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1. Introduction

Scattering of electromagnetic waves from varoius kind of obstacles is rich of
intresting and sometimes unexpected phenomena. Already for two scatters
placed together well within a wavelentg an extremely narrow proximity
resonance can appear [10]. For many randomly distributed scatters we may
expect that, for same range of parameters, Anderson localization can show
up.

A convincing experimental demonstration that Anderson localization of
electromagnetic waves is possible in three-dimensional disordered dielectric
structures has been given recently [12]. The strongly scattering medium has
been provided by semiconductor powders with a very large refractive index.
By decreasing the average particle size it was possible to observe a clear
transition from linear scaling of transmission (T ∝ L−1) to an exponential
decay (T ∝ e−L/ξ). Some localization effects have been also reported in
previous experiments on microwave localization in copper tubes filled with
metallic and dielectric spheres [4]. However, the latter experiments were
plagued by large absorption, which makes the interpretation of the data
quite complicated.

Another experiment on microwave localization has been performed in a
two-dimensional medium [1]. The scattering chamber was set up as a collec-
tion of dielectric cylinders randomly placed between two parallel aluminum
plates on half the sites of a square lattice. These authors attributed the
observed sharp peaks of transmission to the existence of localized modes
and measured the energy density of the electromagnetic field localized by
their random structures.

As shown in our previous paper [7], Anderson localization of classi-
cal waves can be studied theoretically by investigating a striking phase
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transition in the spectra of certain random matrices. The elements whose
elements are equal to the Green’s function calculated for the differences
between positions of any pair of scatterers. The Breit-Wigner’s model of
a single scatterer allows one to give a sound physical interpretation to the
universal properties of these matrices. In this case the spectrum can be con-
sidered as an approximation to the resonance poles of the system. In the
limit of an infinite random medium all eigenvalues condense to a smooth
line instead of redistributing themselves over the complex plane. Physically
speaking this corresponds to the formation of an entire frequency band of
spatially localized electromagnetic waves.

The Green’s function is one of the fundamental basic building blocks for
constructing a self-consistent description of multiple scattering processes.
In the free-space case the Green’s function is something very simple. It de-
scribes a spherical (in 3D), cylindrical (in 2D) or a pair of two plane (in
1D) outgoing wave(s) centered at the scatterers position. Boundary condi-
tions may change the Green’s function in a complicated way. It is therefore
interesting to extend the random-matrix description of localization to en-
compass the case of nontrivial boundary conditions. For this purpose in
this paper we investigate Anderson localization of electromagnetic waves in
a disordered dielectric medium confined within a metallic waveguide. The
results of our previous paper [9] are extended to the case of a multimode
waveguide and new physical interpretation based on the Breit-Wigner’s
model of a single scatterer is presented.

2. Basic assumptions

In the following we study the properties of the stationary solutions of the
Maxwell equations in two-dimensional media consisting of randomly placed
parallel dielectric cylinders of infinite height (i.e., very long as compared to
the wavelength of the electromagnetic field). This means that one, say (y),
out of three dimensions is translationally invariant and only the remaining
two (x, z) are random. In the present model we place the disordered dielec-
tric medium between two infinite, perfectly conducting mirrors described
by the equations x = 0 and x = d. Thus we will consider the case where the
cylinders are oriented parallel to the mirrors. For simplicity our discussion
will be restricted to TE modes polarized along the y axis only. The main
advantage of this two-dimensional approximation is that we can use the
scalar theory of electromagnetic waves [8]:

~E(~r, t) = Re
{
~ey E(x, z) e−iωt

}
. (1)

Consequently, the polarization of the medium takes the form:

~P (~r, t) = Re
{
~ey P(x, z) e−iωt

}
. (2)
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Localization of electromagnetic waves in disordered 2D media is usually
studied experimentally in microstructures consisting of dielectric cylinders
with diameters and mutual distances being comparable to the wavelength
[1]. However it seems to be a reasonable assumption that what really counts
for the basic features of localization is the scattering cross-section and not
the real geometrical size of the scatterer itself. Therefore we will represent
the dielectric cylinders located at the points (xa, za) by single 2D electric
dipoles:

P(x, z) =
N∑

a=1

pa δ(2)(x− xa, z − za). (3)

It should be stressed, that the boundary conditions considered in this paper
are different from those encountered in the experiment of Ref. [1]. To mini-
mize the effect of the waves reflected off the edges of the scattering chamber,
its perimeter was lined with a layer of microwave absorber. Therefore, to
model that particular experiment, it is appropriate to use the free space
boundary conditions (as we did in our previous papers [8, 11]).

3. Planar waveguide

Several particular cases may be considered (k d = π is the cut-off thickness
of the waveguide). For N = 0 and k d < π there are no guided modes in
the waveguide as well as there are no localized waves. This case is analo-
gous to the electronic band gap in a solid. If N > 0 and k d < π there are
still no guided modes in the waveguide but localized waves can appear for
any distribution of the cylinders. It is again analogous to the solid state
physics situation where isolated perturbations of the periodicity of crystals
(like impurities or lattice defects) can lead to the formation of localized
electronic states with energies within the forbidden band. Another possi-
bility corresponds to N = 0 and k d > π. In this case there are guided
modes but the system supports no localized waves. This is very similar
to the conductance band in solids. Guided modes correspond to extended
electronic states described by Bloch functions. In this paper we perform a
detailed study of the regime where N > 0 and k d > π. For this range of
parameters there are both the guided modes and the resonances of trans-
mission. Isolated localized waves can be seen for certain distributions of
the cylinders. The signs of Anderson localization emerging in the limit of
an infinite medium can be observed both in analysis of transmission and
in the properties of the spectra of certain random matrices. Eventually we
will consider a limiting case of N → ∞ and k d > π. It turns out that in
this case the guided modes no longer exist in the waveguide. Instead a band
of localized waves will be formed for any distribution of the cylinders. It is
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an interesting analog of the Anderson localization in noncrystalline solids
such as amorphous semiconductors or disordered metals.

4. Field expansion

The electric field of the electromagnetic wave incident on the cylinders

E(0)(x, z) =
M∑

m=1

ιm E(m)(x, z), (4)

may be expanded into the guided modes of the waveguide [5]:

E(m)(x, z) =
2√
βm d

sin(αm x) eiβm z, (5)

where the propagation constants are given by:

αm =
π

d
n, βm =

√
k2 − α2

m. (6)

The total field that can be measured far from the cylinders is fully described
by the reflection ρm and transmission τm coefficients of all guided modes:

E(x, z) =
M∑

m=1

ιm E(m)(x, z) +
M∑

m=1

ρm E(m)∗(x, z) for z → −∞ (7)

E(x, z) =
M∑

m=1

τm E(m)(x, z) for z → +∞ (8)

Using the Lorentz theorem and repeating the straightforward but lengthly
calculations (see, e.g., [5]) we easily arrive at the following expressions de-
termining the transmission coefficients

τm = ιm + iπ k2
N∑

a=1

pa E(m)∗(xa, za), (9)

and the reflection coefficients

ρm = iπ k2
N∑

a=1

pa E(m)(xa, za), (10)

for a given dipole moments pa. In the following sections we will relate pa to
the values of the incident field calculated at the positions of the cylinders
E(0)(xa, za).
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5. Method of images

A simple way to take into account the boundary conditions of parallel mir-
rors and their influence on the electromagnetic field is to use the method
of images. This technique has been used, i.e., in QED calculations of spon-
taneous emission in cavities [3, 2]. To reproduce the correct boundary con-
ditions on the radiation field of each cylinder (3) the mirrors are replaced
by an array of image cylinders whose phases alternate in sign:

P(x, z) =
N∑

a=1

∞∑

j=−∞
(−1)jpa δ(2)(x− x(j)

a , z − za), (11)

where
x(j)

a = (−1)jxa + jd. (12)

Thus a finite system of dielectric cylinders (3) placed within a metallic
waveguide is fully equivalent to an infinite system of cylinders (11) forming
a slab in a free space. This fact allows us to utilize some results from our
previous paper concerning dielectric cylinders in free space [8].

6. Elastic scattering

It is now a well-established fact that to use safely the point-scatterer ap-
proximation it is essential to use a representation for the cylinders that
conserves energy in the scattering processes. In the case of a system of
cylinders in free space this requirement means that for each cylinder the
optical theorem holds [8]:

π k2 |pa|2 = Im
{
p∗a E ′(xa, za)

}
. (13)

Eq. (13) gives the following form of the coupling between the dipole moment
pa and the electric field incident on the cylinder E ′(xa, za) :

iπ k2 pa =
eiφ − 1

2
E ′(xa, za), (14)

The same result holds also for a system of cylinders placed in a metallic
waveguide (11).

7. Multiple scattering

In the case of a confined medium the field acting on the ath cylinder
E ′(xa, za) from Eq. (14) is the sum of the incident guided mode E(0), which
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obeys the Maxwell equations in an empty waveguide, and waves scattered
by all other cylinders and by all images:

E ′(xa, za) = E(0)(xa, za) +
eiφ − 1

2

N∑

b=1

Gab E ′(xb, zb), a = 1, . . . N (15)

Thus, in the present model the G matrix from Eq. (15) needs to be defined
differently than in Ref. [8]:

iπ Gab = 2
∑

ρ
(j)
ab
6=0

(−1)j K0(−ikρ
(j)
ab ), (16)

where
ρ
(j)
ab =

√
(xa − x

(j)
a )2 + (za − zb)2, (17)

denotes the distance between the ath cylinder and the jth image of the bth
cylinder and K0 is the modified Bessel function of the second kind. Note
that summation in Eq. (16) is performed over all j, for which ρ

(j)
ab 6= 0.

The system of linear equations (15) fully determines the field acting on
each cylinder E ′(xa, za) for a given field of the guided mode E(0)(xa, za)
incident on the system. Analogous relationships between the stationary
outgoing wave and the stationary incoming wave are known in the general
scattering theory as the Lippmann-Schwinger equations [6]. If we solve Eqs.
(15) and use Eqs. (14) to find pa, then we are able to find the transmission
and reflection coefficients given by Eqs. (9) and (10).

8. Reflection coefficient

Substituting Eq. (14) into Eq. (10) we get the following expression for the
reflection coefficient of a mth guided mode from a system of N identical
cylinders:

|ρm|2 = sin2 φ

2

∣∣∣∣∣
N∑

a=1

E ′(xa)· E(m)(xa, ya)

∣∣∣∣∣

2

(18)

If E ′(xa) is an eigenvector of the G matrix (16) corresponding to the eigen-
value λ

N∑

b=1

Gab E ′(xb, yb) = λ E ′(xa, ya), a = 1, . . . , N (19)

then the reflection coefficient takes the form of

|ρm|2 =
1

(cotφ + Imλ)2 + (1 + Reλ)2

×
∣∣∣∣∣

N∑

a=1

E(0)(xa, ya)· E(m)(xa, ya)

∣∣∣∣∣

2

(20)
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Only the first term in Eq. (20) depends on the model of the scatterer
(through the phase shift φ). The incident field appears only in the second
term. Both terms depend on the geometry of the system (the first one
through the eigenvalue λ) and frequency.

9. Breit-Wigner scatterers

The cylinders necessarily have an internal structure. Thus in general the
phase shift φ should be regarded as a function of frequency ω. For example
to model a simple scattering process with one internal Breit-Wigner type
resonance one can write:

cot
φ(ω)

2
= −ω − ω0

γ0
(21)

The total scattering cross-section k σ = 4 sin2 φ/2 [8] takes then the familiar
Lorentzian form:

k σ =
4 γ2

0

(ω − ω0)2 + γ2
0

(22)

Substituting the Breit-Wigner model of scattering from Eq. (21) into Eq.
(20) we get the following expressions for the reflection coefficients of the
guided modes:

|ρm(ω)|2 =

rapidly varying︷ ︸︸ ︷
γ2

0

[ω − (ω0 + γ0 Im λ)]2 + [γ0(1 + Reλ)]2

×
∣∣∣∣∣

N∑

a=1

E(0)(xa, ya)· E(m)(xa, ya)

∣∣∣∣∣

2

︸ ︷︷ ︸
slowly varying

(23)

Most localization experiments are performed in the range of optical or mi-
crowave frequencies. In this case usually γ0/ω0 ¿ 1. It is therefore reason-
able to assume that the first term in Eq. (23) varies with frequency much
faster than the second one. Thus we get a Lorentzian-type resonance of
width

γ ' γ0(1 + Reλ) (24)

centered around frequency

ω ' ω0 + γ0 Im λ (25)



8

10. Single scattering

Let us begin by considering a single dielectric cylinder placed in a metallic
waveguide. In the following we will assume that only one guided mode
exists. The scattering is elastic. Thus on average the energy scattered by the
cylinder must be equal to the energy given to the cylinder by the incident
wave. Therefore:

|τ1|2 + |ρ1|2 = 1 (26)

Substituting into Eq. (26) the formulas for the transmission and reflection
coefficients Eqs. (9) and (10) we get the following form of the coupling
between the dipole moment p1 of the cylinder and the electric field of the
incident wave calculated at the cylinder E(0)(x1, z1):

iπ k2 p1 =
eiφ′ − 1

2
E(0)(x1, z1), (27)

Thus all the scattering properties of a cylinder are perfectly described by
a phase shift φ′. The explicit form of the transmission and reflection coef-
ficients from a single cylinder reads than as:

τ =
eiφ′ + 1

2
, ρ =

eiφ′ − 1
2

(28)

Notice please that the waveguide may introduce it’s own phase shift de-
pending on the position of the cylinder with respect to its walls. Therefore
the free space phase shift φ from Eq. (21) is different from the phase shift
φ′ from Eq. (27). This results in changing the width and position of the
transmission and reflection resonance.

Indeed, as an example let us consider a cylinder placed between the
mirrors separated by a distance k d = 3π/2. We have calculated numerically
the corresponding 1 × 1 G-matrix (16). The images of the cylinder from
Eq. (11) were summed from j = −50000 to j = 50000. The resulting
“spectrum” (λ = G11) of the G-matrix is ploted on the left side of Fig. 1.
We see, that as opposed to the free-space case (G11 = 0) it is nonzero.

According to Eqs. (24) and (25) the eigenvalues λ can be considered
as a first-order approximation (in γ0/ω0) to the positions of the resonance
poles in the system. Thus if λ 6= 0 then ω 6= ω0, γ 6= γ0. To check if the
shape of the resonance has really changed on the right side of Fig. 1 we
have ploted as a solid line the reflection coefficient R = |ρ1|2. The dashed
line on the same plot corresponds to the “free space” case λ = 0.

11. Collective resonances

In the next step in Figs. 2 and 3 we plot the reflection R of the systems of
N = 10, 100 cylinders as a function of the frequency ω. In the same plots
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.

Figure 1. Reflection R of a single dielectric cylinders placed in a planar metallic waveg-
uide ploted as a function of the frequency ω and the corresponding spectrum of the G
matrix. The dashed line correspond to the transmission in a “free space” case.

we have also the corresponding approximate values of the resonance poles
given by the spectrum of the G-matrix.. The cylinders were distributed
randomly with constant uniform density n = 1 cylinder per wavelength
squared. Therefore for each N the size of the system was proportional to
the number of cylinders L ∝ N .

We have seen that in the case N = 1 the incident wave was totally
reflected for a single value of ω = ω̃. Note that not necessarily ω̃ = ω0,
and therefore for this value of ω the total scattering cross-section σ of an
individual dielectric cylinder (22) does not approach its maximal value.
However, for systems containing N = 10 and N = 100 the entire regions of
the values of frequencies ω exist for which R ' 1. They are separated by
narrow maxima of transmission. Moreover, inspection of Figs. 2 and 3 sug-
gests that in the limit N →∞ the number of these maxima increases and
simultaneously they became narrower and sharper. Therefore we may ex-
pect that for sufficiently large N the incident waves will be totally reflected
for almost any ω except the discrete set ω = ωl for which the reflection
is close to unity. Physically speaking this means that different realizations
of sufficiently large system of randomly placed cylinders are hardly distin-
guishable from each other by a transmission experiment.

It follows from inspection of Eqs. (9) and (10) that the maximum
of transmission T =

∑
m |τm|2 = 1 (and minimum of reflection R =∑

m |ρm|2 = 0, because the medium is non-dissipative) corresponds to the
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Figure 2. On the right: reflection R of q system of N = 10 dielectric cylinders placed
randomly in a planar metallic waveguide ploted as a function of the frequency ω. On
the left: first-order approximations to the resonance poles in the system given by the
spectrum λ of the corresponding G-matrix.

.
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. ... ... ....... ......... ...... ........... ... ..... ............ ................................

Figure 3. On the right: reflection R of q system of N = 10 dielectric cylinders placed
randomly in a planar metallic waveguide ploted as a function of the frequency ω. On
the left: first-order approximations to the resonance poles in the system given by the
spectrum λ of the corresponding G-matrix.

case when the polarization of the medium fulfills the following condition:

N∑

a=1

pa E(0)∗(xa, za) =
N∑

a=1

pa E(0)(xa, za) = 0 for m = 1, . . . M (29)
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This means that in the expansion of the field radiated by the medium into
waveguide modes the coefficients near all guided modes Eq. (5) vanish.
Therefore the radiated field consists only of evanescent modes with imagi-
nary propagation constants βm and thus it is exponentially localized in the
vicinity of the medium. In the next section we will show that such a field
can exist also without any incident wave and therefore represents a truly
localized wave.

12. Localized waves

By definition, an electromagnetic wave is localized in a certain region of
space if its magnitude is (at least) exponentially decaying in any direction
from this region. We will show now that electromagnetic waves localized
in the system of dielectric cylinders placed in a planar metallic waveguide
correspond to nonzero solutions E ′l(xa, za) 6= 0 of Eqs. (15) for the incoming
wave equal to zero, i.e., E(0)(x, z) ≡ 0. Note that we added an index l which
labels the localized waves.

Indeed, let us suppose that the field is exponentially localized. This
means that there are no guided modes in the radiation field. Therefore
(as shown in the previous section) Eq. (29) holds. Using Eq. (14) we see
that the vector formed by the values of the field acting on the cylinders is
orthogonal to the vector formed by the values of incident field calculated
at the positions of the cylinders:

N∑

a=1

E ′l(xa, za) E(0)∗(xa, za) = 0. (30)

But simultaneously E ′l(xa, za) is a solution of a system of linear Eqs. (15)
where E(0)(xa, za) is the right-hand-side. Therefore E ′l(xa, za) is also a solu-
tion of Eqs. (15) with E(0)(xa, za) ≡ 0.

The proof works also the other way round. Suppose that E ′l(xa, za) is a
solution of Eqs. (15) for E(0)(xa, za) ≡ 0. As the considered medium is non-
dissipative, the time average energy stream integrated over a closed surface
surrounding it must vanish. This means that there are again no guided
modes in the radiation field (which in the case E(0)(x, z) ≡ 0 is equal to the
total field). Therefore Eq. (29) holds and the wave is localized.
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13. Eigenproblem

Note that for the incoming wave equal to zero, i.e., E(0)(x, z) ≡ 0, the system
of equations (15) is equivalent to the eigenproblem for the G matrix:

N∑

b=1

Gab E ′l(xb, zb) = λl E ′l(xa, za), (31)

where

λl = −1− i cot
φ

2
. (32)

Let us stress that Eq. (32) can be fulfilled only if the real part of an eigen-
value satisfies:

Reλl = −1. (33)

Substituting the Breit-Wigner model of scattering (21) we see that the
imaginary part of the eigenvalue and the frequency of the localized wave
are then related by:

Imλl =
ωl − ω

γ0
. (34)

Therefore only those eigenvectors E ′l(xa, za) of the G matrix which corre-
spond to the eigenvalues λl satisfying the condition (33) may be related to
localized waves. Moreover, those waves can exist only for discrete frequen-
cies ωl given by Eq. (34). As discussed in the previous sections they are the
same values of ω for which the transmission is equal to unity.

14. Anderson localization

Note that in finite dielectric media no localized states are supported by
Maxwell’s equations in two dimensions [8]. However, this is not the case
with confined media, where localized waves do exist even in finite media.
Therefore a clear distinction between localized waves with isolated frequen-
cies and the dense band of localized waves (due to Anderson localization)
is needed. We show now that this distinction may be provided by investi-
gation of a phase transition which occurs in the limit of N → ∞ in the
spectra of Gab matrices corresponding to systems of randomly distributed
dielectric cylinders.

To support this statement let us recall Figs. 2 3. We have ploted there
the spectra λ of a G matrix (diagonalized numerically) corresponding to
certain specific configurations of N = 10 and N = 100 cylinders placed
randomly with the uniform density n = 1 cylinder per wavelength squared.
We see that already in the case of of N = 10 quite a lot of eigenvalues
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Figure 4. On the right: density of eigenvalues P (λ) of the matrix G calculated from
102 distributions of N = 100 cylinders. On the left: probability P (R) of measuring a
reflection R at frequency ω calculated for the same systems. The similarity is striking.

are located near the Reλ = −1 axis. This tendency is more and more pro-
nounced with increasing size of the system measured by N . This is a univer-
sal property of 2D G matrices, not restricted to this specific realization of
the system only. To prove these statements we diagonalize numerically the
G matrix (16) for 102 different distributions of N = 100 cylinders. Then
we construct two-dimensional histogram of eigenvalues λ from all distri-
butions. It approximates the corresponding probability distribution P (λ)
which is normalized in the standard way

∫
d2λP (λ) = 1. In Fig. 4 we have

the surface plot of the function P (λ). It clearly shows that for all configura-
tions (without, may be, a set of zero measure) most eigenvalues are located
near the Reλ = −1 axis.

Our numerical investigations indicate that in the limit of an infinite
medium, the probability distribution under consideration will tend to the
delta function in the real part:

lim
N→∞

P (λ) = δ(Reλ + 1) f(Imλ). (35)

This means that in this limit for almost any random distribution of the
cylinders, an infinite number of eigenvalues satisfies the condition Eq. (33).
It is therefore reasonable to expect that in the case of a random and infinite
system a countable set of frequencies ωl corresponding to localized waves
becomes dense in some finite interval. But it is always difficult to separate
such frequencies from frequencies which may be arbitrarily near and physi-
cally the spectrum is always a coarse-grained object. Therefore in the limit
of an infinite medium an entire band of spatially localized electromagnetic
waves appears.
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In addition in Fig. 4 we have the probability P (R) of measuring a re-
flection R at frequency ω calculated for the same systems of cylinders. This
distribution is very similar to the distribution of eigenvalues. Thus incident
waves are totally reflected for “almost any” frequency from the band of
localized waves, i.e., except the discrete set (of zero measure) for which
the transmission is equal to unity. This provides a connection between the
phenomenon of localization and a dramatic inhibition of the propagation
of electromagnetic waves in a spatially random dielectric medium.

15. Summary

In summary, we have developed a simple yet reasonably realistic theoret-
ical approach to Anderson localization of electromagnetic waves in two-
dimensional dielectric media confined within a metallic waveguide. The
results of our previous papers dealing with the free space configurations
are now extended to encompass the case of nontrivial boundary conditions.
A sound physical interpretation in terms of transmission experiment is also
proposed. By confining a system of randomly distributed dielectric cylin-
ders into a planar metallic waveguide we are able to observe clear signs of
Anderson localization already for N = 100 scatterers. One of the indica-
tors of localization is the phase transition in the spectra of certain random
matrices. This property of random Green functions is now generalized to
the case of a confined dielectric medium (where the Green function is dif-
ferent). It may be interpreted as an appearance of the band of localized
electromagnetic waves emerging in the limit of the infinite medium. A con-
nection between this phenomenon and a dramatic inhibition of the prop-
agation of electromagnetic waves in a spatially random dielectric medium
was provided. A clear distinction between isolated localized waves (which
do exist in finite confined media) and the band of localized waves (which
appears in the limit of an infinite random medium) was also presented.
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