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We predict the existence of a self-localized solution in a nonresonantly pumped exciton-polariton
condensate. The solution has a shape resembling the well-known hyperbolic tangent profile of a dark
soliton, but exhibits several distinct features. We find that it performs small oscillations, which are
transformed into “soliton explosions” at lower pumping intensities. Moreover, after hundreds or thousands
of picoseconds of apparently stable evolution the soliton decays abruptly, which is explained by the
acceleration instability found previously in the Bekki-Nozaki hole solutions of the complex Ginzburg-
Landau equation. We show that the soliton can be formed spontaneously from a small seed in the polariton
field or by using spatial modulation of the pumping profile.
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Microcavity exciton polaritons are remarkable quasi-
particles, suitable for the study of degenerate bosonic
states at a few Kelvin or even at room temperature [1–3].
The combination of the photonic component with its
extremely small effective mass, and strong interparticle
interactions mediated by the excitonic component, makes
it possible to directly investigate numerous phenomena of
fundamental interest, including superfluidity or topologi-
cal defects [4], and opens a path to applications such
as ultralow threshold lasers or efficient information
processing [5].
Recently, there has been a strong interest in the existence

and dynamics of solitons in polariton systems [6–10].
Solitons are self-localized, shape-preserving solutions of
nonlinear partial differential equations, existing in a wide
range of physical, biological, and chemical systems [11].
They can be thought of as natural modes of nonlinear wave
equations, and play the role of attractors that are
approached by the system that is placed sufficiently close
to them. As such, they are natural candidates for informa-
tion carriers over long distance links [12]. In polariton
systems, due to significant losses solitons are inherently
dissipative, which means that the balance between loss and
pumping is an important dynamical constraint. Such dis-
sipative solitons [13] are known to be qualitatively different
from the ones present in Hamiltonian systems. They may
exist as quasistationary states, evolving in a complicated
and often chaotic manner [14].
So far, most of the studies of polariton solitons have

concentrated on the case of resonant external pumping,
where the phase and momentum of polaritons under the
pumping spot is directly imposed by the laser. Both bright
[6] and dark [7,8] solitons were predicted and observed in
experiments, as well as half-solitons with nontrivial spin
structure [15]. On the other hand, nonresonant pumping
allows one to create a degenerate bosonic state with a

spontaneously chosen phase profile. In this context,
bright self-localized states [9,10] and gap states [16]
were recently found in the case of inhomogeneous
pumping.
In this Letter, we show that dark dissipative solitons (or

heteroclinic holes) can be created in a nonresonantly
pumped polariton condensate. The soliton is formed
spontaneously from a small initial seed. We consider a
flat pumping profile over a large area, in the absence of
defects, which relaxes the restriction on the soliton posi-
tion. We note that our solution is very different from the
dark solitons found in the case of resonant pumping [8]. In
the latter case, solitons exists either as a line defect [7] or as
a connection between two bistable homogeneous solutions
[8,17], while our solution is well localized in space, and no
bistability is present in the nonresonant model.
We find that the profiles of our solutions resemble the

Bekki-Nozaki heteroclinic holes (sources) of the complex
Ginzburg-Landau equation (CGLE) [18]. These solutions
are continuations of the well-known hyperbolic tangent
dark solitons of the conservative nonlinear Schrödinger
equation [11,19] to the dissipative case. We find that after
formation of the soliton, and a long period of stable
evolution, a sudden collapse inevitably occurs. This
behavior is explained by analogy to the hole acceleration
instability due to higher order structural perturbations of
the CGLE [19]. Moreover, we find that the solitons
perform almost unnoticeable oscillations which are trans-
formed into “soliton explosions" as we decrease the
pumping intensity.
The model.—Below we consider an exciton-polariton

condensate in a nonresonantly pumped one-dimensional
nanowire. The system is modeled by an open-dissipative
Gross-Pitaevskii equation (GPE) for the polariton field
ψðx; tÞ coupled to the rate equation for the exciton reservoir
density nRðx; tÞ [20]
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where PðxÞ is the exciton creation rate determined by the
pumping profile, m� is the effective mass of lower polar-
itons, γC and γR are the polariton and exciton loss rates,
and ðR1D; g1Di Þ ¼ ðR; giÞ=

ffiffiffiffiffiffiffiffiffiffi
2πd2

p
are the rate of stimulated

scattering into the condensate and the interaction coeffi-
cients, rescaled in the one-dimensional case. Here, we
assumed a Gaussian perpendicular profile of jψ j2 and nR of
width d determined by the nanowire thickness. We note that
the exciton field corresponds to the “active” exciton
population rather than the reservoir at high energy levels
[21]. While the latter may have a much longer lifetime γ−1,
it is not subject to a considerable backaction from polar-
itons, such as stimulated scattering, which is relevant for
the stability properties of the system.
Analytical results.—We begin our considerations by

looking for analytical solutions in the case of homogeneous
pumping, PðxÞ ¼ const. In the steady state, the polariton
and reservoir densities are related as

nR ¼ P
γR þ R1Djψ j2 : (2)

Above the condensation threshold, P > Pth ¼ γCγR=R1D,
a stable homogeneous solution exists in the form
ψ0 ¼ A0 expð−iμ0tÞ, where μ0 is the chemical potential.
The polariton amplitude is given by A2

0 ¼ ðP − PthÞ=γC,
and the chemical potential can be found as ℏμ0 ¼
ðγCgR þ R1DgCA2

0Þ=R1D.
To find an approximate dark soliton solution, we employ

a variational ansatz corresponding to the well-known
solution of the conservative GPE

ψðx; tÞ ¼ A0 tanh

�
x
W

�
e−iμ0t: (3)

We use the variational method for dissipative solitons, in
the form introduced in Refs. [22] and [23]. We find a single
solution for the waist W given by

W ¼ ℏ
ffiffiffiffiffiffiffiffiffiffiffi
R1Dα

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�αðγRg1DC αþ 3g1DR γCÞ − 3Im�γCg1DR ð1þ αÞ

p ;

(4)

where α ¼ P=Pth − 1 is the relative pumping strength and I
depends both on P and other system parameters [24].
Numerical results.—We test the above analytical predic-

tion by solving Eqs. (1) with constant pumping PðxÞ ¼ P
over a large area (128 μm < x < 128 μm) and PðxÞ ¼ 0
outside. The parameters are chosen to be close to those of the

experimental setup of Ref. [25], with d ¼ 5μm, m�¼
5×10−5me, γR¼1.5×γC¼0.25ps−1, g1DR ¼ 2 × g1DC ¼
0.95 μeV · μm, and R1D¼2.24×10−4μmps−1. As the
initial condition at t ¼ 0, we take a small occupation of
the polariton field ψ with shape similar to (3), which can be
created by a resonant laser pulse [26], and up to 30% noise in
both ψ and nR components. The typical results are shown in
Fig. 1, where we plot the polariton density as a function of
time. We find that even from a very small initial seed, with
the amplitude of a fraction of A0, a robust dark soliton is
spontaneously created, which remains intact over thousand
of picoseconds. However, after a certain evolution time τ the
soliton decays abruptly, and the polariton density distribution
becomes approximately flat over the pumped area.
Inspection of the profile in the center of Fig. 1 reveals

that the solution resembles the Bekki-Nozaki hole, or a
heteroclinic source solution of the CGLE [18]. The gradual
decrease of the phase of ψ as one approaches the soliton
means that the hole is emitting polariton waves (there are
also two nonsolitonic sources at the boundaries of the
pumping area). Under the assumption that the reservoir
density nR quickly adjusts to the polariton density, the set of
equations (1) reduces to a CGLE-type equation in the limit
of P ≈ Pth. While the reservoir seems to preclude the
existence of stable solitons in this limit (see below), the
soliton structure is similar for P ≈ 2Pth. As shown in
Ref. [19], depending on the sign of the quintic order
perturbation of the CGLE, the holes are subject to decel-
eration or acceleration. In the case of Eqs. (1), the
perturbation is negative δ ¼ −ℏPðR1DÞ3=ð2γ3RÞ, which
means that acceleration instability must lead to the ultimate
decay (for a numerical confirmation see Ref. [24]).
We checked that the soliton can be also created for a

range of other pumping intensities, as shown in Fig. 2. The
soliton lifetime τ varies strongly with P, with the maximum

FIG. 1 (color online). (a) Evolution of the polariton density
jψðx; tÞj2 in a 1Dwire with a small initial polariton field in the form
of Eq. (3), for P ¼ 2.12Pth. (b) The evolution of jψðx ¼ 0; tÞj2.
The soliton decays after τ ≈ 8000 ps of stable evolution. (c) Spatial
profile of jψðx; tÞj2 at t ¼ 4000 ps together with the corresponding
phase of ψ . At x ¼ 0 the π phase jump is visible.
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value τmax ≈ 7000 ps. On the other hand, the initial con-
dition has little effect on the dynamics, but the soliton can
be created only if there is an initial phase jump in
ψðx; t ¼ 0Þ. In the inset of Fig. 2, the soliton lifetime τ
for various widths of the initial profile is shown, with little
difference for most pumping intensities. The lifetime is
reduced by about a half if spontaneous scattering is
included through a stochastic time-varying field [27].
We note that the analytical solution Eq. (4) predicts the

existence of a stationary dark soliton in a much wider range
of pumping than the numerical simulations. We attribute it to
the following two effects. Since the ansatz, Eq. (3), does not
incorporate any phase gradients, it can only be accurate for
moderate pumping rates, where the flow of polaritons can
be neglected. The lower threshold is related to another
interesting property. Remarkably, we find that these sol-
utions are in fact not stationary, but exhibit tiny oscillations,
not visible in Fig. 1. These oscillations become much more
pronounced at weaker pumping, close to the stability
threshold for solitons, see Fig. 3. The period of oscillations
becomes longer and the amplitude higher as we approach
this threshold. As one decreases P even more, the effect of
intermittent strong perturbations, displayed in Fig. 3(a), is
observed. This effect can be called “soliton explosions" and
is related to the similar behavior of bright solitons in systems
described by the cubic-quintic complex Ginzburg-Landau
equation [14]. To the best of our knowledge, we present here
the first example of dark soliton explosions.
Bogoliubov analysis.—In order to understand the com-

plicated dynamics described above, we consider linear
stability in the framework of the Bogoliubov–de Gennes
analysis [20,28]. Small fluctuations around a stationary
solution can be decomposed into a sum over orthogonal
Bogoliubov modes labeled by n

ψðx;tÞ¼e−iμt
�
ψ0ðxÞþ

X
n

ðunðxÞe−iλ�ntþv�nðxÞeiλntÞ
�
;

nRðx;tÞ¼n0RðxÞþ
X
n

ðwnðxÞe−iλ�ntþw�
nðxÞeiλntÞ; (5)

where λn is the mode frequency and unðxÞ, vnðxÞ, and
wnðxÞ determine its spatial profile. The imaginary part of λn
is equal to the exponential growth rate of an unstable mode.
The above linearization leads to the eigenvalue problem
λnðun; vn; wnÞT ¼ Aðun; vn; wnÞT , with the operator matrix
A dependent on the stationary solution ψ0ðxÞ.
Since our solution is not a stationary, but an oscillating

one, we find a nearby stationary solution ψ ssðxÞ at given P
by solving Eq. (1) using the shooting method [24]. This

FIG. 3 (color online). Evolution of polariton density jψ j2 for
pumping close to the soliton stability threshold, showing (a)
soliton explosions for P ¼ 2.02Pth and (b) a strongly oscillating
long-lived state (τ ≈ 9000 ps) for P ¼ 2.06Pth. Others parameters
are the same as in Fig. 1.

FIG. 2 (color online). Width of the dark soliton according to the
variational formula [Eq. (4)] (solid line) and numerical calculations
(circles, red for soliton lifetime τ > 1000 ps and blue for
100 ps < τ < 1000 ps), and the width of the stationary solution
ψ ss (triangles) as a function of the normalized pumping P=Pth. The
insetshowsthesolitonlifetime(τ > 1000 psonly)forvariouswidths
of the initial condition. Other parameters are the same as in Fig. 1.

FIG. 4 (color online). Profiles of unstable Bogoliubov modes
for (a),(b) the exact stationary state ψss and (c),(d) for a numerical
solution ψðx; tÞ corresponding to Fig. 1 at t ¼ 2000 ps. The solid
and dotted lines show the real and imaginary part of uðxÞ. The
dotted lines are shifted vertically for clarity. The small oscil-
lations in (a) and (b) are due to the limited spatial window in
which the solution ψss is obtained.
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stationary state ψ ss is then used to solve the eigenvalue
problem. As expected, this solution is unstable, with a pair
of unstable modes depicted in Figs. 4(a) and 4(b). The
appearance of such mode pairs, corresponding to symmet-
ric and asymmetric perturbations, was also observed in the
case of bright soliton explosions [14]. Both modes have
similar values of λn, with small growth rates (Imλn), of the
order of 10−3 ps−1 in the case of Fig. 1. Such a small rate of
instability well explains the long period of time necessary
to destabilize the solution. On the other hand, when
the perturbation grows sufficiently large to make the
Bogoliubov linearization invalid, the instability speeds up,
leading to abrupt decay of the dark soliton, visible in Fig. 1.
The above Bogoliubov analysis of the stationary state

ψ ssðxÞ is useful to describe the dynamics of the oscillatory
solution, but only if it is sufficiently close toψ ss [24].We find
that if one uses the numerical profile ψðx; tÞ of the soliton
instead of ψ ssðxÞ in the Bogoliubov problem, the resulting
modes are qualitatively the same, although their shapes are
slightly distorted and depend on the chosen time t. The
examples of the corresponding modes are shown in Figs. 4
(c) and 4(d). We note that we also find several unstable
Bogoliubov modes localized away from the soliton, at the
boundaries of the pumping area (not shown). The effect of
the latter can be seen in Fig. 3(a), where some disturbances at
the boundaries are visible in the course of evolution.
Spatially modulated pumping.—In Fig. 5 we show that

multiple solitons can be created without a well-defined initial
seed, only by using spatial modulation of the pumping
profile PðxÞ. In such a configuration, a flux of polaritons
from areas of stronger pumping to areas of weaker pumping
is naturally induced. The solitons are created spontaneously
(we only include a small initial noise in ψ) when the flux
velocity becomes comparable to the sound velocity cs ≈ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g1DC jψ j2=m�p

[29]. Thus, here the mechanism of dark

soliton creation is through the breakdown of superfluidity,
similar to experiments realized in resonantly pumped con-
densates [7]. The solitons are created in pairs at each higher
pumping area, and subsequently they perform periodic
oscillations and collisions. This kind of behavior is similar
to the observations of colliding dark solitons in atomic Bose-
Einstein condensates in harmonic traps [30]. In this case, we
were not able to observe the abrupt decay even for very long
evolution times, which is due to periodic “revivals" of
solitons in the areas of high polariton flux.
Vortices in the two-dimensional case.—In Fig. 6 we

present an example of a solution of the two-dimensional
version of Eq. (1). Here, the vortex is created from a small
seed possessing a quantumof angularmomentumψðr;ϕÞ ¼
ψðrÞeiϕ where ψðrÞ is vanishing at r ¼ 0. The solution
remains stable at least for t ¼ 10 000 ps of evolution time.
The stabilized phase profile shown in Fig. 6(b) differs from
the initial seed because of the flowof polaritons to the central
and remote areas of low density.We note that, contrary to the
one-dimensional dark soliton case, vortex solutions appear
to be stationary, as we were not able to observe any
exploding or oscillating dynamics for the range of pumping
intensities 2.15Pth < P < 2.4Pth. Similar solutions were
also found in the presence of a harmonic trap in Ref. [9].
In conclusion, we demonstrated that in nonresonantly

pumped exciton-polariton condensates, long living quasis-
tationary dark solitons can be created. The dynamics of
these solitons displays interesting features related to their
dissipative nature, such as soliton oscillations, explosions,
and abrupt decay after a long time of stable evolution.
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the National Natural Science Foundation of China
(Grant No. 11374125). We thank Piotr Deuar, Emilia
Witkowska, and Gang Wang for fruitful discussions.

Note added in proof.—After submission of this manuscript,
two other papers investigating properties of dark polariton
solitons appeared [31].

FIG. 5 (color online). Spontaneous creation of periodically
oscillating and colliding dark soliton pairs in the case of periodic
pumping profile, PðxÞ ¼ ½2.5þ 0.5 cosð2πx=LÞ�Pth. The solitons
appear in the areas where the polariton flux leads to the breakdown
of superfluidity. Parameters are γR ¼ 1.5γC ¼ 0.29 ps−1,
g1DR ¼ 2g1DC ¼ 0.55 μeV μm, R1D ¼ 1.3 × 10−4 μmps−1, and
L ¼ 50 μm.

FIG. 6 (color online). An example of a stable vortex solution in
the two-dimensional case. The left and right frames show the
density and phase profiles of the stabilized solution. We assume a
constant pumping intensity over a circular area. Parameters are
the same as in Fig. 1 except P ¼ 2.15Pth.
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