two parti
les. The 
orresponding time dependent singleparti
le density matrix is obtained and diagonalized and single parti
le orbitals are found. This allows to study de
oheren
e as well as 
reation of entanglement during thedynami
s. The exa
t evolution is then 
ompared to the evolution a

ording to the Gross-Pitaevskii equation. We show that if initially the 
enter of mass and relativedegrees of freedom are entangled then the Gross-Pitaevskii equation fails to reprodu
e the exa
t dynami
s and entanglement is produ
ed dynami
ally.

Introdu
tion
Hamiltonian separationAll energies are measured in �h!, all lengths in√�h=m!, and all momentain p�hm!. Hamiltonian of the system of two intera
ting bosons in theharmoni
 trap has the form:

H = �12 �2�x21 � 12 �2�x22 + 12 (x21 + x22)+ gÆ(x1 � x2) (1)
where x1 and x2 are positions of atoms intera
ting via a short rangepotential modeled by the delta fun
tion. In 1D the parameter g is givenby g = �2=a0, where a0 is a s
attering length.To demonstrate entanglement formation we study the evolution of twobosons whi
h initially are in a produ
t quantum state	0(x1; x2) = �0(x1)�0(x2): (2)Fun
tion �0(x) is a one-parti
le wave fun
tion 
alled the order param-eter in the mean �eld 
ontext.The two parti
le problem has to be �rst brought to a single parti
le oneby introdu
ing the 
enter of mass and the relative 
oordinates:

X = 1p2(x1 + x2); � = 1p2(x1 � x2) (3)
In these 
oordinates Hamiltonian (1) separates into two independentparts � the 
enter of mass part HCM, and the relative part HREL:

HCM = �12 d2dX2 + 12X2 (4a)
HREL = �12 d2d�2 + 12�2 + p22 g Æ(�) (4b)

As one 
an see, the dynami
s of the 
enter of mass is des
ribed bythe standard one dimensional harmoni
 os
illator Hamiltonian with wellknown eigenstates. The eigenstates of the Hamiltonian HREL are alsoknown and for one dimensional problem have a form
'm(�) = ��1=4p2mm! Hm(�) e��2=2; m odd (5a)'m(�) = Nm U(��m; 12; �2) e��2=2; m even (5b)

where U(�; �; x) are 
on�uent hypergeometri
 fun
tions, and Nm arenormalization 
oe�
ients. Sin
e the wave fun
tion of identi
al bosonsmust be symmetri
 under ex
hange of the two parti
les, therefore thephysi
al wave fun
tion is 
omposed from fun
tions with even m only.Exa
t dynami
sThe initial wave fun
tion 
an be easily de
omposed to the superpositionof the eigenstates of the Hamiltonian:	0(�;X) =∑nm �nm �n(X)'m(�) (6)
Obviously the evolution of the initial two boson state is given by:	(�;X; t) =∑nm �nm �n(X)'m(�) e�i(En+Em)t: (7)

In the original 
oordinates the wave fun
tion reads:
	(x1; x2; t) =∑nm �nm �n(x1 + x2p2 )� 'm(x1 � x2p2 ) e�i(En+Em)t
The wave fun
tion written in the momentum spa
e of the two atomsis:  (k1; k2; t) = ∫ 1�1 dx1 ∫ 1�1 dx2e�ik1x1e�ik2x2	(x1; x2; t): (8)
In repeated single parti
le dete
tions pre
eded by the ballisti
 expansionof the system one-parti
le momentum distribution is monitored:nExa
t(k; t) = �(k; k; t); (9)where �(k; k 0; t) is the redu
ed one parti
le density matrix in the mo-mentum representation:

�(k; k 0; t) = ∫ 1�1dk2 �(k; k2; t) (k 0; k2; t) (10)
By making its spe
tral de
omposition we 
an determine the number oforbitals and their relative o

upations needed for a

urate des
riptionof the two bosons dynami
s. Time dependen
e of the eigenvalues ofthe density matrix is dis
ussed below. Let us mention that the largesteigenvalue is a dire
t measure of the 
oheren
e of the system.Mean �eld dynami
sWe 
ompare exa
t dynami
s with the approximate one governed by theGross-Pitaevskii equation. In this approa
h generation of entanglementbetween bosons during the evolution is negle
ted and therefore the quan-tum state of the system remains separable:	(x1; x2; t) = �(x1; t)�(x2; t): (11)This assumption leads dire
tly to the Gross-Pitaevskii equation whi
hdetermines the dynami
s of the one-parti
le wave fun
tion �(x; t):

i�t�(x; t) = (�12 �2�x2 + 12x2 + gj�(x; t)j2)�(x; t): (12)
The probability density in momentum spa
e reads:nGP(k; t) = j�(k; t)j2; (13)where �(k; t) is the Fourier transform of the time dependent solutionof the GP equation, �(k; t) = ∫ dx e�ikx�(x; t). We 
ompare the ex-a
t one-parti
le momentum distribution (9) with that predi
ted by theGross-Pitaevskii approximation (13). Moreover we 
ompare the Gross-Pitaevskii momentum distribution (13) with the momentum distributionof the dominant orbital. Results
We 
on
entrate on a one parti
ular 
lass of the initial states. We as-sume that at the beginning ea
h parti
le is in the state des
ribed by theS
hrödinger 
at like wave fun
tion�0(x) = N [e�(x�L)2=2 + e�(x+L)2=2] (14)Parameter Lmeasures the separation between two wave pa
kets movingin the opposite dire
tion in the relative 
oordinates spa
e. When L = 0

then the initial state is very 
lose to the ground state of the system, forlarge L the initial state is still separable but it is highly delo
alized.Dependen
e on delo
alizationFig. 1 shows time dependen
e of the eigenvalues of the one-parti
le den-sity matrix and momentum distributions for generi
 intera
tion strengthg = �0:2 and L = 1, i.e. when the extension of the initial state isequal to the trap length unit. Be
ause one of the eigenvalues is in
es-santly mu
h larger than the others the system 
oheren
e is large andthe Gross-Pitaevskii des
ription is quite a

urate in this 
ase.When L is large enough then a few orbitals 
an play the 
ru
ial role inthe dynami
s and the mean �eld approximation is no longer valid. Fig.2a shows the time dependen
e of the eigenvalues of the density matrixfor L = 3. As we see, the main orbital initially dominates, but later theother orbital be
omes mu
h more important than the �rst one. Thedynami
s is obviously mu
h more 
ompli
ated than it is predi
ted bythe mean �eld approa
h. It is 
lear when we 
ompare the momentumdensity distribution predi
ted by the exa
t and the mean �eld solutions(Fig. 2b). We see also that Gross-Pitaevskii equation properly des
ribesthe dynami
s of the �rst orbital rather then the whole system.Dependen
e on intera
tion strengthTime dependen
e of the eigenvalues for a moderate intera
tion strength(g = �0:2) was dis
ussed previously. For stronger intera
tions thispi
ture 
hanges signi�
antly. For strong intera
tion (g = �0:4) andL = 2, after a few trap periods, many di�erent orbitals be
ome impor-tant. Moreover the orbital whi
h dominates at the beginning be
omesunimportant after a very short time. Therefore we do not expe
t thatthe Gross-Pitaevskii approximation may give 
orre
t predi
tions in this
ase. On the other hand when the intera
tion is very weak we expe
tthat the produ
tion of entanglement is very slow even for highly delo-
alized states. Time dependen
e of the eigenvalues of the one-parti
ledensity matrix in these two situations is presented in �g. 3.CorrelationsMutual intera
tions between parti
les obviously leads to the quantum
orrelations between parti
les. To study them we use the 
orrelationmeasure K and von Neumann entropy S:
K(�) = ∑i �2i�1 ; S(�) = �∑i �i log�i (15)

where �i are the eigenvalues of the one-parti
le density matrix �. Mea-sure K has very simple interpretation. It gives an e�e
tive number ofsingle parti
le orbitals o

upied in the given many body state. In parti
u-lar when one-parti
le density matrix has n equal eigenvalues then K = n.Time dependen
e of this two measures of entanglement in the systemfor two di�erent regimes of intera
tion strength are presented in Fig. 4.
Summary

We show that the two parti
le state, although initially being a produ
tstate does not preserve the produ
t form during the evolution. Thereason is that the initial state entangles the 
enter of mass and relative
oordinates of the two parti
le system. These two degrees of freedomevolve a

ording to di�erent Hamiltonians. This situation 
annot be
orre
tly des
ribed by the GP equation.
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Figure 1: (a) Eigenvalues of the one-parti
le density matrix(10). Unit of time is equal to the period of the trap. In thissituation (parameters: g = �0:2, L = 1) the initial state isnot far from the ground state of the system. One eigenvaluestill dominates, therefore system should be quite well des
ribedby the mean �eld approximation. (b) Two plots present theone-parti
le momentum distributions (in dimensionless units)predi
ted by the exa
t (thi
k solid line) and the Gross-Pitaevskiisolutions (dotted line) in two interesting moments. Third (thinsolid) line 
omes from the exa
t solution and presents the mo-mentum distribution of the �rst orbital. As was expe
ted allthree predi
tions are almost the same for 
onsidered set of pa-rameters.
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Figure 2: Analogous situation as in Fig. 1 but for L = 3.As long as the �rst eigenvalue dominates the predi
tions arealmost the same. After �ve periods (the se
ond eigenvalue be-
ome the largest) predi
tions are highly di�erent. Solutions ofthe exa
t and GP dynami
s be
ome similar when the �rst eigen-value starts to dominate again. Noti
e that third line presentingmomentum distribution of �rst one-parti
le orbital of an exa
tsolution re
overs predi
tions of the Gross-Pitaevskii equation.
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Figure 3: Eigenvalues of the one-parti
le density matrix asfun
tions of time for highly delo
alized initial state with L = 2in two intera
tion strength regimes: (a) g = �0:4 � intera
-tion between bosons is strong; many orbitals play a 
ru
ial roleduring the evolution of the system; the exa
t dynami
s 
an notbe re
over by the mean �eld approximation. (b) g = �0:04 �intera
tion between bosons is very week; during the �rst eigh-teen trap periods only one eigenvalue dominates, therefore thedynami
s of the system 
an be quite 
orre
tly des
ribed by themean �eld approximation for a long time. Unit of time is equalto the period of the trap.
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Figure 4: Time dependen
e of the number of dominant eigen-values K and of the von Neumann entropy S for g = �0:04(thi
k line) and g = �0:2 (thin line). Unit of time is equal tothe period of the trap. Obviously in the beginning, when thesystem is in separable state, entanglement and von Neumannentropy are equal to 1 and 0 respe
tively. We observe that 
or-relation K and entropy S in
rease in time and seem to saturatefor large time. Even though they have di�erent physi
al in-terpretation they behave very similarly whi
h might seem quitesurprising. They rea
h `stationary regime' faster for strongerintera
tions. Every minimum observed in 
orrelation fun
tion
orresponds to the moment when there is a dominant eigen-value in the S
hmidt de
omposition of the one-parti
le densitymatrix. Long time modulations of 
orrelation fun
tions are re-lated to the quantum nature of the system and dis
reetness ofthe energy spe
trum. In su
h 
ases evolution is always quasi-periodi
 and due to the interferen
e of amplitudes long times
ale os
illations do appear. In our 
ase the number of modeswith no zero amplitudes is relatively small and therefore os
il-lations of 
orrelation fun
tions appear on a time s
ale of fewhundred trap periods.
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