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Example of self-averaging in three dimensions: Anderson localization of electromagnetic waves
in random distributions of pointlike scatterers

Marian Rusek1 and Arkadiusz Orłowski1,2

1Instytut Fizyki, Polska Akademia Nauk, Aleja Lotniko´w 32/46, 02 668 Warszawa, Poland
2Department of Physics, Harvard University, Cambridge, Massachusetts 02138
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A simple yet realistic theoretical model is used to study Anderson localization of electromagnetic waves in
three-dimensional disordered dielectric media. The preliminary results presented in our previous paper@M.
Rusek, A. Orłowski, and J. Mostowski, Phys. Rev. E53, 4122~1996!# are substantially extended and a sound
physical interpretation is proposed. Very striking universal properties of the spectra of random matrices de-
scribing the scattering from a collection of randomly distributed pointlike scatterers are discovered. The
appearance of the band of localized electromagnetic waves, emerging in the limit of an infinite system, is
numerically observed.@S1063-651X~97!03111-5#

PACS number~s!: 42.25.Fx, 42.25.Hz, 72.10.Fk, 78.20.Ci
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I. INTRODUCTION

Recently three-dimensional~3D! random dielectric struc-
tures with a typical length scale matching the wavelength
electromagnetic radiation have attracted a great deal of a
tion, both in the microwave and in the optical part of t
spectrum. Propagation of electromagnetic waves in th
structures resembles the properties of electrons in disord
semiconductors. Therefore, many ideas concerning trans
properties of light and microwaves in such media exploit
theoretical methods and concepts of solid-state physics
have been developed over many decades. One of these
cepts is electron localization in noncrystalline systems s
as amorphous semiconductors or disordered insulators
shown by Anderson@1#, in a sufficiently disordered infinite
material an entireband of electronic states can be spatial
localized. In fact, the Anderson transition may be viewed
a transition from particlelike behavior described by the d
fusion equation to wavelike behavior, which results in loc
ization by interference. Indeed, the most plausible expla
tion of the Anderson localization is based on the interfere
effects in multiple elastic scattering@2#.

As interference is the common property of all wave ph
nomena, the quest for some analogs of electron localiza
for other types of waves has been undertaken and many
eralizations of electron localization exist, especially in t
realm of electromagnetic waves@3–6#. So-called weak local-
ization of electromagnetic waves manifesting itself as
hanced coherent backscattering is presently relatively w
understood theoretically@7–9# and established experimen
tally @10–12#. The question is whether interference effects
3D random dielectric media can reduce the diffusion c
stant to zero leading to strong localization. The crucial
rameter is the mean free pathl , which should be rather shor
@13–15#. It seems that a suspension of TiO2 spheres in air is
the system in which the shortestl values for visible light may
be realized in practice. However, despite the observation
scale dependence of the diffusion constant in such me
which may be considered as a reasonable indication
Anderson transition, there still is no convincing experimen
561063-651X/97/56~5!/6090~5!/$10.00
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demonstration that strong localization could be possible
3D random dielectric structures.

A better understanding of the Anderson localization
electromagnetic waves requires sound theoretical mod
Such models should be based directly on the Maxwell eq
tions and they should be simple enough to provide calcu
tions without too many approximations. In this paper w
investigate a simple yet reasonably realistic coupled-dip
model describing the scattering of electromagnetic wa
from a collection of randomly distributed pointlike dielectr
particles. We restrict ourselves to the study of the proper

of the stationary solutionsEW (rW,t)5Re@EW(rW)e2 ivt# of the
Maxwell equations. Consequently, the polarization of t
medium is considered to be the oscillatory function of tim
PW (rW,t)5Re@PW (rW)e2 ivt#. Calculating and analyzing spectr
of certain random matrices, we observe numerically the
pearance of the continuousbandof localized electromagnetic
waves. Consequences for Anderson localization of elec
magnetic waves in 3D disordered dielectric media are d
cussed.

The main advantage of the presented approach is tha
do not need to perform an average over the disorder. Ge
ally speaking, there is a temptation to apply averaging p
cedures as soon as ‘‘disorder’’ is introduced into the mod
Averaging of the scattered intensity over some random v
able leads to a transport theory of localization@16–18#. But
‘‘there is a very important and fundamental truth about ra
dom systems we must always keep in mind: no real atom
an average atom, nor is an experiment done on an ense
of samples’’ @19#. What we really need to properly unde
stand the existing experimental results are probability dis
butions, not averages. Indeed, to perform any meanin
averaging procedure the assumption of infinite medium
needed. On the other hand, in all experiments we can s
finite media only. Within our approach we can see how
calization ‘‘sets in’’ for an increasing number of scattere
by studying the probability densities of eigenvalues of so
random matrices.

This paper is organized as follows. In Sec. II we recall t
point-scatterer approximation and analyze the basic idea
6090 © 1997 The American Physical Society
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56 6091EXAMPLE OF SELF-AVERAGING IN THREE . . .
the coupled-dipole model that serves as a theoretical too
our investigations. We arrive at the system of linear eq
tions determining the polarization of the medium for a giv
incident wave. In Sec. III eigenvalues of the random ma
corresponding to this set of equations are studied. S
averaging of the lowest eigenvalue emerging in the limit
an infinite medium is discovered numerically. This pheno
enon is illustrated graphically and observed features are c
pared with one-dimensional results. Note that in one dim
sion the possibility of self-averaging can be prov
analytically. In Sec. IV a sound physical interpretation of t
obtained results is proposed. Self-averaging of the low
eigenvalue is considered as the signature of the appear
of the band of localized electromagnetic waves, emergin
the limit of infinite system. It can be understood as a co
terpart of Anderson transition in solid-state physics. We fi
ish with some comments and conclusions in Sec. V.

II. POINT-SCATTERER APPROXIMATION

Usually localization of light is studied experimentally
microstructures consisting of dielectric spheres with dia
eters and mutual distances being comparable to the w
length @15#. On the other hand, the theory of multiple sca
tering of electromagnetic waves by dielectric particles
tremendously simplified in the limit of point scatterers.
principle, this approximation is justified only when the si
of the scattering particles is much smaller than the wa
length. In practical calculations, however, many multip
scattering effects can be obtained qualitatively for coup
electrical dipoles. Examples are universal conductance fl
tuations@20#, enhanced backscattering@21#, and dependen
scattering@22#. What really counts for localization is mainl
the scattering cross section and not the bare size of the
terer. Therefore, trying to understand the problem, we
place the dielectric spheres located at the pointsrWa by single
electric dipoles

PW ~rW !5(
a

pW ad~rW2rWa!, ~1!

with properly adjusted scattering properties.
To use safely the point dipole approximation it is essen

to use a representation for the scatterers that fulfills the
tical theorem rigorously and conserves energy in the sca
ing processes. These requirements give the following form
the coupling between the dipole moment and the elec
field incident on the dipole@23#:

2

3
ik3pW a5

eif21

2
EW8~rWa!, ~2!

wherek5v/c is the wave number in vacuum. To get som
insight into the physical meaning of the parameterf from
Eq. ~2! let us observe that it is directly related to the to
scattering cross sections of an individual dielectric sphere
represented by the single dipole@23#:

k2s5
3p

2
~12cosf!. ~3!
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Therefore,f is a function of frequencyv and physical pa-
rameters describing the spheres such as radiusR and dielec-
tric constante. Thus each choice off is in fact a choice of
scatterers.

The field acting on theath dipole

EW8~rWa!5EW~0!~rWa!1 (
bÞa

¹W 3¹W 3pW b

eikurWa2rWbu

urWa2rWbu
~4!

is the sum of some incident free fieldEW(0), which obeys the
Maxwell equations in vacuum, and waves scattered by
otherdipoles. Now, inserting Eq.~2! into Eq.~4!, it is easy to
obtain the system of linear equations determining the fi
acting on each dipoleEW8(rWa) for a given incoming wave
EW(0)(rWa) @23#:

(
b

MJ ab•EW8~rWb!5EW~0!~rWa!. ~5!

If we solve it and use again Eq.~2! to find pW a , then we are
able to find the electromagnetic field everywhere in space
similar integral equation relating the stationary outgoi
wave to the stationary incoming wave is known in the ge
eral scattering theory as the Lippmann-Schwinger equa
@24#. A way of dealing with localized states in this formalis
is to solve Eq.~5! as a homogeneous equation, i.e., for t
incoming waveEW(0)(rWa) equal to zero@23#.

III. SELF-AVERAGING

Perfectly localized waves exist only ininfinite systems of
dipoles@23#. To illustrate the appearance of the band of
calized electromagnetic waves, emerging in the limit of in
nite system, we have to study the properties offinite systems
for an increasing number of dipolesN ~while keeping the
density constant!. For each distribution of the dipolesrWa
placed randomly inside a sphere with the uniform sca
densityn51 dipole per wavelength cubed we have diag
nalized numerically theMJ matrix from Eq.~5! and obtained
the lowest eigenvalue

L~f!5min
j

ul j~f!u. ~6!

The resulting probability distributionPf(L), calculated
from different distributions ofN dipoles, is normalized in the
standard way*dLPf(L)51. Let us now compare the sur
face plots ofPf(L) ~treated as a function of two variablesf
and L) calculated for systems consisting ofN5100 and
1000 dipoles. They are presented in Figs. 1 and 2, res
tively. In addition, in Figs. 3 and 4 we provide correspondi
contour plots. It is seen from inspection of all these plo
that, for increasing system size@in our case it increased
(10)1/3.2 times#, at somef the probability distribution
Pf(L) apparently moves towards theL50 axis and simul-
taneously its variance decreases. This tendency is ea
seen, e.g., for values ofufu that are close top. Our numeri-
cal investigations indicate that in the limit of an infinite m
dium, the probability distributionPf(L) tends to thed func-
tion
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lim
N→`

Pf~L!5d~L! for ufu.fcr . ~7!

We have some numerical evidence that this fact is a gen
property ofMJ matrices, not restricted to the considered ca
of one dipole per wavelength squaredn51 @although the
parameterfcr from Eq. ~7! certainly may depend onn#. Of
course we could justify Eq.~7! by a more orthodox approac
based on a version of the finite-size scaling analysis
leads, however, to an analogous conclusion@26#.

It follows from Eq. ~7! that in the limitN→` the distri-
bution functionPf(L) has only one value for which it is
nonzero. The quantityL(f) at ufu.fcr is then ‘‘self-

FIG. 1. Surface plot of the probability distributionPf(L) cal-
culated for 104 systems ofN5100 dipoles distributed randomly in
a sphere with the uniform densityn51 sphere per wavelengt
cubed.

FIG. 2. Same as in Fig. 1, but for 103 systems ofN51000
dipoles.
ral
e

at

averaging’’ and the random process has in fact become
terministic. Knowledge of the average then provides kno
edge about ‘‘almost every’’ individual realization of th
random system. This property implies that the average va
applies toevery singlerealization of the system, except for
few special ones~with measure zero!. This means that for
almost any random distribution of the dipolesrWa , the equa-
tion l j (f)50 holds. Therefore, the corresponding eigenv
tor EW8(rWa) of the MJ matrix is a nonzero solution of the sys
tem of linear equations~5! for the incoming waveEW(0)(rWa)
equal to zero. Thus a localized wave exists@23#.

In three dimensions, proofs of self-averaging are rare
in most cases quantities are not self-averaging@25#. For
waves propagating in one-dimensional random syste
~meaning that two out of three dimensions are translation
invariant and only the third is random! self-averaging can be
demonstrated mathematically. For one-dimensional syst
it was shown that for ‘‘almost any’’ energy or frequency a
eigenfunction decays exponentially in space for almost
realization of the disorder@27,28#. This fact is also unam-
biguously confirmed within the one-dimensional version
our model. In Figs. 5 and 6 we present one-dimensio
counterparts of Figs. 1 and 2. It is easily seen from insp
tion of these figures that Eq.~7! is satisfied also for system

FIG. 3. Contour plot corresponding to Fig. 1.

FIG. 4. Contour plot corresponding to Fig. 2.
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56 6093EXAMPLE OF SELF-AVERAGING IN THREE . . .
consisting of one-dimensional pointlike scatterers. Note t
apparentlyfcr50 in this case.

IV. ANDERSON LOCALIZATION

Electronic states in solids are usually either extended
analogy with the Bloch picture for crystalline media, or l
calized aroundisolatedspatial regions such as surfaces a
impurities. However, in the case of asufficiently disordered
system a countable set ofdiscreteenergies corresponding t
localized states becomes dense in some finite interval.
physically speaking, it is impossible to distinguish betwe
the allowed energies, which may be arbitrarily close to e
other, and the spectrum is always a coarse-grained ob

FIG. 5. Surface plot of the probability distributionPf(L) cal-
culated for 102 systems ofN5100 one-dimensional dipoles distrib
uted randomly with the densityn51 slab per wavelength.

FIG. 6. Same as in Fig. 5, but for 10 systems ofN51000 one-
dimensional dipoles.
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Therefore, an entirecontinuous bandof spatially localized
electronic states appears. Anderson localization occurs w
this happens@29#.

Similarly, it is reasonable to expect that in the case
infinite and random collection of dielectric particles there
can exist a band of localized electromagnetic waves co
sponding to a continuous region of frequenciesv. This anal-
ogy allows us to elaborate a physical interpretation of
results obtained with the coupled-dipole model used. Let
now apply our model to a system of identical dielect
spheres with given radiiR and dielectric constantse(v) lo-
cated randomly with uniform physical densityh. First let us
observe that in this case the parameterf from Eq. ~2! re-
mains a function of the frequency, i.e.,f5f(v). On the
other hand, as pointed out before, Eq.~7! holds not only for
n51 but for a whole range ofn and therefore, for fixedh,
for a range of frequenciesv. Thus the values offcr should
be now regarded as functions ofv. Therefore, localized
waves occur in almost any realization of the 3D rando
medium under consideration ifuf(v)u.fcr(v). This in-
equality determines a continuous region of frequenciesv
corresponding to the band of localized waves. Indeed, a
choosing a point from this region a localized wave of fr
quency~arbitrarily near! v exists in almost any random dis
tribution of the scatterers.

We see from Eqs.~3! and~7! that the total scattering cros
section of individual particless must exceed some critica
value scr5s(fcr) before localization will take place in the
limit N→`. This fact is in perfect agreement with the sca
ing theory of localization@30#: In 3D random media a certain
critical degree of disorder is needed for localization. Mo
over, our preliminary calculations indicate that the value
k2scr may decrease withn, but slower thann22. Using the
Rayleigh expression for the total scattering cross sections of
a dielectric sphere with radiusR and dielectric constante
@31#,

k2s5
8

3p
~kR!6Ue21

e11U
2

, ~8!

we conclude that in the long-wavelength limit the system
dielectric spheres distributed with constant dens
h5k3n/(2p)3 will be out of the localization regime. On th
other hand, in the limit of small wavelengths, the propag
tion of light is ruled by the laws of geometrical optics an
the point-scatterer approximation we use becomes inva
Therefore, our results seem to agree with the common be
~see, e.g.,@14,15#! that in three-dimensional media Anderso
localization of light is possible only in a certain frequen
window.

By analogy with the electron case, the phenomenon
Anderson localization of electromagnetic waves sho
manifest itself as an inhibition of the transmission in a sp
tially random dielectric medium. We have already some n
merical evidence that it is actually true in the case of a o
dimensional system consisting of randomly distribut
dielectric slabs. The validity of this connection in the co
sidered three-dimensional model would attribute a sound
terpretation and clear physical meaning to the continu
region of frequencies corresponding to localized waves.
expect that for each pointv from this region, incident waves
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6094 56MARIAN RUSEK AND ARKADIUSZ ORL”OWSKI
with frequencyv will be totally reflected by almost any
random distribution of the spheresrWa with scattering proper-
ties f(v). This problem will be addressed in detail els
where.

V. SUMMARY

In this paper we have further developed and refine
quite realistic coupled-dipole model describing scattering
electromagnetic waves by a disordered dielectric medium
relative simplicity allowed us to discover some features
the Anderson localization of electromagnetic waves in
dielectric media without using any averaging procedur
Within our theoretical approach one can easily see how
calization sets in for increasing system size. Very strik
universal properties of the spectra of random matrices
scribing the scattering from a collection of randomly distr
uted pointlike scatterers have been observed. Self-avera
of the lowest eigenvalue emerging in the limit of an infin
medium has been discovered numerically. The appearan
the band of localized electromagnetic waves in three dim
tt
a
f
ts
f

s.
-

g
e-

ing

of
n-

sions was demonstrated. A connection between this phen
enon and a dramatic inhibition of the propagation of elect
magnetic waves in a spatially random dielectric medium
been sketched. It can be understood as a counterpa
Anderson transition in solid-state physics. Being aware
differences between electrons and photons, we discu
briefly the influence of the long-wavelength~Rayleigh! limit
of elastic scattering of electromagnetic waves on results
tained within our model.
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