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Thermal fluctuations and quantum phase transition in antiferromagnetic Bose-Einstein condensates
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We present a method for investigating nonequilibrium dynamics of an ultracold system that is initially at
thermal equilibrium. Our procedure is based on the classical fields approximation and appropriately prepared
initial state for antiferromagnetic condensate with fixed magnetization. As an application of the method, we
investigate the influence of thermal fluctuations on the quantum phase transition from an antiferromagnetic to
phase separated ground state in a spin-1 Bose-Einstein condensate of ultracold atoms. We find that at temperatures
significantly lower than the critical condensation temperature Tc the scaling law for the number of created spin
defects remains intact.
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I. INTRODUCTION

The ground state phase diagram of an antiferromagnetic
Bose-Einstein condensate was studied experimentally in the
regime where spatial and spin degrees of freedom are
decoupled [1], demonstrating a phase transition from an
antiferromagnetic phase (where only the mF = ±1 Zeeman
components are populated) to a mixed broken axisymmetric
phase (where all three Zeeman states can be populated). In this
regime the system follows the predictions of the single spatial
mode approximation. In other ranges of parameters, however,
spatial separation of components can occur spontaneously,
and spin domains may appear in the ground state of the system
[2,3]. In this case the ground state is either the antiferromag-
netic phase or is phase separated into two domains, and the two
possibilities are divided by a critical point that is characterized
by a critical magnetic field.

A system may become out of equilibrium when it is
driven through the critical point due to the divergence of the
relaxation time. If symmetry breaking occurs at the same time,
this out-of-equilibrium process can produce various kinds of
defects, depending on the dimensionality of the system and
the form of the order parameter. The unified description of
these phenomena is described by the Kibble-Zurek mechanism
(KZM), which was studied in a number of physical systems,
from the early Universe to ultracold atomic gases [4–11].
Among these, Bose-Einstein condensates of ultracold atoms
offer realistic models of highly controllable and tunable sys-
tems [12,13]. Recent experiment with quasi-one-dimensional
ultracold atoms confirmed the spontaneous creation of solitons
via the Kibble-Zurek mechanism [14].

In recent papers [15,16], we demonstrated that the quantum
phase transition from an antiferromagnetic to phase separated
ground state in a spin-1 Bose-Einstein condensate of ultracold
atoms exhibits scaling laws characteristic for systems display-
ing universal behavior. Phase separation leads to the formation
of spin domains, with the number of domain walls depending
on the quench time. Interestingly, the Kibble-Zurek scaling
law was confirmed only for the dynamics close to the critical
point. Further evolution led to postselection of domains, which
gave rise to a second scaling law with a different exponent.
The postselection was attributed to the conservation of an
additional quantity, namely, the condensate magnetization.

In this paper, we develop a method for investigating
nonequilibrium dynamics of an ultracold system that is initially

at thermal equilibrium. We apply this method to investigate the
effect of nonzero temperature on the dynamics of the phase
transition and the resulting scaling laws.

We consider this problem within the framework of the
classical theory of a complex field with exact equations
of motion being the Gross-Pitaevskii equations [17]. We
explore the applicability of the method that was valid for
single-component condensates. Nevertheless, extension of the
method is not straightforward since there is an additional
constant of motion—the magnetization. Conservation of the
magnetization plays a crucial role in experiments and the
state of the system depends on its value [1,18]. Indeed,
classical fields or stochastic methods were applied for spinor
condensates at nonzero temperature but for free magnetization
[19]. Here we show how to prepare the inital state for
antiferromagnetic spinor Bose-Einstein condensates that takes
into account fixed magnetization. Unlike the spinor version of
the stochastic Gross-Pitaevski equation [19], which is based
on the existence of a thermalized reservoir, our method can be
used to describe systems at temperatures much lower than the
critical temperature of condensation.

The initial condition for the transition includes both the
condensate and thermal atoms that introduce thermal fluctua-
tions in the system. We sample the initial thermal equilibrium
within the Bogoliubov approximation at a given temperature
and for fixed total number of atoms and magnetization.
Modes orthogonal to the condensate are thermally populated
according to the Bogoliubov transformation. In our work,
the field has to be interpreted not simply as the condensate
wave function, but rather as the total matter field. We present
both the results of single realizations of the field, which
experimentally correspond to single experimental runs, and
results of averaging over different initial states. We find that
while the dynamics of the system can be altered by the thermal
fluctuations, at relatively low temperatures the scaling law for
the number of domains in the final state is intact.

II. THE MODEL

In the following, we consider a dilute, weakly interacting
spin-1 Bose-Einstein condensate placed in a homogeneous
magnetic field pointing along the z axis. For the sake of com-
pleteness, we recall the details of the model used previously
in [15,16] to describe the dynamics of a condensate at zero
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temperature within the truncated Wigner approximation. In
the following section, we will generalize this approach to the
case of a condensate at nonzero initial temperature.

We start with the Hamiltonian H = H0 + HA, where the
symmetric (spin-independent) part is

H0 =
∑

j=−,0,+

∫
dx ψ

†
j

(
− �

2

2m
∇2 + c0

2
ρ + V (x)

)
ψj . (1)

Here the subscripts j = −,0,+ denote sublevels with mag-
netic quantum numbers along the magnetic field axis mf =
−1,0, + 1, m is the atomic mass, ρ = ∑

ρj = ∑
ψ

†
j ψj is

the total atom density, and V (x) is the external potential.
Here we restricted the model to one dimension, with the other
degrees of freedom confined by a strong transverse potential
with frequency ω⊥. The spin-dependent part can be written as

HA =
∫

dx

[ ∑
j

Ejρj + c2

2
: F2 :

]
, (2)

where Ej are the Zeeman energy levels, the spin den-
sity is F = (ψ†Fxψ,ψ†Fyψ,ψ†Fzψ), where Fx,y,z are the
spin-1 matrices and ψ = (ψ+,ψ0,ψ−). The spin-independent
and spin-dependent interaction coefficients are given by
c0 = 2�ω⊥(2a2 + a0)/3 > 0 and c2 = 2�ω⊥(a2 − a0)/3 > 0,
where aS is the s-wave scattering length for colliding atoms
with total spin S. In the following analytic calculations we
assume the incompressible regime where

c0 � |c2|, (3)

which is a good approximation, e.g., in the case of 87Rb or
23Na spin-1 condensate.

The total number of atoms N = ∫
ρ dx and magnetization

M = ∫
(ρ+ − ρ−) dx are conserved quantities. In reality, there

are processes that can change both N and M , but they are
relatively weak both in spin-1 23Na and 87Rb condensates
[18,20] and can be neglected on the time scales considered
below.

The linear part of the Zeeman shifts Ej induces a homo-
geneous rotation of the spin vector around the direction of
the magnetic field. Since the Hamiltonian is invariant with
respect to such spin rotations, we consider only the effects
of the quadratic Zeeman shift [2,3]. For sufficiently weak
magnetic field we can approximate it by a positive energy
shift of the mf = ±1 sublevels δ = (E+ + E− − 2E0)/2 ≈
B2A, where B is the magnetic field strength and A = (gI +
gJ )2μ2

B/16EHFS, gI and gJ are the gyromagnetic ratios of
electron and nucleus, μB is the Bohr magneton, and EHFS

is the hyperfine energy splitting at zero magnetic field [2,3].
Finally, the spin-dependent Hamiltonian (2) becomes

HA =
∫

dx

[
AB2(ρ+ + ρ−) + c2

2
: F2 :

]
. (4)

Except for the special cases M = 0, ± N , the V (x) = 0
ground state phase diagram, shown in Fig. 1, contains three
phases divided by two critical points at

B1 = B0
M√
2N

, B2 = B0
1√
2
, (5)

FIG. 1. (Color online) Ground state phase diagram of an anti-
ferromagnetic condensate for magnetization M = N/2. The green
arrow indicates the direction of quench into a phase separated state
considered in Sec. V.

where B0 = √
c2ρ/A and ρ is the total density. The ground

state can be (i) antiferromagnetic (2C) with ψ = (ψ+,0,ψ−)
for B < B1, (ii) phase separated into two domains of the 2C
and ψ = (0,ψ0,0) type (ρ0) for B ∈ (B1,B2), or (iii) phase
separated into two domains of the ρ0 and ψ = (ψ+,0,0) type
(ρ+) for B > B2 [3]. What is more, the antiferromagnetic
2C state remains dynamically stable, i.e., it remains a local
energy minimum up to a critical field Bc > B1. Consequently,
the system driven adiabatically from the 2C phase, across the
phase boundary B1, and into the separated phase remains in
the initial 2C state up to Bc > B1 when the 2C state becomes
dynamically unstable towards the phase separation.

III. MODELING THERMAL FLUCTUATIONS BY THE
CLASSICAL FIELDS

A classical fields method is used for description of thermal
effects of a single condensate [17]. Here we extend the
applicability of the method to the system of spin-1 Bose-
Einstein condensates with antiferromagnetic interactions.

In the method the condensed and noncondensed parts of the
j th component are described by a complex function ψj . The
description takes into account modes k with energies lower
than the temperature:

�
2k2

max

2m
ncut � kBT . (6)

The relation between maximal momentum kmax and the
temperature is not strictly defined and ncut has no unique
value [21]. In general, results of the classical field are cut-off
dependent. Here, we assume that ncut = 1/3.

In our simulations, we consider a lattice model for a
classical field ψj (x) with lattice spacing dx. We enclose the
atomic field in the ring-shaped quasi-one-dimensional (1D)
geometry with periodic boundary conditions at ±L/2 and
V (x) = 0. The total number of atoms is a constant of motion

dx
∑
x,j

|ψj (x)|2 = N, (7)

as well as the total magnetization

dx
∑

x

[|ψ+(x)|2 − |ψ−(x)|2] = M . (8)

The numerical evolution of the field is governed by the
discretized counterpart of the Hamiltonian (1),(2).

The initial antiferromagnetic (2C) state at thermal equi-
librium is prepared by employing Bogoliubov transformation
of state 2C: ψj = ψ̃j + δψj [16], with the constraint ψ̃0 =
0. Linearization of the Gross-Pitaevskii equation in small
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fluctuations δψj (t,x) around uniform background ψ̃j decouple
fluctuations δψ± from δψ0.

Fluctuations δψ± are composed of phonon (p) and magnon
(m) branches

(
δψ+
δψ−

)
=

(√
ρ+√
ρ−

) kmax∑
k 	=0

(
b

(p)
k u

(p)
k eikx + b

(p)∗
k v

(p)∗
k e−ikx

)

+
( √

ρ−
−√

ρ+

) kmax∑
k 	=0

(
b

(m)
k u

(m)
k eikx+b

(m)∗
k v

(m)∗
k e−ikx

)
,

(9)

with quasiparticle energies

ε
(p)
k = c2ρ

√
ξ 2

s k2
[
2(c0/c2) + ξ 2

s k2
]
,

(10)

ε
(m)
k = c2ρ

√
ξ 2

s k2
(
8n+n− + ξ 2

s k2
)
.

Normalized modes satisfy

u
(p)
k ± v

(p)
k =

(
ξ 2

s k2

2(c0/c2) + ξ 2
s k2

)±1/4

,

(11)

u
(m)
k ± v

(m)
k =

(
ξ 2

s k2

8n+n− + ξ 2
s k2

)±1/4

,

where n± = ρ±/ρ. Here we use the spin healing length ξs =
�/

√
2mc2ρ.

The small quadrupole mode fluctuations δψ0 [22] are
given by

δψ0 =
kmax∑
k=0

(
b

(0)
k u

(0)
k eikx + b

(0)∗
k v

(0)∗
k e−ikx

)
(12)

with their gapped spectrum for b < bc,

ε
(0)
k = c2ρ

√[
ξ 2

s k2 + (1 − b2)
]2 − (

1 − b2
c

)2
, (13)

and the normalized eigenmodes

u
(0)
k ± v

(0)
k =

( (
b2

c − b2
) + ξ 2

s k2

2
(
1 − b2

c

) + (
b2

c − b2
) + ξ 2

s k2

)±1/4

. (14)

Here we use a rescaled dimensionless magnetic field

b = B

B0
. (15)

To generate the stochastic initial values of the classical field
we proceed as follows. (i) For each realization, we generate the
fluctuations δψj at temperature T by introducing thermal pop-
ulation of the Bogoliubov modes. In practice we generate com-
plex numbers b

(x)
k for k 	= 0 of j = ± components and for all k

of j = 0 components according to the probability distribution

P
(
b

(x)
k

) = 1

π

ε
(x)
k

kBT
e−|b(x)

k |2/kBT . (16)

Here (x) denotes (m), (p), or (0). For a given realization, we
build up fluctuations δψj according to Bogoliubov transforma-
tions (9) and (12). (ii) Then, we create the classical field with
the constraint that the total atom number and magnetization

are fixed. The form of the field is ψj = aj√
L

+ δψj with

a+ =
(

N − M − N⊥
2

)1/2

, (17)

a− =
(

N + M − N⊥
2

)1/2

, (18)

where N⊥ = ∑
k,j |δψj |2 is the number of noncondensed

atoms.
The ensemble of classical fields created in this way is

the initial state for the time-dependent Gross-Pitaevskii (GP)
equations

i�
∂ψ0

∂t
=

(
− �

2∇2

2m
+ c0ρ

)
ψ0

+ c2[(ρ+ + ρ−)ψ0 + 2ψ∗
0 ψ+ψ−],

i�
∂ψ+
∂t

=
(

−�
2∇2

2m
+ c0ρ + AB2

)
ψ+

+ c2
[
(ρ+ − ρ−)ψ+ + ρ0ψ+ + ψ∗

−ψ2
0

]
,

i�
∂ψ−
∂t

=
(

− �
2∇2

2m
+ c0ρ + AB2

)
ψ−

+c2
[
(ρ− − ρ+)ψ− + ρ0ψ− + ψ∗

+ψ2
0

]
. (19)

One of the advantages of the method is the ability to calculate
various correlation functions in a straightforward way, taking
averages over many realizations of the stochastic fields.

Application of the method is justified for a very low
temperature only since Bogoliubov transformation is the
approximate solution. Moreover, very early evolution of the
GP equations can display some transient effects due to
the fact that the Bogoliubov transformation used in the
sampling does not produce an exactly stationary distribution.
We have checked if such transients occur for parameters used
in our simulations and found them to be marginal for the
quantities we are interested in.

IV. VALIDITY OF THE BOGOLIUBOV
TRANSFORMATION

The dynamics with Gross-Pitaevskii equations leads the
two-component antiferromagnetic initial state to equilibrium
state for long enough times. The equilibration given by this
coupled set of nonlinear equations is surprising because we
know they may lead to the coherent off-equilibrium spin-
mixing dynamics. Indeed, it was shown by using mean-field
theory and adapting the single-spatial-mode approximation,
that the condensate dynamics is well described by a nonrigid
pendulum and displays a variety of periodic oscillations
[18,23]. Fortunately, the period of oscillations depends on
the initial fraction of atoms in the mF = 0 component and is
almost infinite in our case. Therefore, the time scale associated
with spin-multimode dynamics is much shorter and allows
for equilibration of the system. The relaxation observed in
the system is quite intriguing, in particular, in the context of
prethermalization phenomena [24].
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FIG. 2. (Color online) Momentum distribution of noncondensed fields |δψj (k)|2 for mF = 1 (left panel), mF = 0 (center panel), and
mF = −1 (right panel). Green: initial distribution; red: after 100 s of equilibration with GP equations; black: Bogoliubov transformation
Eqs. (9) and (12). Here N = 107, M = N/2, b = 0, with length L = 200 μm and ω⊥ = 2π × 1000 Hz; other parameters as for sodium.

In the low temperature limit, the Bogoliubov theory well
describes the equilibrium state of the system. The comparison
of the result of equilibration with GP equations to the
Bogoliubov theory can be treated as an independent test
of the last one. To this end, we checked the validity of
the Bogoliubov transformation, (9) and (12), as well as the
quasiparticle energies, (10) and (13). We start numerical
calculations with randomly chosen initial fluctuations with
flat distribution in momentum space, see green points in
Fig. 2, and superimposed constraints of given norm N and
magnetization M . Then we let the initial state evolve with
Gross-Pitaevskii equations for a transient time (100 s for
results presented in Figs. 2 and 3). Next, we compare the
achieved distribution of the noncondensed field in momentum
space δψj (k 	= 0) to the predictions of the Bogoliubov theory.
The comparison shown in Fig. 2 is satisfactory. Analysis in
the frequency domain allows for a test of the validity of the
elementary excitation picture (see the density plots in Fig. 3).
One can easily recognize the magnon and phonon branches for
mF = ±1 and the quadrupole branch for mF = 0. Once again,
the comparison with the Bogoliubov theory (marked by black
dashed lines) is satisfactory and shows that the quasiparticle
energies (10) and (13) are recovered by equilibration applied
to the initial state.

V. THE KIBBLE-ZUREK MECHANISM

In [15,16] we investigated the phase transition from the
antiferromagnetic to the phase separated state in a spin-1 Bose-

Einstein condensate. This continuous phase transition is driven
by the change of the magnitude of the applied magnetic field.
Due to the spatial symmetry breaking in the phase separated
state, the transition is accompanied by the creation of multiple
defects in the form of spin-domain walls, with the number
of domains dependent on the quench time. The concept of
the KZM relies on the fact that the system does not follow
the ground state exactly in the vicinity of the critical point due
to the divergence of the relaxation time. The dynamics of the
system cease to be adiabatic at t � −t̂ (here we choose t = 0
in the first critical point), when the relaxation time becomes
comparable to the inverse quench rate

τ̂rel ≈ |ε̂/ ˆ̇ε|, (20)

where ε(t) = B − Bc ∼ t/τQ is the distance of the system
from the critical point. At this moment, the fluctuations
approximately freeze, until the relaxation time becomes short
enough again. After crossing the critical point, distant parts of
the system choose to break the symmetry in different ways,
which leads to the appearance of multiple defects in the form
of domain walls between domains of 2C and ρ0 phases. The
average number of domains is related to the correlation length
ξ̂ at the freeze-out time t̂ ∼ τ

zν/(1+zν)
Q [6,25],

Nd = L/ξ̂ ∼ τ
−ν/(1+zν)
Q , (21)

where z and ν are the critical exponents determined by the
scaling of the relaxation time τrel ∼ |ε|−zν and excitation
spectrum ω ∼ |k|z, with z = 1 in the superfluid.

FIG. 3. (Color online) Spectral density |ψj (k,ω)|2, for mF = 1 (left panel), mF = 0 (center panel), mF = −1 (right panel) after 100 s
of evolution with GP equations. Black dashed lines: quasiparticle energies (10) and (13) given by the Bogoliubov theory. Parameters of the
simulation are the same as in Fig. 2.
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Interestingly, the Kibble-Zurek scaling law gives correct
predictions only for the dynamics close to the critical point.
Further on, the postselection of domains was observed, which
gave rise to a second scaling law with a different exponent.
The postselection was attributed to the conservation of an
additional quantity, namely, the condensate magnetization.

The analytical and numerical calculations of [15,16] were
carried out within the zero-temperature limit of the truncated
Wigner approximation. In this section we use the method of
Sec. III to estimate the influence of nonzero temperature on the
dynamics of the phase transition and the resulting scaling laws.
We find that while the dynamics of the system can be altered
by the thermal fluctuations, at relatively low temperatures the
scaling law for the number of domains in the final state is
intact.

We now describe in detail the scenario of the experiment.
The antiferromagnetic spin-1 condensate is trapped in a ring-
shaped quasi-1D trap with strong transverse confinement and
the circumference length L. The magnetic field is initially
switched off, and the atoms are prepared in the homogeneous
antiferromagnetic (2C) ground state with magnetization set to
M = N/2. To investigate KZM we increase B linearly as

B(t) = B0
t

τQ
, (22)

to drive the system through the two phase transitions into a
phase separated state. Then, at t > τQ the magnetic field is
kept constant at the level B = B0. As described in Sec. II,
the ground state of the system becomes separated into the
2C and the ρ0 phase at B = B1, but the initial 2C state
remains metastable until the point B = Bc. At this point, the
system is expected to undergo phase transition accompanied
by spatial symmetry breaking. As described above, due to the
finite quench time the phase transition has a nonequilibrium
character, and multiple spin domains can develop in the
system, instead of two as the form of the ground state would
suggest. Further, at the second critical point B = B2, there
is no symmetry breaking accompanying the phase transition
and the spin-domain landscape remains intact. The mean-field
critical exponents of the symmetry-breaking phase transition
are z = 1 and ν = 1/2, which according to the formula (21)
gives the scaling law for the number of domains as Nd ∼ τ

1/3
Q .

However, as shown in [15,16], this prediction is correct only
for the number of domain seeds formed close to the critical
point. When the domains become fully formed, their number
is decreased in the postselection process, which is due to the
existence of an upper limit for the number of domains in a
system with conserved magnetization M .

Here, we investigate the influence of the finite temperature
on the process described above. In Fig. 4 we show the evolution
of the density of atoms in the initially unoccupied mf = 0 state
during the process of domain formation. The top figure shows
a single realization of the zero-temperature truncated Wigner
simulation, which can be interpreted as a result of a single
experiment. For comparison, an analogous result in the case
of finite temperature, obtained using the method described in
Sec. III, is shown in the figure below. While this particular
example corresponds to a relatively short quench time, when
the postselection process is not very effective, it is visible that
some of the initial fluctuations merge to form a single domain

0 25 50 75 100
TIME ms

100

50

0

50

100

X
µm

0 25 50 75 100
TIME ms

100

50

0

50

100

X
µm

FIG. 4. (Color online) Formation of spin domains through a
modified Kibble-Zurek mechanism in a ring-shaped 1D geometry
with ring length L = 200 μm and ω⊥ = 2π × 1000 Hz, for N = 106

atoms. The evolution of the density of the mf = 0 component |ψ0|2
in a single realization of the experiment is shown. The top and bottom
panels correspond to the zero-temperature and finite-temperature
results. The quench time is taken as τQ = 100 ms. Total condensed
fraction at t = 0 is Nk=0/N = 0.89.

instead of two. The effect of the finite temperature can be seen
as the picture of the dynamics being more “fuzzy” in the figure
below, but the number of created domains and their properties
seem to be unaffected due to the relatively low temperature.

This conclusion is further confirmed in Fig. 5, where
we show the results of systematic averaging of the number
of created domains over many realizations of the initial
distribution. The two sets of points showing the result for
T = 0 and finite temperature overlap except for the very
long times, where some decrease of the number of domains
in the T > 0 case can be observed. Close inspection of the
dynamics leads us to account this slight decrease (on average
by less than one domain) to the lower number of domains
created at the symmetry phase transition when the initial state
already contains thermal fluctuations. In particular, the finite
temperature does not significantly affect the Nd ∼ τ

2/3
Q scaling

law predicted to result from the domain postselection process.
This turns out to be the case for any temperature investigated
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WITKOWSKA, ŚWISŁOCKI, AND MATUSZEWSKI PHYSICAL REVIEW A 90, 033604 (2014)

T = 0
T > 0

1

 10

 100

 10  100  1000

N
d 

- 
2

τQ (ms)

FIG. 5. (Color online) Comparison of the averaged number of
spin domains Nd after the quench as a function of the quench time
for N = 106 atoms. The points are results of numerical simulations
averaged over 100 runs. The square and circle points correspond
to zero-temperature and finite-temperature results. The scale is
logarithmic on both axes and Nd is decreased by 2 to account for
the ground state phase separation into two domains. The dashed line
is the fit to the power law with scaling exponent nd = −0.73 ± 0.04.
The grid size is 28 and the cut-off is equal to 1/3.

by our method based on the Bogoliubov transformation. We
note that the scaling law may be affected by thermal effects at
temperatures higher than the ones achievable using the current
method. This will be the topic of a future study.

VI. CONCLUSIONS

In summary, we developed a method for investigating
nonequilibrium dynamics of an ultracold system that is initially
at thermal equilibrium. Our procedure is based on the classical
fields approximation with an appropriately prepared initial
state. We described in detail how to model thermal fluctuations
using the Bogoliubov transformation, and demonstrated its
validity by performing dynamical equilibration of an an-
tiferromagnetic initial state with given total atom number
and magnetization. We studied the effect of the nonzero
temperature on the scaling law for the number of domains
created via the Kibble-Zurek mechanism in antiferromagnetic
spinor condensates. The effect of the finite temperature is
visible on the evolution of the gas density. We find the density
to be more “fuzzy” but the number of created domains and
their properties rather unaffected by the temperature. This
result in a relatively low temperature shows the strength of the
conservation law, namely, the conservation of magnetization
in our system that enforces the scaling law. In addition
to the main result, we observed relaxation of the antifer-
romagnetic initial state to a thermallike equilibrium. This
intriguing feature provides an interesting direction for future
work.
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