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Dynamics of the modified Kibble-Żurek mechanism in antiferromagnetic spin-1 condensates
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We investigate the dynamics and outcome of a quantum phase transition from an antiferromagnetic to a
phase-separated ground state in a spin-1 Bose-Einstein condensate of ultracold atoms. We explicitly demonstrate
double universality in the dynamics within experiments with various quench times. Furthermore, we show that
spin domains created in the nonequilibrium transition constitute a set of mutually incoherent quasicondensates.
The quasicondensates appear to be positioned in a semiregular fashion, which is a result of the conservation of
local magnetization during the postselection dynamics.
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I. INTRODUCTION

One of the great achievements of statistical mechanics is
the ability to describe complex systems of many particles
using a limited set of variables describing collective behavior.
Consequently, the complicated microscopic dynamics of the
system is reduced to tractable models. The universality of
phase transitions is a particularly striking example of such
reduction, where the multitude of physical models is divided
into a finite number of universality classes characterized by
certain symmetry properties and critical scaling laws. While a
theoretical description of the universality of equilibrium phase
transitions is provided by the renormalization group,1 univer-
sality in nonequilibrium systems is not yet fully understood.2

A system that is normally in an equilibrium state may
become out of equilibrium when it is driven through a second-
order phase transition, due to the divergence of the relaxation
time. If symmetry breaking occurs at the same time, the transi-
tion may result in the creation of defects, such as domain walls,
vortices, or strings. This process, called the Kibble-Żurek
mechanism (KZM), was predicted in a number of physical
systems, including the dynamics of the early Universe,3,4

and observed in experiments with superfluid helium,5 liquid
crystals,6 superconductors,7 cold atomic gases,8 the Dicke
quantum phase transition,9 and most recently in ion traps.10

Importantly, the Kibble-Żurek theory predicts the universality
of the dynamics of nonequilibrium phase transitions.

A quantum phase transition, in contrast to a classical (ther-
modynamic) one, occurs when varying a physical parameter
leads to a change of the nature of the ground state.11 Recently,
a few theoretical works demonstrated that the KZM can be
successfully applied to describe quantum phase transitions in
several models;12,13 see Ref. 14 for reviews. Among these,
Bose-Einstein condensates of ultracold atoms offer realistic
models of highly controllable and tunable systems.13

In a recent paper,15 we demonstrated that the quantum phase
transition from an antiferromagnetic to a phase-separated
ground state in a spin-1 Bose-Einstein condensate (BEC)
of ultracold atoms exhibits scaling laws characteristic for
systems displaying universal behavior on various length scales.
Phase separation leads to the formation of spin domains,
with the number of domains dependent on the quench time.
Interestingly, the Kibble-Żurek scaling law was obtained only
for the dynamics close to the critical point. Further on, the

postselection of domains was observed, which gave rise to a
second scaling law with a different exponent. The postselection
was attributed to the conservation of an additional quantity,
namely, the condensate magnetization.

In this paper, we describe in detail the dynamics of
this phase transition. For simplicity, we consider a system
in ring-shaped one-dimensional (1D) geometry with peri-
odic boundary conditions. By employing the Bogoliubov
approximation in both the initial and the phase-separated
states, we derive the scaling laws observed numerically and
explain the postselection process. We explicitly demonstrate
universality in the dynamics within experiments with various
quench times by employing appropriate scalings of space
and time. Furthermore, we show that spin domains created
in the nonequilibrium transition constitute a set of mutually
incoherent quasicondensates. The quasicondensates appear to
be positioned in a semiregular fashion, which is a result of the
conservation of local magnetization during the postselection
dynamics.

II. THE MODEL AND ITS PHASE DIAGRAM

We consider a dilute antiferromagnetic spin-1 BEC in a
homogeneous magnetic field pointing along the z axis. We start
with the Hamiltonian H = H0 + HA, where the symmetric
(spin-independent) part is

H0 =
∑

j=−,0,+

∫
dx ψ

†
j

(
− h̄2

2m
∇2 + c0

2
ρ + V (x)

)
ψj . (1)

Here the subscripts j = −,0,+ denote sublevels with mag-
netic quantum numbers along the magnetic field axis mf =
−1,0, + 1, m is the atomic mass, ρ = ∑

ρj = ∑
ψ

†
j ψj is

the total atom density, and V (x) is the external potential.
Here we restricted the model to one dimension, with the other
degrees of freedom confined by a strong transverse potential
with frequency ω⊥. The spin-dependent part can be written as

HA =
∫

dx

[∑
j

Ejρj + c2

2
: F2 :

]
, (2)

where Ej are the Zeeman energy levels, and the spin
density is F = (ψ†Fxψ,ψ†Fyψ,ψ†Fzψ), where Fx,y,z are the
spin-1 matrices and ψ = (ψ+,ψ0,ψ−). The spin-independent
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and spin-dependent interaction coefficients are given by
c0 = 2h̄ω⊥(2a2 + a0)/3 > 0 and c2 = 2h̄ω⊥(a2 − a0)/3 > 0,
where aS is the s-wave scattering length for colliding atoms
with total spin S. In the following analytical calculations we
often assume the incompressible regime where

c0 � c2, (3)

which is a good approximation in the case of a 23Na spin-1
condensate, where c0 ≈ 32c2.

The total number of atoms N = ∫
ρdx and magnetization

M = ∫
(ρ+ − ρ−)dx are conserved quantities. In reality, there

are processes that can change both N and M , but they are
relatively weak in 23Na condensates16 and can be neglected on
the time scales considered below.

The linear part of the Zeeman shifts Ej induces a homo-
geneous rotation of the spin vector around the direction of
the magnetic field. Since the Hamiltonian is invariant with
respect to such spin rotations, we consider only the effects
of the quadratic Zeeman shift.17,18 For a sufficiently weak
magnetic field we can approximate it by a positive energy
shift of the mf = ±1 sublevels δ = (E+ + E− − 2E0)/2 ≈
B2A, where B is the magnetic field strength and A = (gI +
gJ )2μ2

B/16EHFS, gI and gJ are the gyromagnetic ratios of the
electron and nucleus, μB is the Bohr magneton, and EHFS is the
hyperfine energy splitting at zero magnetic field.17,18 Finally,
the spin-dependent Hamiltonian (2) becomes

HA =
∫

dx

[
AB2(ρ+ + ρ−) + c2

2
: F2 :

]
. (4)

Except for the special cases M = 0, ± N , the ground-state
phase diagram, shown in Fig. 1, contains three phases divided
by two critical points at

B1 = B0
M√
2N

, B2 = B0
1√
2
, (5)

where B0 = √
c2ρ/A and ρ is the total density. The ground

state can be (i) antiferromagnetic (2C) with ψ = (ψ+,0,ψ−)
for B < B1, (ii) phase separated into two domains of the 2C
and ψ = (0,ψ0,0) type (ρ0) for B ∈ (B1,B2), or (iii) phase
separated into two domains of the ρ0 and ψ = (ψ+,0,0) type
(ρ+) for B > B2.18 What is more, the antiferromagnetic 2C
state remains dynamically stable, i.e., it remains a local energy
minimum up to a critical field Bc > B1. Consequently, the
system driven adiabatically from the 2C phase, across the
phase boundary B1 and into the separated phase remains in
the initial 2C state up to Bc > B1 when the 2C state becomes
dynamically unstable towards the phase separation.

For simplicity, we consider a system in the ring-shaped
quasi-1D geometry with periodic boundary conditions at

B

2C 2C + ρ0 ρ+ + ρ0

START

0 B1
B2Bc

FIG. 1. (Color online) Ground-state phase diagram of an anti-
ferromagnetic condensate for magnetization M = N/2. We increase
B linearly during the time τQ to drive the system through a phase
transition into a phase-separated state.

±L/2 and V (x) = 0. The magnetic field is initially switched
off, and the atoms are prepared in the antiferromagnetic (2C)
ground state with magnetization fixed to M = N/2 (without
loss of generality). To investigate the KZM we increase B

linearly as

B(t) = B0
t

τQ
, (6)

to drive the system through one or two phase transitions into
a phase-separated state. At B = Bc, the system is expected to
undergo a spatial-symmetry-breaking phase transition due to
the phase separation into two components. According to the
Kibble-Żurek theory, due to the finite quench time the phase
transition has a nonequilibrium character, and the system ends
up in a state with multiple spin domains. At B = B2, on the
other hand, there is no symmetry breaking and the spin domain
landscape remains intact.

The concept of KZM relies on the fact that the system
does not follow the ground state exactly in the vicinity of the
critical point due to the divergence of the relaxation time. The
dynamics of the system ceases to be adiabatic at t � −t̂ (here
we choose t = 0 at the first critical point), when the relaxation
time becomes comparable to the inverse quench rate

τ̂rel ≈ |ε̂/ ˆ̇ε|, (7)

where ε(t) = B − Bc ∼ t/τQ is the distance of the system
from the critical point. At this moment, the fluctuations
approximately freeze, until the relaxation time becomes short
enough again. After crossing the critical point, distant parts of
the system choose to break the symmetry in different ways,
which leads to the appearance of multiple defects in the form
of domain walls between domains of 2C and ρ0 phases. The
average number of domains is related to the correlation length
ξ̂ at the freeze-out time t̂ ∼ τ

zν/(1+zν)
Q ,4,14

Nd = L/ξ̂ ∼ τ
−ν/(1+zν)
Q , (8)

where z and ν are the critical exponents determined by the
scaling of the relaxation time τrel ∼ |ε|−zν and excitation
spectrum ω ∼ |k|z, with z = 1 in the superfluid.

We test the above prediction in numerical simulations
within the truncated Wigner approximation, with a large
number of atoms N = 20 × 106 in order to minimize merging
of domains thanks to the strong repulsive interaction. Other pa-
rameters are close to those of previous experiments in 23Na.19

The stochastic equations in the limit of large atom number are
equivalent to the time-dependent Gross-Pitaevskii equations

ih̄
∂ψ0

∂t
=

(
− h̄2∇2

2m
+ c0ρ

)
ψ0

+ c2[(ρ+ + ρ−)ψ0 + 2ψ∗
0 ψ+ψ−],

ih̄
∂ψ+
∂t

=
(

− h̄2∇2

2m
+ c0ρ + AB2

)
ψ+

+ c2
[
(ρ+ − ρ−)ψ+ + ρ0ψ+ + ψ∗

−ψ2
0

]
, (9)

ih̄
∂ψ−
∂t

=
(

− h̄2∇2

2m
+ c0ρ + AB2

)
ψ−

+ c2
[
(ρ− − ρ+)ψ− + ρ0ψ− + ψ∗

+ψ2
0

]
,
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FIG. 2. (Color online) Spin domain formation dynamics in a
ring-shaped 1D geometry with ring length L = 200 μm and ω⊥ =
2π × 1000 Hz, for N = 2 × 107 atoms. The density of the mf = 0
component |ψ0|2 is shown. The quench time is τQ = 28.6 ms.

while the initial condition includes a Wigner-type noise of 1/2
particle per quantum mode.20 An example of a single stochastic
run, which can be interpreted as a single experimental
realization, is shown in Fig. 2. We can clearly see the process
of domain formation after the first phase transition at t1.
However, there is always some number of spin fluctuations
that disappear instead of evolving into full domains. The
above dynamics has a striking effect on the number of defects
that are created in the system. The number of defects and
the corresponding scaling law are significantly altered. In
the following, we describe in detail the complete dynamical
scenario, going beyond the standard KZM, and reveal that
the postselection of spin domains is due to the additional
conservation law, i.e., the conservation of magnetization M .

III. DYNAMICAL STABILITY OF THE INITIAL
UNIFORM 2C PHASE

We investigate the stability of the uniform 2C state by
studying the spectrum of its Bogoliubov excitations.21 The
stationary Gross-Pitaevskii equations derived from the free
energy F = H − μN − γM simplify to

0 = (c0ρ − μ)ψ0 + c2[(ρ+ + ρ−)ψ0 + 2ψ∗
0 ψ+ψ−],

0 = (c0ρ + AB2 + γ − μ)ψ+
+ c2

[
(ρ+ − ρ−)ψ+ + ρ0ψ+ + ψ∗

−ψ2
0

]
, (10)

0 = (c0ρ + AB2 − γ − μ)ψ−
+ c2

[
(ρ− − ρ+)ψ− + ρ0ψ− + ψ∗

+ψ2
0

]
,

where μ is the chemical potential and γ is a Zeeman-like
Lagrange multiplier to enforce the desired magnetization. In
the 2C state we have ψ0 = 0 and we can assume, without
loss of generality, that both ψ+ and ψ− are real and positive.
To enforce the desired density and magnetization we set the
chemical potential μ = c0ρ + AB2 and γ = −c2ρm0. Here
m0 is the relative magnetization

m0 = M

N
. (11)

We assume the incompressible regime c0 � c2. After lin-
earization of the time-dependent Gross-Pitaevskii equation in
small fluctuations δψj (t,x) around this uniform background
we find that the fluctuations δψ0 decouple from δψ±.

The fluctuations δψ± further decouple into the phonon and
magnon branches,(

δψ+
δψ−

)

=
(√

ρ+√
ρ−

) ∫
dk√
2πρ

(
b

(p)
k u

(p)
k eikx + b

(p)∗
k v

(p)∗
k e−ikx

)

+
( √

ρ−
−√

ρ+

) ∫
dk√
2πρ

(
b

(m)
k u

(m)
k eikx + b

(m)∗
k v

(m)∗
k e−ikx

)
,

(12)

with quasiparticle energies

ε
(p)
k = c2ρ

√
ξ 2

s k2
[
2(c0/c2) + ξ 2

s k2
]
,

(13)
ε

(m)
k = c2ρ

√
ξ 2

s k2
(
8n+n− + ξ 2

s k2
)
,

respectively, and normalized modes that satisfy

u
(p)
k ± v

(p)
k =

(
ξ 2

s k2

2(c0/c2) + ξ 2
s k2

)±1/4

,

(14)

u
(m)
k ± v

(m)
k =

(
ξ 2

s k2

2n+n− + ξ 2
s k2

)±1/4

,

where n± = ρ±/ρ. Here we use the spin healing length ξs =
h̄/

√
2mc2ρ. The magnon and phonon quasiparticle energies

are real and non-negative for any magnetic field B. There is
no instability with respect to the δψ± fluctuations.

The small quadrupole-mode fluctuations22

δψ0 =
∫

dk√
2π

(
b

(0)
k u

(0)
k eikx + b

(0)∗
k v

(0)∗
k e−ikx

)
(15)

determine the universality in the dynamics of the system. Their
quasiparticle energies are

ε
(0)
k = c2ρ

√[
ξ 2

s k2 + (1 − b2)
]2 − (

1 − b2
c

)2
(16)

and the normalized eigenmodes are

u
(0)
k ± v

(0)
k =

( (
b2

c − b2
) + ξ 2

s k2

2
(
1 − b2

c

) + (
b2

c − b2
) + ξ 2

s k2

)±1/4

. (17)

Here we use a rescaled dimensionless magnetic field

b = B

B0
. (18)

The quasiparticle spectrum (16) is real and positive (finite gap)
as long as b < bc = Bc

B
, where

b2
c = 1 −

√
1 − m2

0. (19)

At the critical field bc the gap closes for k = 0, and above
bc quasiparticle energies for small k become imaginary and
the uniform 2C phase develops dynamical instability against
the long-wavelength δψ0 fluctuations. We note that bc > b1,
where b1 = B1/B0 = m0/

√
2, and hence there is a region of

bistability of the pure 2C state and the phase-separated 2C + ρ0
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ground state. The difference between b1 and bc, which is the
size of this parameter region, is small for weak magnetization
m0 � 1.

In the linear quench (6) the state of the system remains
in the uniform 2C state as long as that state is dynamically
stable, i.e., up to the critical field bc. Above bc it becomes
dynamically unstable against decay towards the mixed ρ0 +
2C phase. This phase breaks the spatial symmetry, and thus
formation of a finite number of defects (domain walls) can be
expected. The process begins by a quasiexponential growth of
the δψ0 fluctuations on the Kibble-Żurek time scale14

t̂ ∼ τ
zν/(1+zν)
Q ∼ τ

1/3
Q , (20)

where z and ν are the critical exponents of the phase
transition, z = 1 and ν = 1/2. By the time t̂ after bc the
δψ0 fluctuations become large, the linearization of the Gross-
Pitaevskii equation breaks down, and the exponential growth
of the fluctuations is halted by nonlinearities. A more accurate
estimate for t̂ requires solving the linearized problem.

The dynamics of domain formation is illustrated in Fig. 2
In the following, we will describe in detail the physics behind
this process, including the postselection of domains due to the
conservation of the magnetization M . We will demonstrate
that the dynamics in the vicinity of the critical point, as well
as the long-time dynamics, displays universal behavior, but on
different spatial scales, determined by two independent scaling
laws.

IV. QUASIEXPONENTIAL GROWTH OF THE
INSTABILITIES

A small fluctuation δψ0(t,x) around the uniform 2C
background satisfies a linearized equation

i∂uδψ0 = −∂2
s δψ0 + (1 − ε)δψ0 + δψ∗

0 . (21)

Here we use a dimensionless timelike variable u =
tc2ρ(1 − b2

c )/h̄ and a dimensionless lengthlike coordinate

s = x

√
2mc2ρ(1 − b2

c )/h̄2, and we measure distance from the
critical point bc by a dimensionless parameter ε = 1 − (1 −
b2)/(1 − b2

c ). With the Bogoliubov expansion

δψ0(t,s) =
∫ ∞

−∞

dk√
2π

[bkuk(t)eiks + b∗
kv

∗
k (t)e−iks] (22)

the linearized equation separates into

i∂u

(
uk

vk

)
=

(
1 − εk 1

−1 −1 + εk

) (
uk

vk

)
, (23)

where εk = ε − k2.
For each k we need to consider only a solution in the

neighborhood of εk = 0. This is the point where the mode
k becomes dynamically unstable. For k = 0 the instability is
at ε = 0, that is, b = bc. Other modes become unstable later
for b > bc. For a small negative εk the positive frequency
eigenmode of the operator on the right-hand side of Eq. (23)
is (

uk

vk

)
= 1√

2
√−2εk

(
1

−1

)
. (24)

This state corresponds to the ground state without the quasi-
particle of momentum k. This state is the asymptote of the
solution a long time before crossing the point of dynamical
instability at εk = 0.

We consider a linear quench b(t) = t
τQ

in Eq. (6) that can be
translated to a nonlinear ε(u). Since we are interested in ε ≈ 0
we can linearize ε(u) ≈ u

uQ
with uQ = τQ

c2ρ(1−b2
c )2

2h̄bc
for a small

time u measured with respect to ε = 0. With this linearized
ε(u) Eq. (23) implies two equations:

∂2
z uk =

(
2z + i

u
1/3
Q

)
uk, ∂2

z vk =
(

2z − i

u
1/3
Q

)
vk. (25)

Here z is a timelike variable defined by εk = u
uQ

− k2 ≡ z

u
2/3
Q

. It

measures time with respect to the point εk = 0 where the mode
k crosses the point of instability. The solution is a combination
of Airy functions

uk(z) = iCAi(z+) + CBi(z+),

vk(z) = −iCAi(z−) − CBi(z−),

with a complex constant C and z± = 21/3z ± i
22/3uQ

1/3
. The

modulus of the constant is fixed by the condition that the
asymptote of the solution for a large negative z < 0 should
equal the state (24) up to an arbitrary phase factor:

|C|2 = πu
1/3
Q

24/3
. (26)

Here we used the asymptotic forms of the Airy functions in
the case of large negative argument.

Once C is fixed, we can work out the asymptote for large
positive z:

uk ≈ −vk ≈ C
e(2z)3/2/3

√
π (21/3z)1/4

. (27)

In the truncated Wigner approximation the strength of the
initial Gaussian Wigner noise bk is encoded in the correlator
b∗

kbp = δ(k − p). With this noise we obtain the average
fluctuation density

|δψ0(u,x)|2 =
√

mc2ρ
(
1 − b2

c

)
6πh̄2

eα

√
α

(28)

with the quasiexponential time dependence through α =
25/2(u3/uQ)1/2/3. The fluctuations become large at

û � u
1/3
Q , (29)

corresponding to the time t̂ ∼ τ
1/3
Q after crossing the point of

dynamical instability bc.
The solution û � u

1/3
Q together with the definition of z and

the asymptotes (27) yields a power spectrum of the fluctuations
proportional to

|uk|2 ≈ |vk|2 � exp 1
3

[
2(1 − u

2/3
Q k2)

]3/2
. (30)

The spectrum is cut off by the Kibble-Żurek length

ξ̂ ∼ τ
1/3
Q . (31)

We can conclude that the quasiexponential growth of the
instability halts at the time t̂ ∼ τ

1/3
Q after the occurrence of

054508-4
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FIG. 3. (Color online) Rescaled number of domain seeds Ns and
number of domains Nd (Ref. 23) versus rescaled time after tc. Here
tc corresponds to B = Bc. The figures demonstrate double universal
dynamics during the formation of domain seeds (top), and at long
times (bottom), for experiments with different τQ. We ascribe the
deviations of rescaled Ns in the top figure to the technical difficulty
of determining the exact number of seeds before they are fully formed.
The number of domains is decreased by 2 to account for ground-state
phase separation into two domains. The data are averaged over 100
realizations. The parameters are the same as in Fig. 2.

the first dynamical instability at bc. At t̂ the halted fluctuations
δψ0 have a characteristic Kibble-Żurek length scale ξ̂ . The
halted fluctuations are potential seeds for ρ0 domains in the
nonuniform 2C + ρ0 phase.

We recover the analytically predicted temporal and spatial
scalings in numerical simulations of domain formation close
to the critical point. In Fig. 3(a), we show the number of
small spin domain seeds23 as a function of an appropriately
rescaled time distance from the point of instability tc. When
the number of domain seeds is rescaled taking into account
the prediction (31), we can see the universal time dependence
for three different values of τQ in the first phase of domain
formation. However, at later times we see a clear departure
from the τ

1/3
Q scaling law, which is replaced by τ

2/3
Q scaling,

as shown in Fig. 3(b). To explain the occurrence of the second
scaling, we need to consider the dynamics beyond the linear
regime, and consider the stability of the phase-separated state
itself.

V. STABILITY OF THE 2C + ρ0 PHASE

In the nonuniform 2C + ρ0 phase there is a phase separation
into stationary domains of the 2C phase and the ρ0 phase;
see Fig. 2. Sufficiently deep inside each domain ψj are in-
dependent of x, and the stationary Gross-Pitaevskii equations
are identical to those in the uniform case; see Eqs. (10). On
one hand, inside a ρ0 domain we have ψ+ = ψ− = 0 and the
equations reduce to

μ = c0ρ0. (32)

On the other hand, inside a 2C domain we have ψ0 = 0 and
the equations become two conditions

μ = c0(ρ+ + ρ−) + AB2, γ = −c2(ρ+ + ρ−)m2C. (33)

Here m2C = (ρ+ − ρ−)/(ρ+ + ρ−) is the relative magnetiza-
tion in the 2C phase. Equations (32) and (33) describe chemical
equilibrium between the coexisting phases. Moreover, the
energy density inside a ρ0 domain must be the same as the
energy density inside a 2C domain,

1
2c0ρ

2
0 − μρ0 = 1

2c2m
2
2C + γm2C + 1

2c0(ρ+ + ρ−)2

−μ(ρ+ + ρ−) + AB2(ρ+ + ρ−), (34)

for the pressure between the different phases to vanish. Finally,
the fraction x0 of the system occupied by the phase ρ0 must
satisfy two conditions:

ρ0x0 + (ρ+ + ρ−)(1 − x0) = ρ, (35)

m2C(1 − x0) = m0, (36)

for the average density and magnetization on the left-hand
sides to be ρ and m0, respectively. The set of equations (32)–
(36) defines the equilibrium conditions between the coexisting
phases.

Equations (32)–(34) can be solved with respect to densities:

ρ0 = AB2

2c0
+ c2ρ

2m2
2C

2AB2
,

(37)

ρ+ + ρ− = −AB2

2c0
+ c2ρ

2m2
2C

2AB2
.

From now on we assume for the sake of clarity c0 � c2. In
this regime the density is the same in both phases and equal to
the initial density ρ:

ρ0 = ρ+ + ρ− = c2ρ
2m2

2C

2AB2
= ρ. (38)

Even though the density is incompressible, there is still
nontrivial spin physics. The equilibrium is described by two
equations:

b2 = m2
2C

2
, (39)

m0 = (1 − x0)m2C. (40)

The first of them follows from the last equality in (38) and the
definition of B0 = √

c2ρ/A. Since the magnetization m2C ∈
[m0,1], the first condition can be met for B ∈ [B1,B2].

Furthermore, the 2C domains are dynamically stable. The
Bogoliubov dispersion relation for small fluctuations δψ0
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around the uniform 2C background inside a 2C domain is

ε
(0)
k = c2ρ

√[
ξ 2

s k2 + (1 − b2)
]2 − (

1 − m2
2C

)
; (41)

compare this with the corresponding dispersion (16) in the
initial uniform 2C phase. The stability condition is

b2 < 1 −
√

1 − m2
2C

ρ2
. (42)

It is satisfied given the equilibrium condition b2 = m2
2C
2 in

Eq. (39). It would not be worth mentioning here, if it were
not subject to a reinterpretation in the following argument,
where we reuse the stability condition (42) in a nonequilibrium
situation.

Finally, expanding the dispersion relation (41) in powers of
small k we can find the healing length

ξρ0+2C = ξs

√
2(1 − b2)

b2
(43)

in the ρ0 + 2C ground phase. This healing length sets the
width of a domain wall between the 2C and ρ0 domains. More
precisely, the healing length tells us how deeply the density
ρ0 penetrates into the 2C phase. Thus ξρ0+2C is the minimal
size of a stable ρ0 domain. This width is finite for any value of
magnetic field in the 2C + ρ0 phase. This picture is completed
by the characteristic time scale

τρ0+2C = h̄

c2ρb2
(44)

which can also be obtained from the dispersion relation. Again,
this time scale is finite everywhere in the 2C + ρ0 phase.

VI. DOMAIN POSTSELECTION DYNAMICS

At this point we have most ingredients needed to outline
the scenario explaining the unexpected 2/3 scaling instead of
the standard Kibble-Żurek exponent 1/3. The linear quench
goes through the following stages.

(a) The initial uniform state 2C remains dynamically stable
from b = 0 until b = bc.

(b) The linearized fluctuations δψ0 around the initial
uniform 2C state blow up exponentially near the time t̂ ∼ τ

1/3
Q

after crossing bc. The time t̂ corresponds to the magnetic field
b̂ that satisfies b̂ − bc ∼ τ

−2/3
Q .

(c) The explosion of the fluctuations is halted by nonlinear-
ities near b̂ − bc ∼ τ

−2/3
Q . By this time the density ρ0 still has

relatively small amplitude: ρ0 � ρ. There are ρ0 domain seeds
whose size is set by the KZ correlation length ξ̂ ∼ τ

1/3
Q , and

their density scales as ξ̂−1 ∼ τ
−1/3
Q . So far everything goes as

in the standard KZ mechanism, but now the nonlinear bubble
formation steps in.

(d) For large enough τQ, we have both ξρ0+2C � ξ̂ and
τρ0+2C � t̂ . The last condition implies that b̂ − bc is the longest
“time scale” in the process and thus the nonlinear bubble
formation after b̂ can be argued to actually happen near b̂.
Thanks to the conserved magnetization, only some of the ρ0

seeds will develop into full ρ0 bubbles with ρ0 = ρ. As a
bubble of ρ0 develops, the magnetization in its surrounding 2C

phase is increasing until it reaches a threshold value m̂ when
the 2C phase becomes stable again. The stability threshold m̂

follows from a variant of the stability condition (42):

b̂2 = 1 −
√

1 − m̂2. (45)

Once the 2C phase regains its stability the development of new
ρ0 bubbles is halted, and the 2C magnetization saturates at m̂.
The conservation law for the magnetization now reads

m0 = m̂(1 − x̂0). (46)

Here x̂0 is the fraction of the length of the system occupied by
ρ0 domains. For large enough τQ we have b̂ − bc � bc, m̂ −
mi � mi , and x̂0 � 1. Starting from the expression b̂2 − b2

c
we obtain a relation

b̂ − bc

bc
≈

(
m̂

m0
− 1

)
b2

1

b2
c (1 − b2

c )
. (47)

Using this relation in (45) we obtain

x̂0 ∼ τQ. (48)

(e) Near b̂ the ρ0 bubbles have the minimal possible
size �ξρ0+2C because, for a given fraction x̂0 determined by
the conserved magnetization, such minimal bubbles have the
highest possible density

Nf

L
� x̂0

ξρ0+2C
∼ τ

−2/3
Q (49)

and thus their formation requires the system to order over
minimal distances. The numerical experiments confirm this
result, as shown in Fig. 4, which shows the density profiles
at the time when bubbles are forming from domain seeds, for
two different quench times. While the number of bubbles is
very different in the two cases, the size of a single bubble is
approximately the same. As a result, the density of the minimal
bubbles scales with the −2/3 exponent, in accordance with
Fig. 3(b).

(f) After the formation of minimal bubbles near b̂ the
magnetic field keeps growing and the strength of the nonlinear
Zeeman term in the Hamiltonian is increasing. This increasing
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FIG. 4. (Color online) Examples of bubble density profiles for
two values of τQ. While the average distance between the bubbles is
very different in the two cases, the size of a single bubble remains
approximately the same. The parameters are as in Fig. 2.
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FIG. 5. (Color online) Plot of the fraction x0 of the system volume
occupied by ρ0 domains and the fraction n0 of atoms in the m = 0
component as a function of time in a single experiment. Here τQ =
714 ms for the main plot, and τQ = 28.6 ms for the inset. Apart from
small discrepancies, there is a good agreement with the predicted
static value (solid lines). The agreement improves with increasing
quench time τQ. The parameters are as in Fig. 2.

term is cooling the system towards it instantaneous ground
state, where the ρ0 fraction, determined by the conserved
magnetization, is

x0(b) = b − b1

b
. (50)

The size of the bubbles needs to grow as x0(b)
x̂0

∼ b−b1
b

to keep
pace with the increasing x0(b). This prediction is tested in
Fig. 5, where we show both the fraction of the length occupied
by ρ0 domains, x0, and the number of atoms in the m = 0
state, n0. These values should coincide if the system separates
into perfect 2C and ρ0 domains. Nevertheless we can see some
deviation from the predicted values that is slightly stronger for
x0 than n0. This can be explained by the fact that the density
in ρ0 and 2C is not exactly the same due to the finite ratio
c0/c2, and the fact that 2C domains always contain a small
m = −1 component. This is especially noticeable at small
quench times; see the inset in Fig. 5.

The above argument has implications for correlations in
the distribution of the minimal ρ0 bubbles along the system.
When a ρ0 bubble is growing, the conserved magnetization
in its neighborhood is increasing, making it less favorable
for another bubble to form there, because the increasing
magnetization drives the neighborhood towards the regime of
stability of the 2C phase. The outcome is effectively the same
as if the bubbles repelled each other: there is antibunching
in their distribution along the system. Crudely speaking,
they form something like an imperfect crystal lattice with
a preferred “lattice spacing” distance between the nearest
bubbles. This effect is illustrated in Fig. 6.

VII. SPIN DOMAINS AS QUASICONDENSATES

One of the advantages of the truncated Wigner method
is the ability to calculate various correlation functions in a
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FIG. 6. (Color online) Probability of two neighboring domains
being separated by a specified distance in micrometers, in 1000
realizations of the experiments. The solid line is a Gaussian fit.
Clearly, there is a regularity in placement of domains. The parameters
are as in Fig. 2.

straightforward way, taking averages over many realizations of
the stochastic fields.20 To investigate the coherence properties
of spin domains, we calculated the first- and second-order
equal-time correlations

g
(1)
0 (x,x ′,t) = 〈ψ∗

0 (x,t)ψ0(x ′,t)〉√
〈|ψ0(x,t)|2〉〈|ψ0(x ′,t)|2〉

, (51)

g
(2)
0 (x,x ′,t) = 〈n0(x,t)n0(x ′,t)〉√

〈n0(x,t)2〉〈n0(x ′,t)2〉
, (52)

where n0(x,t) = |ψ0(x,t)|2. The results for τQ = 30 ms are
presented in Figs. 7 and 8. Before the appearance of domains
seeds at t ≈ 11 ms, the state of atoms in the ψ0 component
corresponds to a Bogoliubov vacuum, characterized by a
lack of coherence (δ-like correlation function). During the
formation of domains, coherence over some spatial scale is
established, and finally the correlation function stabilizes in
the shape presented in Fig. 8. We note that in the absence
of domains, the correlation function of the ψ+ and ψ−
components displays full coherence, as the system is in the
condensed state. This is due to the finite system size, which
allows for condensation in one dimension.24
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104 realizations for τQ = 30 ms, showing the evolution of coherence
in the mF = 0 spin component. The parameters are as in Fig. 2.
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FIG. 8. (Color online) Profiles of correlation functions g
(1)
0 (x,0,t)

(black line) and g
(2)
0 (x,0,t) (red line) at long time (here t = 40 ms), for

τQ = 30 ms averaged over 104 realizations. The correlation length can
be obtained as the half-width of g

(1)
0 (x,0,t). The distance between two

maxima of g
(2)
0 (x,0,t) corresponds to the average distance between

the domains.

Closer investigation of the above correlation functions
allows us to make some interesting conclusions about the
resulting spin domain state. The shape of g

(2)
0 , with slowly

decaying oscillating tails, is characteristic for systems such
as liquids or amorphous solids, which display local anticor-
relations of density fluctuations, but no density long-range
order. This is consistent with the apparent semiregularity of
domain positions shown in Fig. 6. On the other hand, the
function g

(1)
0 does not follow this pattern, as there are almost

no oscillations and the spatial decay is much faster. In fact, the
first-order correlation function decays to zero on a length scale
corresponding to the distance between neighboring domains.
This indicates that there is no phase coherence between the
domains, and consequently the spin domains can be seen as
a set of quasicondensates. This effect is due to the existence
of the insulating 2C phase between the ρ0 domains, which
prevents tunneling of ψ0 atoms and phase locking. The same
effect can be seen for domains of the 2C phase.

VIII. CONCLUSION

We described in detail the formation of ρ0 domains in a
transition from the antiferromagnetic 2C phase to the separated
ρ0 + 2C phase. As the control parameter (magnetic field) is
turned on, it crosses the critical value Bc when the 2C phase
becomes dynamically unstable towards the exponential growth
of ρ0 fluctuations. These fluctuations are seeds for the ρ0

domains in the phase-separated phase. The very passage across
this instability is described by the Kibble-Żurek theory and,
in particular, the density of the ρ0 seeds scales according to
the KZ scaling laws. However, it is impossible for most of the
ρ0 seeds to continue growing until they become fully fledged
ρ0 domains, because their density would be too high to be
compatible with the conserved total magnetization. Thus the
ρ0 seeds are subject to a quick (nonlinear) postselection that
happens on the same time scale t̂ as the KZ mechanism and
decreases their density just to satisfy the conservation law. The
net outcome is a finite density of ρ0 bubbles whose density
satisfies a scaling law that is different from the KZ scaling.

The initial size of the ρ0 bubbles does not depend on the
transition rate, but after their formation the size grows with the
magnetic field in such a way that the fraction of the system
occupied by the ρ0 phase keeps in pace with the same fraction
in the ground state of the ρ0 + 2C phase for a given magnetic
field. One of the implications of the postselection mechanism
is that the ρ0 bubbles are positioned in a semiregular fashion
as in an imperfect crystal lattice. What is more, there are no
phase correlations between different bubbles: they are a set
of mutually phase-uncorrelated condensates of the mf = 0
component. The same is true for the train of 2C domains that
separates the ρ0 condensates.
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