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Anderson localization of electromagnetic waves in three-dimensional disordered
dielectric structures is studied using a simple yet realistic theoretical model . An
effective approach based on analysis of probability distributions , not averages, is
developed. The disordered dielectric medium is modeled by a system of randomly
distributed electric dipoles. Spectra of certain random matrices are investigated
and the possibility of appearance of the continuous band of localized waves
emerging in the limit of an infinite medium is indicated. It is shown that localiza-
tion could be achieved without tuning the frequency of monochromatic elec-
tromagnetic waves to match the internal (Mie-type) resonances of individual
scatterers. A possible explanation for the lack of experimental evidence for strong
localization in 3D as well as suggestions how to make localization experimentally
feasible are also given. Rather peculiar requirements for setting in localization in
3D as compared to 2D are indicated.

1. INTRODUCTION

The last conference directed by the late Asim Barut was the NATO ASI
Quantum Electrodynamics and Electron Theory : 100 Years Later , held in
Edirne, Turkey, in 1994. One of the authors of the present paper (A.O.)
had an opportunity to be there and to present a lecture on localization of
light. In the meantime some of our results concerning 2D media ( 1 ± 3) as well
as some preliminary 3D calculations(4 ) were published. It is our pleasure to
admit that their final form benefited much from the warm and constructive
feedback we received during that meeting. Still there are many open problems
and interesting questions that remain unanswered. In this paper we go ahead
with 3D disordered dielectric structures presenting both new results of
numerical simulations and their physical interpretation.Disordered dielectric
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media are a subject of intensive experimental and theoretical studies. Elec-
tromagnetic waves propagating in these structures mimic, to a reasonable
extent, the behavior of electrons in disordered semiconductors. Many ideas
concerning transport properties of light and microwaves in such media
exploit the well-developed theoretical methods and concepts of solid-state
physics. Let us mention, e.g., the concept of electron localization in non-
crystalline systems such as amorphous semiconductors or disordered
insulators. According to Anderson, (5 ) an entire band of electronic states can
be spatially localized in a sufficiently disordered infinite material. Before
this discovery, it was believed that electronic states in infinite media are
either extended, by analogy with the Bloch picture for crystalline solids,
or are localized around isolated spatial regions such as surfaces and
impurities. ( 6) A very common theoretical approach in investigations of
Anderson localization in solid-state physics is to study the transport equa-
tion for the ensemble-averaged squared modulus of the wave function.( 7 { 9 )

Under some assumptions such a transport equation can be converted into
a diffusion equation. The diffusion constant D becomes a parameter
monitoring behavior of the system. Strong localization is achieved when
the diffusion constant in the scattering medium becomes zero. When the
fluctuations of the electronic static potential become large enough, the
wavefunction ceases to diffuse and becomes localized. Thus the Anderson
transition may be viewed as a transition from particlelike behavior
described by the diffusion equation to wavelike behavior described by the
SchroÈ dinger equation which results in localization.( 10)

As interference is the common property of all wave phenomena, the
quest for some analogs of electron localization for other types of waves has
been undertaken and many generalizations of electron localization exist,
especially in the realm of electromagnetic waves. ( 11 { 14 ) So-called weak
localization of electromagnetic waves manifesting itself as enhanced coherent
backscattering is presently relatively well understood theoretically( 15 { 17 ) and
established experimentally. (18 { 20 ) The question is whether interference effects
in 3D random dielectric media can reduce the diffusion constant to zero
leading to strong localization. The crucial parameter is the mean free path l
which should be rather short.( 21 { 23 ) Once l< lcr , all states of the system will
be localized. The Ioffe± Regel criterion gives kl cr= 1 and, indeed, the existence
of delocalized states at kl< 1 seems very unlikely. It is possible, however, that
the localization transition might occur earlier. It seems that a suspension of
TiO2 spheres in air is the system in which the shortest l-values for visible light
may be realized in practice. However, even in the samples with strongest ran-
domness, l is still higher by a factor of 10 than the Ioffe± Regel value for lcr .

( 24 )

Despite the observation of scale dependence of the diffusion constant in such
media, which may be considered as a reasonable indication of Anderson
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transition, there still is no convincing experimental demonstration that
strong localization could be possible in 3D random dielectric structures.
Such a demonstration has only been given for two dimensions, where strong
localization takes place for arbitrarily small values of the mean free path
( if the medium is sufficiently large). The strongly scattering medium has
been provided by a set of dielectric cylinders randomly placed between two
parallel aluminum plates on half the sites of a square lattice.( 25)

Better understanding of this interesting effect requires sound theoreti-
cal models. Such models should be based directly on the Maxwell equa-
tions and they should be simple enough to provide calculations without
too many approximations. There is a temptation to immediately apply
averaging procedures as soon as `̀disorder’’ is introduced into the model.
Averaging of the scattered intensity over some random variable leads to a
transport theory.( 26) But `̀ there is a very important and fundamental truth
about random systems we must always keep in mind: no real atom is an
average atom, nor is an experiment done on an ensemble of samples.’’ ( 27)

We always deal with a specific example of the disordered system. Therefore
what we really need to properly understand the existing experimental
results are probability distributions, not averages.

In this paper we develop a theoretical model of the Anderson localiza-
tion of electromagnetic waves in 3D dielectric media without using any
averaging procedures. We restrict ourselves to the study of the properties
of the stationary solutions of the Maxwell equations in random suspen-
sions of dielectric spheres. By investigating the band of localized waves in
such media, we discuss the possible origins of those experimental difficulties
and shed new light on the problem of resonant scattering. We suggest that
the null results of 3D experiments are not necessarily due to the fact that
we are not able to satisfy the Ioffe± Regel criterion. On the contrary, we
show that trying to satisfy this criterion by enhancement of the scattering
cross section of individual scatterers via tuning the frequency to the inter-
nal (Mie-like) resonances, we may leave the region of parameters that is
optimal for localization in 3D media.

2. LIPPMANN± SCHWINGER EQUATIONS FOR

ELECTROMAGNETIC WAVES

The standard approach to localization of electromagnetic waves ( 10, 22) is
based on the similarities between the time-independent SchroÈ dinger equation

( 2
a2

2m
$ 2+ V (r ) * w ( r)= E w ( r) ( 1)
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and the Helmholtz equation for the monochromatic electric field amplitude
in an isotropic lossless dielectric

Ñ 3 Ñ 3 E ( r)+ k2[1 2 e(r) ] E (r) = k2
E ( r) ( 2)

The term k2[1 2 e(r )] corresponds to the potential V ( r ) providing localiza-
tion of the electron wavefunction, and the squared wave number in vacuum
k2= v

2/c2 plays a role analogous to the energy eigenvalue E.
Of course, apart from remarkable similarities, there are also striking

differences between quantum particles and electromagnetic waves. ( 28, 29 )

Very different is, e.g., the long-wavelength limit of elastic scattering. For
electrons we have mainly s-wave scattering which is spatially isotropic and
wavelength independent. For electromagnetic waves we observe p-wave
scattering. In this case there is forward± backward symmetry but scattering
is nonisotropic. In addition, in the long-wavelength limit, the cross-section
for scattering of electromagnetic waves shows the well-known l

{ 4 depen-
dence. In inelastic scattering electrons change their energy but their total
number is conserved. For electromagnetic waves we have strong absorption
and the intensity decreases. Moreover electrons are described by scalar
wave functions (or two-component spinors if the spin is included) . To
describe correctly localization of electromagnetic waves we need to con-
sider, in general, three-dimensional vector fields.

Now we are ready to present a possible definition of localized electro-
magnetic waves which resembles the definition of localized states in quantum
mechanics and makes use of the analogy between the quantum-mechanical
probability density and the energy density of the field. In general, the electric
field E(r, t) cannot be interpreted as the probability amplitude.( 29) The
correct equivalent of the quantum-mechanical probability density is rather
the energy density of the field and not the squared electric field. Therefore
it seems natural to say that the monochromatic electromagnetic wave

E(r, t) = Re{E (r) e { ivt} (3a)

H(r, t) = Re{H (r ) e { ivt } (3b)

is localized if the time-averaged energy density of the total field tends to
zero far from a certain region of space

W (r) =
1

16p
{ |e(r) E (r) |2+ |H (r) | 2} ® 0, for |r | ® ¥ ( 4)

We used the fact that for rapidly oscillating monochromatic electromagnetic
waves (4) only time averages are measurable.
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The total field

E (r) = E ( 0) (r )+ E ( 1)( r) ( 5a)

H (r) = H ( 0)( r) + H ( 1)(r ) ( 5b)

may be considered as the sum of some incident free field E ( 0)( r) , H ( 0)(r ) ,
which obeys the Maxwell equations in vacuum, and waves scattered by the
various parts of the medium ( 30) :

E
(1 )(r) = Ñ 3 Ñ 3 Z ( r) 2 4p P (r ) ( 6a)

H
(1 )(r) = 2 ik Ñ 3 Z ( r) ( 6b)

The electric Hertz potential

Z ( r)= & d 3r ¢ P ( r¢ )
e ik |r { r 9 |

|r 2 r ¢ |
( 7)

is expressed by the polarization of the dielectric medium

P ( r) =
e( r) 2 1

4p
E ( r) ( 8)

The system of equations ( 5) ± (8) determines the electromagnetic field E (r ) ,
H ( r) everywhere in space for a given field E

( 0) (r ) , H
( 0)( r) of the free wave

incident on the system. Analogous relationships between the stationary
outgoing wave and the stationary incoming wave are known in the general
scattering theory as the Lippmann ± Schwinger equations.(31) A way of deal-
ing with bound states in the formalism of the Lippman ± Schwinger equation
is to solve it as a homogeneous equation, i.e., for the incoming wave ( in
our case E (0 )( r) ) equal to zero.

3. POINT-SCATTERER APPROXIMATION

Usually localization of light is studied experimentally in microstruc-
tures consisting of dielectric spheres with diameters and mutual distances
that are comparable to the wavelength.( 23) It is well known that the theory
of multiple scattering of light by dielectric particles is tremendously sim-
plified in the limit of point scatterers. In principle, this approximation is
justified only when the size of the scattering particles is much smaller than
the wavelength. In practical calculations, however, many multiple-scatter-
ing effects can be obtained qualitatively for coupled electrical dipoles.
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Examples are universal conductance fluctuations, ( 34) enhanced backscatter-
ing, ( 35) and dependent scattering.( 36) We believe that what really counts for
localization is the scattering cross-section and not the geometrical shape
and real size of the scatterer. Therefore we will represent the dielectric par-
ticles located at the points r a by single electric dipoles

P ( r)= +
a

pa d( r 2 ra) ( 9)

with properly adjusted scattering properties.
It is known that several mathematical problems emerge in the formula-

tion of interactions of pointlike dielectric particles with electromagnetic
waves. ( 36 { 38 ) Instead of applying several complicated regularization proce-
dures we will show that it is possible to analyze light scattering by pointlike
dielectric particles as a special case of general considerations dealing with
elastic scattering of electromagnetic waves. To use safely the point dipole
approximation it is essential to use a representation for the scatterers that
fulfills the optical theorem rigorously and conserves energy in the scattering
processes. Therefore, the time-averaged field energy flux integrated over a
surface surrounding an arbitrary part of the medium should vanish:

& d s . S ( r) =
c

4p

1
2

Re & d s . {E (r) 3 H *(r) }= 0 (10)

After inserting the formula (7), the expression (13) may be split into
three terms. The first term

& d s . S
( 1 )(r) =

c
4p

1
2

Re & d s . {E
( 1)( r) 3 H

( 1 )* (r) } ( 11)

corresponds to the time-averaged energy radiated by the medium per unit
time. The second term describes the total time-averaged energy flux
integrated over a closed surface for the free field and thus vanishes:

c
4p

1
2

Re & d s . {E ( 0) (r ) 3 H ( 0)*( r) }= 0 (12)

To calculate the last interference term

c
4p

1
2

Re & d s . {E (0)( r) 3 H ( 1)*(r )+ E ( 1)( r) 3 H ( 0)* (r ) } ( 13)
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we use the following identity (Lorentz theorem):

Ñ . {E
( 0) (r ) 3 H

( 1)*( r)+ E
( 1)*( r ) 3 H

( 0)( r) }= 2 ik 4p P *(r ) . E
( 0)( r) ( 14)

which follows directly from the Maxwell equations

( Ñ 3 E ( 0)(r) = ik H ( 0)(r )
Ñ 3 H ( 0)( r)= 2 ik E ( 0)(r) ( Ñ 3 E ( 1)( r )= ik H ( 1)( r)

Ñ 3 H ( 1)( r)= 2 ik E ( 1)(r) + ik 4p P ( r)

( 15)

Integrating (14) over a volume containing the part of the medium under
consideration and calculating the real part we see that Eq. ( 10) may be
written in an equivalent form:

& d s . S ( 1 )(r) 2 1
2ck Re & d 3r { iP *( r) . E ( 0)( r) }= 0 (16)

Thus on average the energy radiated by the medium must be equal to the
energy given to the medium by the incident wave.

Now, let us insert Eq. ( 9) into the energy conservation condition (16)
and perform the integration over a surface surrounding the a th dipole only.
Recalling the formula for the energy radiated on average by the Hertz
dipole( 30):

& d s . S
( 1)( r) = 1

3ck 4 |pa |2 ( 17)

we arrive at

|ik3
pa+ 3

4 E ¢ ( ra ) |2= | 3
4 E ¢ ( ra ) |2 ( 18)

where the field acting on the a th dipole

E ¢ ( ra )= E
( 0)(ra )+ +

b Þ a

E b( ra ) ( 19)

is the sum of the free field and waves scattered by all other dipoles (which
is a special case of Eq. ( 6) ) :

E a (r )= Ñ 3 Ñ 3 pa

e ik |r { ra |

|r 2 ra |
( 20)
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Assuming that the vector on the left-hand side of Eq. ( 18) is a function of
the vector on the right-hand side and that the dielectric particles modeled
by the dipoles are spherically symmetrical, we get

2
3

ik3
pa =

e iw 2 1
2

E ¢ ( ra ) ( 21)

Thus, to provide conservation of energy, the dipole moments must be pa

coupled to the electric field of the incident wave E ¢ (ra ) by complex
`̀polarizability’’ (e iw 2 1)/2, which can take values from a circle on the com-
plex plane.

To get some insight into the physical meaning of the parameter w from
Eq. ( 21) let us observe that it is directly related to the total scattering
cross-section r of an individual dielectric sphere represented by the single
dipole. Indeed, dividing Eq. (16) by the intensity of a plane wave given
by ( 30)

I=
c

4p
|E ( 0) (ra ) |2 ( 22)

and inserting Eq. (24) we obtain the explicit formula for the scattering
cross-section:

k2 r =
3p

2
(1 2 cos w ) ( 23)

Now, inserting Eq. ( 20) into (19) and using (21) it is easy to obtain
finally the system of linear equations:

+
b

M
$

ab . E ¢ ( r b)= E
( 0)(ra ) ( 24)

determining the field acting on each dipole E ¢ ( ra ) for a given free field
E

( 0)( ra) . If we solve it and use again Eqs. (21) and (20) then we are able
to find the electromagnetic field everywhere in space (but outside of the
dipoles):

E ( r )= E ( 0)( r)+ E a ( r) , for r Þ r a ( 25)

Nonzero solutions E ¢ (ra ) Þ 0 of Eq. (24) for the incoming wave equal
to zero E ( 0)( ra) º 0 may be interpreted as localized waves. ( 4) Let us stress
that perfectly localized waves exist only in infinite systems of dipoles.( 4) For
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example, this might be an infinite periodic lattice of dipoles with one node
removed, i.e., a photonic crystal with wave localized around isolated point
defect.

4. ANDERSON LOCALIZATION

It seems reasonable to expect that each electromagnetic wave localized
in a system of dipoles ( 9) usually corresponds to a certain curve on the
plane {v , w}. Nevertheless, in the case of random and infinite system of
dipoles there can exist an entire continuous band of spatially localized
states corresponding to a region in the plane {v , w }. After choosing a point
(v , w ) from this region a localized wave of frequency (arbitrarily near) v

exists in almost any random distribution of the dipoles described by the
scattering properties w . To illustrate this statement we have to study the
properties of finite systems for increasing number of dipoles N (while
keeping the density constant). For each distribution of the dipoles ra placed
randomly inside a sphere with the uniform density n= 1 dipole per wave-
length cubed we have diagonalized numerically the M

$
matrix from Eq. ( 24)

and obtained the lowest eigenvalue:

L(w ) = min
j

|lj (w ) | ( 26)

The resulting probability distribution Pw (L ) , calculated from 103 different
distributions of N dipoles is normalized in the standard way

& dL P w(L ) = 1 (27)

Let us now compare the surface plots of Pw (L ) ( treated as a function of
two variables w and L ) calculated for systems consisting of N= 100 and
1000 dipoles. They are presented in Figs. 1 and 2, respectively. It is seen
from inspection of these plots that, for increasing size of the system ( in our
case it increased 3Ï 10, 2 times) , at some w the probability distribution
Pw (L ) apparently moves towards the L= 0 axis and simultaneously its
variance decreases. This happens only for values of |w | that are sufficiently
greater than zero. Our numerical investigations indicate that in the limit of
an infinite medium, the probability distribution presented in these figures
tends to the delta function

lim
N ® `

Pw(L ) = d(L ) , for |w | > w cr ( 28)
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Fig. 1. Surface plot of the probability distribution Pw (L )
calculated for 103 systems of N= 100 dielectric spheres distributed
randomly in a sphere with the uniform density n= 1 sphere per
wavelength cubed.

Therefore, for some w the function L(w ) turns out to be a self-averaging
quantity. This means that for almost any random distribution of the
dipoles ra , the equation lj (w ) = 0 holds. Thus, as we expected, a localized
wave (described by the corresponding eigenvector of the M

$
matrix) exists.

Similarly, localized electronic states in solids appear always at discrete
energies only. However, in the case of a disordered and unbounded system
a countable set of energies corresponding to localized states becomes dense
in some finite interval ( in the same way as the rational numbers are dense
in the set of real numbers ( 39) ) . When this happens, Anderson localization
occurs. But it is always difficult to distinguish between the allowed energies
which may be arbitrarily close to each other (by convention the spectrum
is a coarse-grained object (39) ) . Therefore, physically speaking, an entire
continuous band of spatially localized electronic states exists.

We see from Eqs. ( 23) and (28) that the total scattering cross section
of individual particles r must exceed some critical value r cr= r (w cr ) before
localization will take place in the limit N ® ¥ . This fact is in perfect agree-
ment with the scaling theory of localization(40) : In 3D random media a
certain critical degree of disorder is needed for localization. Moreover, our
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Fig. 2. Same as in Fig. 1 but for 103 systems of N= 1000 spheres.

preliminary calculations indicate that the value of k2 r cr may decrease with n
but slower than n 2 2 . Using the Rayleigh expression for the total scattering
cross-section r of a dielectric sphere with radius a and dielectric constant
e( 33) :

k2 r =
8
3p

(ka ) 6 ) e 2 1
e+ 1 )

2

( 29)

we conclude that in the long-wave limit the system of dielectric spheres
distributed with constant absolute density g= k3n/( 2p ) 3 will be out of the
localization regime. On the other hand, in the limit of small wavelengths,
the propagation of light is ruled by the laws of geometrical optics, and the
point-scatterer approximation we use becomes invalid. Therefore our
results seem to agree with the common believe ( see, e.g., Refs. 22 and 23),
that in three-dimensional media Anderson localization of light is possible
only in a certain frequency window.

If the total scattering cross-section of individual particles exceeds some
critical value r > r cr> 0, then the scattering mean free path

kl=
(2p ) 3

(k2 r ) n
>

8p
2

3n
( 30)
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( to prove the inequality we used Eq. ( 23) ) must be smaller than the corre-
sponding critical value lcr= l( r cr) before localization will set in. In solid
state physics a condition kl < 1 applies.( 7, 9, 41) However, it follows from
Eq. ( 30) that the standard Ioffe± Regel criterion of localization kl cr= 1 is
impossible to satisfy in our model for a scaled density n= 1 (typically
encountered in experiments) . On the other hand we have just shown that
the Anderson localization could be possible at this density. This means that
in the case of electromagnetic waves the localization transition can occur
much earlier than predicted by the standard Ioffe± Regel criterion. Why
then is there still no convincing experimental demonstration that strong
localization could be possible in 3D random dielectric structures (where we
have kl= 10)?

Let us stress that from the practical point of view the Ioffe± Regel
criterion for localization is a very delicate one to achieve. The mean free
path l= 1/(gr ) decreases both with increasing absolute density g of the
medium and the scattering cross-sections of the spheres r . However, the
density should be low enough to consider the dielectric particles as ran-
domly placed. Therefore to increase the scattering cross-sections the
experimentalists usually tune the frequency of light to match the internal
(Mie-type) resonances of individual scatterers. There was considerable con-
troversy some time ago about the role of resonant scattering in combina-
tion with localization.(42 { 44 ) Within our approach internal resonances of
scatterers can be modeled by |w |, p. Our calculations do not exclude the
possibility that in infinite medium the band of localized waves may appear
in this region of w . However, in all experiments we can investigate only
systems confined to certain finite regions of space. And, as follows from
Figs. 1 and 2, the band of localized waves appears faster with increasing
size of the system when w cr < |w |<< p, i.e., when the frequency is not tuned
to the internal resonances of individual scatterers.

Let us emphasize that this result is specific for 3D random media. In
both one and two dimensions, macro- and microscopic resonances appear
at the same frequencies. To illustrate this fact, in Fig. 3 we have prepared
a plot analogous to Fig. 1 but calculated for 103 configurations of N= 100
dielectric cylinders modeled by 2D dipoles.( 1) In this case the band of
localized waves does appear faster for |w | , p: in 2D the parameters of the
single scatterers that give the internal and global resonances coincide, and
matching the internal resonances helps to establish localization. In our
opinion this could be the main reason why a convincing experimental
demonstration of strong localization of microwave radiation has been given
only for two dimensions, ( 25) although also more practical reasons as, e.g.,
polydispersity of the actual 3D samples ( leading to phase shifts) can play
a role. Results obtained from our model for 2D media (which seem to
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Fig. 3. Surface plot of the probability distribution Pw (L )
calculated for 103 systems of N= 100 dielectric cylinders dis-
tributed randomly in a circle with the density n= 1 cylinder per
wavelength squared.

agree with experimental results) prove that the surprising features of
localization we observed for 3D random media are not the artifacts
produced by the model.

5. BRIEF SUMMARY

We have developed an effective theoretical approach (based on analysis
of probability distributions) to Anderson localization of electromagnetic
waves in random distributions of dielectric spheres. Investigating spectra
of certain random matrices we have actually observed numerically some
indications of appearance of the continuous band of localized electro-
magnetic waves emerging in the limit of the infinite medium. This approach
can provide deeper insight into the existing experimental results. We
showed that it should be possible to observe strong localization in 3D
random dielectric media without satisfying the heuristic Ioffe ± Regel criterion.
But to achieve this Holy Grail the experiments should be performed for a
different range of parameters than is presently considered to be promising
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for localization. In three-dimensional random media the cross sections of
single scatterers should not be made maximal. The reason is that ( as
opposed to 2D) the global resonances of the 3D samples of scatterers are
formed for different parameters than resonances of the single scatterer.
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