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Random Green matrices: From proximity resonances to Anderson localization
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Universal properties of the spectra of certain matrices describing multiple elastic scattering of scalar waves
from a collection of randomly distributed point-like objects are discovered. The elements of these matrices are
equal to the free-space Green’s function calculated for the differences between positions of any pair of
scatterers. A striking physical interpretation within Breit-Wigner’s model of the single scatterer is elaborated.
Proximity resonances and Anderson localization are considered as two illustrative examples.

PACS number~s!: 03.65.Nk, 41.20.Jb, 72.10.Fk, 72.15.Rn
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Scattering of scalar waves from various kinds of obstac
is rich of interesting and often unexpected physical pheno
ena. An example of such phenomenon is the case of fi
frequency sound incident on small identical air bubbles
water @1–3#. Electron or phonon scattering from defects
impurities in crystal lattices give another example. Multip
scattering effects from such objects are nontrivial and req
special conditions to manifest themselves in their wh
beauty. Already for two scatterers placed together w
within the wavelength of the scattered wave field extrem
narrow proximity resonances can appear@4,5#. For three
scatterers there is the possibility for Efimov’s effect@6–8#.
For very many scatterers we expect, for some range of
rameters, that Anderson’s localization can show up@9–11#.
It would be nice to have a unified approach encompassing
mentioned effects and giving some more insight into the
We use random Green matrices as a tool to achieve
purpose.

The Green’s function is one of the fundamental ba
building blocks for constructing a self-consistent descript
of the multiple scattering. In the case of scalar waves
Green’s function is something very simple. It describes
spherical outgoings-wave centered at the scatterers positio
In this paper we study the spectra of certain matrices desc
ing multiple scattering of scalar waves from a collection
randomly distributed pointlike objects. The elements of th
matrices are equal to the Green’s function calculated for
differences between positions of any pair of scatterers.
discover several interesting properties of the spectra of s
Green matrices including a striking phase-transition-like
havior when the number of scatterers increases. In the l
of the infinite medium the eigenvalues behave remarka
well in that they distribute themselves not all over the co
plex plane but only on a fixed line. According to our nume
cal experience these properties seem not to depend on
specific form of the Green’s function used and thus appea
be truly universal.

The Breit-Wigner-type model of the single scatterer
lows us to give a clear physical interpretation of the obtain
results. In this particular case the real and imaginary part
the eigenvalues of the Green matrix can be considere
first-order approximations to the relative widths and po
tions of the resonances. Thus it is possible to extract so
qualitative information about the resonances just from
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spectrum of the Green matrix without looking for resonan
poles in a complex energy plane. This approximation wo
surprisingly well in many physically interesting cases. T
remarkable examples are proximity resonances and An
son localization.

Let us begin by recalling the basic concepts of sin
scattering. Consider single spherically symmetric scatte
placed atrW50. The asymptotic form of the wave functio
can be written in the usual way,

ckW~rW !.eikW•rW1 f ~kW !
eikr

r
for urWu→`, ~1!

wheref (kW ) is the scattering amplitude. We restrict ourselv
to scatterers that are small as compared to the wavele
and therefore only ans wave eikr /r persists in scattering
Thus we will call such scattererss-wave scatterers. In this
case the scattering isisotropic and the scattering amplitud
depends only onk5ukW u. In the following we will assume tha
the scattering iselastic. Therefore the optical theorem hold

u f ~k!u25
1

k
Im f ~k!. ~2!

It is easy to verify that this requirement gives the followin
form of thesinglescattering amplitude:

f ~k!5
e2id(k)21

2ik
. ~3!

The scatterers necessarily have an internal structure. Thu
general the phase shiftd should be regarded as a function
energyE5k2/2. For example, to model a simple scatter
with one internal Breit-Wigner-type resonance one can w

cotd52
E2E0

G0
. ~4!

The total scattering cross sectionk2s54p sin2d takes then
the familiar Lorentzian form

k2s5
4pG0

2

~E2E0!21G0
2 . ~5!
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In a more elaborate way the individual scattering amplitu
can be parametrized using theR-matrix formalism~see, e.g.,
@12#!.

Let us now briefly recall the basic equations of thes-wave
multiple-scattering theory~see, e.g.,@13#!. After integrating
Eq. ~1! over the energy shellk5ukW u the scattering wave func
tion for incoming wavec0 can be written as

c~rW !5c0~rW !1c0~0! f ~k!
eikr

r
. ~6!

The only significant difference to Eq.~1! is an extra factor
c0(0) which multiplies the scattering amplitude. This obs
vation gives a hint how to write a scattering wave functi
for a system ofN identicals-wave scatterers placed at poin
rW5rWa :

c~rW !5c0~rW !1 (
a51

N

c8~rWa! f ~k!
eikurW2rWau

urW2rWau
. ~7!

It turns out that the incoming wave calculated at the posit
of the scattererc (0)(0) needs to be replaced by the sum
the incoming waveand waves scattered by all other scatte
ers:

c8~rWa!5c (0)~rWa!1 (
b51

N

c8~rWb!
e2id21

2
Gab . ~8!

The elements of theG matrix from Eq.~8! are equal to the
Green function calculated for the differences between
positions of the scatterers:

Gab5H eikurWa2rWbu

ikurWa2rWbu
for aÞb,

0 for a5b.

~9!

Equations~8! form a system of linear equations determini
the wave function ‘‘acting’’ on each scattererc8(rWa) for a
given incoming wavec (0)(rWa). If we solve it then we are
able to find the wave function everywhere in space. A sim
integral equation relating the stationary outgoing wave to
stationary incoming wave is known in the general scatter
theory as the Lippmann-Schwinger equation@14#.

A way of dealing withresonancesin this formalism is to
look for resonance poles in the complexk plane. Resonance
poles are values ofk for which it is possible to solve Eqs.~8!
as a homogeneous equations, i.e., for the incoming wavec (0)

equal to zero. The real and imaginary parts of the co
sponding resonance energiesE5k2/2 determine then the po
sitions and widths of the resonances. This method has b
applied recently to the analysis of resonances in a system
N52 s-wave scatterers@4,5#. It turned out that very inter-
esting phenomena can arise for pair of identical scatte
placed very close together, well within one wavelength.
extremely narrowp-waveproximityresonance develops from
a broads-wave resonance of individual scatterers. A ne
s-wave resonance of the pair also appears@4#.
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It is seen from Eqs.~8! that for c (0)[0 the latter system
of equations is equivalent to theeigenproblemfor the G
matrix,

(
b51

N

Gabc8~rWb!5lc8~rWa!, a51, . . . ,N ~10!

where

l5212 i cotd. ~11!

For fixed positions of the scatterersrWa the eigenvalues of the
Green matrix from Eq.~9! still remain functions of energy
E5k2/2. Using an explicit model of the scattering pha
shift d(E) and solving Eq.~11! in a complexE plane it is
possible to determine the positions and widths of the re
nances. In the particular case of the Breit-Wigner ty
s-wave scatterers the real and imaginary parts of the eig
values of theG matrix have a nice physical interpretatio
they are equal to the relative widths (G2G0)/G0 and posi-
tions (E2E0)/G0 of the resonances. Indeed, using the e
plicit form of the complex energyE→E2 iG and substitut-
ing the Breit-Wigner model of the scattering into Eq.~11! we
get

E2 iG5E02 iG0@11l~E2 iG!#. ~12!

This system of two-coupled nonlinear equations determi
the values of the resonance polesE2 iG. In many physically
interesting cases Eq.~12! can be solved numerically by itera
tion. For instance, in solving it up to the first order inG0 one
substitutesl(E0) for l(E2 iG), getting

Rel~E0!.
G2G0

G0
, Im l~E0!.

E2E0

G0
. ~13!

In this paper we deal with resonances in systems oN
Breit-Wigner-types-wave scatterers placed randomly insi
a sphere, with the constant uniform densityr. Let us start
with the simplest possible example of a system ofN52
scatterers separated by a distanced. In this case theG matrix
from Eq. ~9! has two eigenvectors:@1,21# corresponding to
the eigenvaluel152eikd/( ikd), and@1,1# corresponding to
the eigenvaluel252l1. They are related top- ands-wave
resonances, respectively. Using the Breit-Wigner mode
the scattering phase shift and solving Eq.~12! in a complex
E plane it is possible to determine the positionsE1,2 and
widths G1,2 of these resonances. We repeated this proced
for 103 different separations of the scatterersk0d. The only
independent parameter left is the width of the resonance
single scatterer which we have set toG0 /E050.01. Equation
~12! was solved numerically by iteration reaching the acc
racy of 1026G0 already after five iterations. The resonan
poles obtained in this way are depicted in Fig. 1. They fo
a characteristic two-arms spiral. We see that for scatte
very close to each other (d→0) one arm of this spiral ap
proaches the axisG50. It corresponds to the very narrow
p-wave resonance. On the other hand, in this limit the sec
arm tends asymptotically to the axisG52G0. This arm cor-
responds to thes-wave resonance of the pair which is abo
4-2
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RANDOM GREEN MATRICES: FROM PROXIMITY . . . PHYSICAL REVIEW A61 022704
twice as broad as the resonance of the single scatterer
d→` both arms meet in the pointE5E0 , G5G0 reproduc-
ing the results of the single scattering. For comparison in
same figure we have the eigenvaluesl(E0)56eik0d/
ik0d plotted as a solid line (k05A2E0). They can be con-
sidered as an approximate solution of Eq.~12! up to the first
order inG0. The agreement between the strict and appro
mate solutions is surprisingly good forG0 /E050.01. It fol-
lows from inspection of Fig. 1 that thep-wave proximity
resonance is shifted down in energy with respect to the re
nance of an individual scatterer, i.e.,E1,E0. For thes-wave
resonance the opposite holds, i.e.,E2.E0. It is interesting to
note that this behavior is reversed for two-dimensional~2D!
proximity resonances. In the latter case the eigenvalue
the G matrix can be expressed by the modified Bessel fu
tion of the second kindK0, i.e., ipl562K0(2 ikd).

As a second example let us consider a certain spe
configuration ofN51000 scatterers placed randomly insi
a sphere, with the uniform densityn51 scatterer per wave
length cubedl 0

3. The wavelength chosenl 0 corresponds to
the resonance energyE0 ~i.e., l 052p/k0 wherek05A2E0).
In Fig. 2 we plot the positions of the resonance poles
tained after numerically iterating Eq.~12! five times. This
has been done for each eigenvalue separately and req
diagonalizing 4001 complexG matrices of size 1000
31000. Comparing Fig. 2 with Fig. 1 we see that the t
corresponding top-type proximity resonances still persists
the caseN51000. On the other hand, the second arm of
spiral from Fig. 1 corresponding to the resonance ofs-type
between pairs of scatterers completely disappeared. It
lows also from the inspection of Fig. 2 that new collecti
effects start to appear. They are visible especially for en
gies that are close to the resonance energy of a single
terer, i.e.,E.E0. For instance, in this range of energies qu
a lot of resonance poles are located near theG50 axis. They
correspond to narrow resonances with widthG.0.25G0. As
we will show in a moment the width of these resonancesG
decreases with an increasing number of scatterersN ~while

FIG. 1. Resonance poles calculated for 103 different systems of
N52 s-wave scatterers forG0 /E050.01. Solid line corresponds t
the approximate solution of Eqs.~12! up to the first order inG0. The
agreement is excellent.
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keeping the density constant! and in the limit of the infinite
mediumN→` they become localized states. It is also se
from Fig. 2 that a few new broad~i.e.,G.2.5G0) resonances
appeared forE.E0. In addition, in Fig. 3 we have the spec
trum of theG matrix corresponding to the same configur
tion of the scatterers. It has been calculated forE5E0 and
may be considered as a first-order approximation to the re
nance poles from from Fig. 2. We see that the agreem
with the strict solution is not perfect, but nevertheless
using the approximate expressions Eq.~13! it is still possible
to gain correct qualitative information about the resonanc

Looking for resonance poles in a complex energy pla
turns out to be an enormous numerical problem for a la
number of scatterers. Nevertheless, as we have seen, s
times it is possible to extract some qualitative informati

FIG. 3. Spectrum of theG matrix corresponding to the configu
ration ofN51000 s-wave scatterers from Fig. 2. It can be consi
ered as an approximate solution of Eqs.~12! up to the first order in
G0. The agreement with Fig. 2 is not perfect but the approxim
solution given by Eq.~13! still allows us to gain correct qualitative
information about the resonances.

FIG. 2. Resonance poles corresponding to a certain specific
figuration ofN51000 s-wave scatterers. The tail corresponding
p-type proximity resonances from Fig. 1 still persists. However,
E.E0 quite a lot of resonance poles are located near theG50 axis.
4-3
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FIG. 4. Surface plot of the density of eigen
valuesP(l) calculated for 100 different distribu
tions of N51000 s-wave scatterers. It show
clearly where the most weight of theP(l) distri-
bution is located.
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about the resonances just from the spectrum of theG matrix
calculated for real values of energy. Moreover, what is e
more interesting, a striking phase-transition-like behavior
pears in the spectra of such a Green matrices when the n
ber of scatterers increases. This transition may be interpr
as an appearance of the band of localized states emergi
the limit of the infinite medium. It is an interesting analog
the Anderson localization in noncrystalline solids such
amorphous semiconductors or disordered metals. To il
trate the appearance of the band of localized electromagn
waves, emerging in the limit of infinite system, we have
study the properties of finite systems for increasing num
of scatterers~while keeping the density constant!.

For each distribution of the scatterersrWa placed randomly
inside a sphere with the uniform scaled densityn51 scat-
terer per wavelength cubed we have diagonalized num
cally the G matrix from Eq. ~9! and obtained the comple
eigenvaluesl. The resulting probability distributionP(l),
calculated from several different distributions ofN scatterers
is normalized in the standard way*d2lP(l)51. Let us now
compare the surface plots ofP(l) ~treated as a function o
two variables Rel and Iml) calculated for systems consis
ing of N51000 and 5000 scatterers. They are presente
Figs. 4 and 5, respectively. It is seen from inspection of
these plots that, for increasing size of the system~in our case
it increasedA3 5.1.7 times!, at some Iml the probability
distribution P(l) apparently moves towards the Rel521
axis and simultaneously its variance along the Iml5const
axes decreases. This tendency is easily seen, e.g., for v
of uIm lu that are close to 0. Our numerical investigatio
indicate, that in the limit of an infinite medium, the probab
ity distribution P(l) tends to the delta function in Rel:
02270
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lim
N→`

P~l!5d~Rel11! f ~ Im l!. ~14!

We have some numerical evidence that this fact is a gen
property ofG matrices, not restricted to the considered ca
of one scatterer per wavelength squaredn51. Moreover,
this mathematical property of random Green matrices se
to be fulfilled also in the 2D free-space case@15# and in the
case of a 2D system with nontrivial boundary conditions@16#
and thus appears to be truly universal.

Let us now consider an infinite system of identical Bre
Wigner-types-wave scatterers located randomly with un
form physical densityr5k3n/(2p)3. It follows from Eq.
~14! that for almost any random distribution of the scatter
rWa ~except maybe for a few special ones with measure ze!
infinite number of eigenvaluesl of theG matrix satisfies the
condition

Rel j521 ~15!

~note that we added an indexj which labels the localized
waves!. As pointed out before, this occurs not only forn
51 but for a whole range ofn and therefore, for fixed physi
cal densityr, for a range of energiesE5k2/2. Therefore at
real values of energyEj determined by the equation

Im l j~Ej !5
Ej2E0

G0
~16!

these eigenvalues are solutions of Eq.~12! for G50. Thus
the corresponding eigenvectorsc j8(rWa) of the G matrix de-
scribe localized states which exist atdiscreteenergiesEj . It
seems reasonable to expect that the functionf from Eq. ~14!
4-4
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FIG. 5. Surface plot of the density of eigen
valuesP(l) calculated for 10 different distribu-
tions ofN55000 s-wave scatterers. For increas
ing values ofN, the probability distributionP(l)
apparently moves towards the Rel521 axis
and, simultaneously, its variance along the Iml
5const axes decreases.
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has compact support, i.e.,f (Im l)50 for uIm lu.Im lcr .
This means that in the limitN→` a countable set of discret
energiesEj corresponding to localized states becomes de
in some finite intervaluE2E0u,Ecr . Therefore for random
distribution of scatterers the distribution of resonance po
also seems to undergo a phase transition

lim
N→`

P~E,G!5g~E!d~G! for uE2E0u,Ecr . ~17!

Thus an entire continuousband of spatially localized states
appears in the limit of an infinite medium. Physically spea
ing this means that different realizations of a sufficien
large disordered system are practically~i.e., by a transmis-
sion experiment! indistinguishable from each other. Sim
larly, as pointed out by Anderson, in a sufficiently disorder
solid an entire band of spatially localized electronic sta
can be formed@9,10#.

Last but not least let us observe that theG matrix from
Eq. ~9! is a tracelessmatrix, i.e.,(ala50. This means tha
it is impossible for all eigenvalues to fulfill the localizatio
condition Eq. ~15!. The inspection of Fig. 2 suggest th
these eigenvalues may be first approximations to very br
resonances responsible for enhanced coherent backscat
from a random medium. This so-called weak localization
usually considered as the precursor of strong~Anderson! lo-
calization. The property(ala50 serves also as a good te
for the accuracy of our numerical procedures.

In summary, properties of the spectra of certain matri
describing multiple elastic scattering of scalar waves from
collection of randomly distributed pointlike objects ha
been discovered. The elements of these matrices are equ
the free-space Green’s function calculated for the differen
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between positions of any pair of scatterers. Physical interp
tation of the obtained results within the Breit-Wigner
model of the single scatterer has been provided. For
distribution of the scatterers the real part of the eigenval
of the Green matrix seems to be always greater~or equal!
than21. This means that metastable resonance states c
sponding to the eigenvectors of the Green matrix decay
time. In the case of two scatterers the real part of one eig
value tends to21 as the distance between the scatter
decreases. This corresponds to the appearance of an
tremely narrowp-wave proximity resonance. The remainin
eigenvector describes a broads-wave resonance of the pai
Another property corresponds to the case of scatterers
tributed randomly with fixed uniform density. In the limit o
the infinite medium almost all eigenvalues condense t
smooth line Rel521. This transition may be interpreted a
an appearance of the band of localized states emerging in
limit of the infinite medium. The relation between the dist
bution of eigenvalues of an infinite matrix and its elements
mathematically a very complicated problem. It is therefo
very surprising that the distribution exhibits such simp
regularities which seem to apply under very general con
tions. One cannot escape the feeling that there is a v
simple basis underlying the properties of the spectra of
random matrices considered, which still has to be disc
ered.
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