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Random Green matrices: From proximity resonances to Anderson localization
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Universal properties of the spectra of certain matrices describing multiple elastic scattering of scalar waves
from a collection of randomly distributed point-like objects are discovered. The elements of these matrices are
equal to the free-space Green’s function calculated for the differences between positions of any pair of
scatterers. A striking physical interpretation within Breit-Wigner's model of the single scatterer is elaborated.
Proximity resonances and Anderson localization are considered as two illustrative examples.

PACS numbsg(s): 03.65.Nk, 41.20.Jb, 72.10.Fk, 72.15.Rn

Scattering of scalar waves from various kinds of obstaclespectrum of the Green matrix without looking for resonance
is rich of interesting and often unexpected physical phenompoles in a complex energy plane. This approximation works
ena. An example of such phenomenon is the case of fixegurprisingly well in many physically interesting cases. The
frequency sound incident on small identical air bubbles inrfemarkable examples are proximity resonances and Ander-
water[1—3)]. Electron or phonon scattering from defects orson localization.
impurities in crystal lattices give another example. Multiple-  Let us begin by recalling the basic concepts of single
scattering effects from such objects are nontrivial and requirécattering. Consider single spherically symmetric scatterer
special conditions to manifest themselves in their wholeplaced atr =0. The asymptotic form of the wave function
beauty. Already for two scatterers placed together wellcan be written in the usual way,
within the wavelength of the scattered wave field extremely
narrow proximity resonances can appedts]. For three
scatterers there is the possibility for Efimov’s eff¢6t8|.

For very many scatterers we expect, for some range of pa-
rameters, that Anderson’s localization can show{@p1l.  wheref(k) is the scattering amplitude. We restrict ourselves
It would be nice to have a unified approach encompassing ab scatterers that are small as compared to the wavelength
mentioned effects and giving some more insight into themand therefore only as wave e’%"/r persists in scattering.
We use random Green matrices as a tool to achieve thishus we will call such scatteresswave scatterers. In this
purpose. case the scattering isotropic and the scattering amplitude

The Green’s function is one of the fundamental baSiCdepends only ok=|K|. In the following we will assume that

building blocks for constructing a self-consistent descriptiony,e gcattering iglastic Therefore the optical theorem holds,
of the multiple scattering. In the case of scalar waves the

Green’s function is something very simple. It describes the 1

spherical outgoing-wave centered at the scatterers position. |f(k)|2:E Im f(k). 2

In this paper we study the spectra of certain matrices describ-

ing multiple scattering of scalar waves from a collection of ; jg easy to verify that this requirement gives the following
randomly distributed pointlike objects. The elements of thesg, 1, ot the single scattering amplitude:

matrices are equal to the Green’s function calculated for the

differences between positions of any pair of scatterers. We e2ido(k) _ 1

discover several interesting properties of the spectra of such f(k)= TE 3)
Green matrices including a striking phase-transition-like be-

havior when the number of scatterers increases. In the IIrmfhe scatterers necessarily have an internal structure. Thus in

of thg infinite me‘?"“’.“ the eigenvalues behave remarkabl3@eneral the phase shiftshould be regarded as a function of
well in that they distribute themselves not all over the COM-cnargyE=k%2. For example, to model a simple scatterer

plex plang but only on a fixed .Ilne. According to our numeri- with one internal Breit-Wigner-type resonance one can write
cal experience these properties seem not to depend on the

specific form of the Green’s function used and thus appear to E-E,
be truly universal. coto=—

The Breit-Wigner-type model of the single scatterer al- To
lows us to give a clear physical interpretation of the obtaine
results. In this particular case the real and imaginary parts q
the eigenvalues of the Green matrix can be considered as

R . . eikr .
¢ﬁ(r)ze'k'r+f(k)7 for [r[—e, (1)

4

he total scattering cross sectittho =4 sirés takes then
e familiar Lorentzian form

first-order approximations to the relative widths and posi- 472
tions of the resonances. Thus it is possible to extract some K2g = %_ (5)
qualitative information about the resonances just from the (E-Ep)"+1Ig
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In a more elaborate way the individual scattering amplitudes It is seen from Eqs(8) that for 40)=0 the latter system
can be parametrized using tRematrix formalism(see, e.g., of equations is equivalent to theigenproblemfor the G
[12)). matrix,
Let us now briefly recall the basic equations of theave
multiple-scattering theorysee, e.g.[13]). After integrating

Eq. (1) over the energy sheli=|Kk| the scattering wave func-
tion for incoming wavey, can be written as

N
glGabw’(Fb>=x¢'(Fa>, a=1,...N (10

where
ikr

Y1) = o1+ ro(0)F(k) ——. (6) \=—1-i cots. (11)

For fixed positions of the scattere?§the eigenvalues of the
Green matrix from Eq(9) still remain functions of energy
E=k?/2. Using an explicit model of the scattering phase
shift §(E) and solving Eq(11) in a complexE plane it is
possible to determine the positions and widths of the reso-
nances. In the particular case of the Breit-Wigner type
N K[ — 1y srv:/ave sfcart]t:(r;ers the rﬁal and i_magi?]ary plarts of the eigen-
N 0 ' values of t matrix have a nice physical interpretation:
w(n ¢O(r)+a§1 viratk) Ir—r, @) they are equal to the relative widths ¢ I'y)/T', and posi-
tions (E—Eg)/T’y of the resonances. Indeed, using the ex-
It turns out that the incoming wave calculated at the positiorplicit form of the complex energff —E—iI" and substitut-
of the scattereg/{°)(0) needs to be replaced by the sum ofing the Breit-Wigner model of the scattering into Efjl) we
the incoming waveand waves scattered by all other scatter- get
ers:

The only significant difference to Eql) is an extra factor

¥0(0) which multiplies the scattering amplitude. This obser-
vation gives a hint how to write a scattering wave function
for a system oN identicals-wave scatterers placed at points

F=r,:

E—-il'=Eq—il'o[1+N(E—-IT)]. (12
R R N o elo_1q
P (1) = Or)+ > t//'(fb)TGab- (8)  This system of two-coupled nonlinear equations determines
b=1 the values of the resonance polesiI’. In many physically
. interesting cases EL2) can be solved numerically by itera-
The element.s of th& matrix from Eq:(8) are equal to the tion. For instance, in solving it up to the first orderlig one
Green function calculated for the differences between th%ubstituteQ\(Eo) for \(E—iT'), getting

positions of the scatterers:

E
 ImA(Eg)= 9

K3 =l Re\(Ey)= ,
© f for a#b, (o) 1 Lo

Gab={ iK|ra—Ty| (9)

(13

In this paper we deal with resonances in system® of
0 for a=b. Breit-Wigner-types-wave scatterers placed randomly inside

) . ) .. a sphere, with the constant uniform densityLet us start
Equations(8) form a system of linear equations getermlnmg with the simplest possible example of a systemNo 2
the wave function “acting” on each scatterer (r,) for a  scatterers separated by a distadckn this case th& matrix
given incoming wavey{®)(r,). If we solve it then we are from Eq.(9) has two eigenvector§l,— 1] corresponding to
able to find the wave function everywhere in space. A similathe eigenvalua ;= —e'*/(ikd), and[ 1,1] corresponding to
integral equation relating the stationary outgoing wave to thehe eigenvalue.,= —\ . They are related tp- ands-wave
stationary incoming wave is known in the general scatteringesonances, respectively. Using the Breit-Wigner model of
theory as the Lippmann-Schwinger equatjaH]. the scattering phase shift and solving EtR) in a complex

A way of dealing withresonancesn this formalism is to  E plane it is possible to determine the positiog, and

look for resonance poles in the compleylane. Resonance widthsI'; , of these resonances. We repeated this procedure
poles are values dffor which it is possible to solve Eq¢8)  for 10° different separations of the scatterégsl. The only
as a homogeneous equations, i.e., for the incoming wélle  independent parameter left is the width of the resonance of a
equal to zero. The real and imaginary parts of the corresingle scatterer which we have setltg/E,=0.01. Equation
sponding resonance energies: k?/2 determine then the po- (12) was solved numerically by iteration reaching the accu-
sitions and widths of the resonances. This method has beeacy of 10 T, already after five iterations. The resonance
applied recently to the analysis of resonances in a system gfoles obtained in this way are depicted in Fig. 1. They form
N=2 s-wave scattererf4,5]. It turned out that very inter- a characteristic two-arms spiral. We see that for scatterers
esting phenomena can arise for pair of identical scatterergery close to each othed{~0) one arm of this spiral ap-
placed very close together, well within one wavelength. Anproaches the axi§=0. It corresponds to the very narrow
extremely narrowp-waveproximity resonance develops from p-wave resonance. On the other hand, in this limit the second
a broads-wave resonance of individual scatterers. A newarm tends asymptotically to the axis=2T",. This arm cor-
s-wave resonance of the pair also appddis responds to the-wave resonance of the pair which is about
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FIG. 1. Resonance poles calculated fo? tiffferent systems of FIG. 2. Resonance poles corresponding to a certain specific con-

N=2 s-wave scatterers fdr,/Ey=0.01. Solid line corresponds to figuration ofN=1000 s-wave scatterers. The tail corresponding to
the approximate solution of Eq&.2) up to the first order iff’. The p-type proximity resonances from Fig. 1 still persists. However, for
agreement is excellent. E=E, quite a lot of resonance poles are located neal'th® axis.

twice as broad as the resonance of the single scatterer. F

d—co both arms meet in the poift=Eq, T' =TI reproduc- Reeplng the density constargnd in the limit of the infinite

. . . : ; mediumN— < they become localized states. It is also seen
ing the results of the single scattering. For comparison in th?rom Fig. 2 that a few new broae., T ~2.5I') resonances
same figure we have the eigenvaluagEg)= +e'kod/ 9. o DARE a0

, o appeared foE=E,. In addition, in Fig. 3 we have the spec-
ikod plotted as a solid linekp= \_/Z_EO)- They can be con-  ym of the G matrix corresponding to the same configura-
sidered as an approximate solution of EtR) up to the first o of the scatterers. It has been calculatedBerE, and
order inI'o. The agreement between the strict and approxiynay he considered as a first-order approximation to the reso-
mate solutions is surprisingly good fbl;/Eq=0.01. It fol-  nance poles from from Fig. 2. We see that the agreement
lows from inspection of Fig. 1 that thp-wave proximity  with the strict solution is not perfect, but nevertheless by
resonance is shifted down in energy with respect to the resqssing the approximate expressions Etp) it is still possible
nance of an individual scatterer, i.&;<E,. For theswave  to gain correct qualitative information about the resonances.
resonance the opposite holds, i, >E,. It is interesting to Looking for resonance poles in a complex energy plane
note that this behavior is reversed for two-dimensid@&)  turns out to be an enormous numerical problem for a large
proximity resonances. In the latter case the eigenvalues gfumber of scatterers. Nevertheless, as we have seen, some-
the G matrix can be expressed by the modified Bessel functimes it is possible to extract some qualitative information
tion of the second kinK, i.e., i\ = *=2Ky(—ikd).

As a second example let us consider a certain specific
configuration ofN=1000 scatterers placed randomly inside
a sphere, with the uniform density=1 scatterer per wave- 15}
length cubedg. The wavelength choselp corresponds to

the resonance enerdgy (i.e., |g=2m/ky whereky= \2E).

2.0

1.0 .

In Fig. 2 we plot the positions of the resonance poles ob- 05 L5 3

tained after numerically iterating Eq12) five times. This ~

has been done for each eigenvalue separately and required g 0o

diagonalizing 4001 complexG matrices of size 1000 B

X 1000. Comparing Fig. 2 with Fig. 1 we see that the tail 05

corresponding t@-type proximity resonances still persists in 1.0

the caseN=1000. On the other hand, the second arm of the

spiral from Fig. 1 corresponding to the resonances-tfpe -1.5

between pairs of scatterers completely disappeared. It fol-

lows also from the inspection of Fig. 2 that new collective 200 05 00 05 10 15 20 25 30

effects start to appear. They are visible especially for ener- Re A

gies that are close to the resonance energy of a single scat- k|G 3. Spectrum of the matrix corresponding to the configu-
terer, i.e. E=E,. For instance, in this range of energies quiteration of N=1000 s-wave scatterers from Fig. 2. It can be consid-
a lot of resonance poles are located nearthed axis. They  ered as an approximate solution of EE2) up to the first order in
correspond to narrow resonances with widftk0.297,. As  T',. The agreement with Fig. 2 is not perfect but the approximate
we will show in a moment the width of these resonanEes solution given by Eq(13) still allows us to gain correct qualitative
decreases with an increasing number of scattd¥efahile  information about the resonances.
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about the resonances just from the spectrum ofGhmatrix lim P(\)=S8(Rex+1)f(Im\). (14)
calculated for real values of energy. Moreover, what is even N— oo

more interesting, a striking phase-transition-like behavior ap-

pears in the spectra of such a Green matrices when the nunf’e have some nqmerical evide.nce that this fact' is a general
ber of scatterers increases. This transition may be interpret operty ofG matrices, not restricted to the considered case

as an appearance of the band of localized states emerging? , One scatterer per wavelength squared 1. Mor_eover,
o o . . ; . this mathematical property of random Green matrices seems
the limit of the infinite medium. It is an interesting analog of

the Anderson localization in noncrystalline solids such ast0 be fulfilled also in the 2D free-space cddé] and in the
. cry .~ tase of a 2D system with nontrivial boundary conditiph]
amorphous semiconductors or disordered metals. To illu

trate th f the band of localized elect ‘:fénd thus appears to be truly universal.
rate the appearance of (n€ band ot localized electromagnelic | o ;s now consider an infinite system of identical Breit-

waves, emerging_in the _Iir_nit of infinite system, we have toWigner-type swave scatterers located randomly with uni-
study the propgrtles of f|n|te systems for increasing n”mbeform physical densityp=k3n/(27)3. It follows from Eq.
of scatterergwhile keeping the density constant (14) that for almost any random distribution of the scatterers

For each distribution of the scatterersplaced randomly Fa (except maybe for a few special ones with measure)zero

inside a sphere with the uniform scaled_densm*-yl Scat infinite number of eigenvalues of the G matrix satisfies the
terer per wavelength cubed we have diagonalized numerk: - dition

cally the G matrix from Eq.(9) and obtained the complex

eigenvalues\. The resulting probability distributio?(\), Rexj=-1 (15)
calculated from several different distributionshfscatterers

is normalized in the standard wdg@?\P(\)=1. Letus now (note that we added an indgxwhich labels the localized
compare the surface plots Bf(\) (treated as a function of waves. As pointed out before, this occurs not only for
two variables Ra and Im\) calculated for systems consist- =1 but for a whole range ai and therefore, for fixed physi-
ing of N=1000 and 5000 scatterers. They are presented inal densityp, for a range of energie§=k?/2. Therefore at
Figs. 4 and 5, respectively. It is seen from inspection of allreal values of energ§; determined by the equation

these plots that, for increasing size of the systemour case
it increased3/5=1.7 time3, at some Im\ the probability
distribution P(\) apparently moves towards the Re —1
axis and simultaneously its variance along thex latonst ) .
axes decreases. This tendency is easily seen, e.g., for valid§se eigenvalues are solutions of Etp) for I'=0. Thus
of [Im\| that are close to 0. Our numerical investigationsthe corresponding eigenvecto¢$(ra) of the G matrix de-
indicate, that in the limit of an infinite medium, the probabil- scribe localized states which existdiscreteenergiest; . It
ity distribution P(\) tends to the delta function in Re seems reasonable to expect that the fundifsom Eq. (14)

j 0

T, (16)
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has compact support, i.ef(Im\)=0 for [ImX|>Im\,. between positions of any pair of scatterers. Physical interpre-

This means that in the limX— a countable set of discrete tation of the obtained results within the Breit-Wigner’s

energiesE; corresponding to localized states becomes dens&0del of the single scatterer has been provided. For any
in some finite interva|E— Eq|<E,,. Therefore for random distribution of the scatterers the real part of the eigenvalues

of the Green matrix seems to be always greéterequal
than—1. This means that metastable resonance states corre-
sponding to the eigenvectors of the Green matrix decay in
time. In the case of two scatterers the real part of one eigen-
value tends to—1 as the distance between the scatterers
decreases. This corresponds to the appearance of an ex-
tremely narrowp-wave proximity resonance. The remaining
eigenvector describes a broaavave resonance of the pair.
Another property corresponds to the case of scatterers dis-
tributed randomly with fixed uniform density. In the limit of
the infinite medium almost all eigenvalues condense to a

larly, as pointed out by Anderson, in a sufficiently disordered® ?ZOthegr:anzS;t_hle ' J;‘rlz té?roségﬁgeﬁga?gs'rg;rgrreitr?d iﬁsthe
solid an entire band of spatially localized electronic states: PP ging

can be formed9,10]. l;mtlt of t?e_mﬂmteI medl;Jm. Tif‘l_e_trelanc;n betv;ta_;an tlhe dls:rl-_
Last but not least let us observe that fBematrix from ution of igenvajues of an infinite matrix and Its elements 1S

0.9 s aacelesamati,Le.>.),~0. Ths means ha "Aenatialy  ver conpleated proter, L hereore
it is impossible for all eigenvalues to fulfill the localization y P g P

condition Eq.(15). The inspection of Fig. 2 suggest that regularities which seem to apply under very general condi-

: . L jons. One cannot escape the feeling that there is a very
these eigenvalues may be first approximations to very broa&O ple basis underlying the properties of the spectra of the

resonances responsible for enhanced coherent backscatteri] : - ; . .
from a random medium. This so-called weak localization is'® dom matrices considered, which still has to be discov-
usually considered as the precursor of strG¢agderson lo- red.
calization. The propert A ,=0 serves also as a good test  M.R. is grateful to Thomas Blenski for his kind hospital-
for the accuracy of our numerical procedures. ity in France. We acknowledge the Interdisciplinary Center
In summary, properties of the spectra of certain matricesor Mathematical and Computational ModelifgCM) of
describing multiple elastic scattering of scalar waves from aNarsaw University for providing us with their computer re-
collection of randomly distributed pointlike objects have sources. This investigation was supported in part by the Pol-
been discovered. The elements of these matrices are equalifh Committee for Scientific Resear¢kBN) under Grants
the free-space Green'’s function calculated for the differencello. 2 PO3B 108 12 and No. 2 P03B 023 17.

also seems to undergo a phase transition

lim P(E,T)=g(E)8(I") for |E—Eg|<Eq. (17)

N—

Thus an entire continuousand of spatially localized states
appears in the limit of an infinite medium. Physically speak-
ing this means that different realizations of a sufficiently
large disordered system are practicdlly., by a transmis-

sion experiment indistinguishable from each other. Simi-
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