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Nonadiabatic quantum phase transition in a trapped spinor condensate
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We study the effect of an external harmonic trapping potential on an outcome of the nonadiabatic quantum
phase transition from an antiferromagnetic to a phase-separated state in a spin-1 atomic condensate. Previously,
we demonstrated that the dynamics of an untrapped system exhibits double universality with two different
scaling laws appearing due to the conservation of magnetization. We show that in the presence of a trap, double
universality persists. However, the corresponding scaling exponents are strongly modified by the transfer of local
magnetization across the system. The values of these exponents cannot be explained by the effect of causality
alone, as in the spinless case. We derive the appropriate scaling laws based on a slow diffusive-drift relaxation
process in the local density approximation.
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I. INTRODUCTION

The Kibble-Żurek (KZ) mechanism refers to the dynamics
of spontaneous symmetry breaking which takes place near a
nonadiabatic second order phase transition. When the system
approaches a critical point, the correlation length can no
longer adiabatically follow its diverging equilibrium value.
Consequently, at the critical point the transition occurs without
the correlation length having reached the size of the whole
system. As a result, finite-sized phase domains are formed,
which display independent choices of the symmetry breaking
order parameter. The KZ physics have been intensively
studied experimentally in a wide range of systems including
experiments in atomic Bose-Einstein condensates [1–9], which
indeed provide the ability of adapting and tuning the system
parameters with an exceptional level of control.

The KZ theory [10] predicts a universal scaling law
for an average domain size in terms of critical exponents
characteristic for a universality class of the system. A simple
theoretical framework is based on the adiabatic-impulse-
adiabatic approximation and does not take into account specific
processes which can lead to the change of the scaling exponent.
This is the case for the system studied in this paper. We consider
the quantum phase transition from an antiferromagnetic to
a phase-separated state by increasing an external magnetic
field. In our previous work [11–13] we demonstrated the
modification of the KZ mechanism due to the conservation
of a magnetization in the system. Initially, the quantum phase
transition develops in the usual way. The number of spin
domain seeds that appear is well described by the KZ theory.
The modification takes place during the growth of spin domain
seeds into stable spin domains. Only some of the domain seeds
develop into stable domains because of the conservation of
magnetization, which determines the volume fraction of the
new phase and limits the density of spin domains. This so
called postselection process results in the second scaling law
with a different exponent for the number of domains in the
final stable configuration.

In this paper we extend our further analysis by considering
the effect of an external harmonic trapping potential on an
outcome of the quantum phase transition in this system. We

find that the inhomogeneity, arising as a result of the external
trapping potential, brings in an alternative physics. Due to
the spatial dependence of the critical magnetic field, different
parts of the system undergo phase transition at different times.
The transition starts in the trap center, and formation of spin
domains is governed by causality. Previously, it was shown
that in trapped systems the exponents in the KZ theory are
modified by the finite velocity of the phase transition front
[14–19]. When the front of the transition moves faster than
the characteristic velocity of perturbation, domains nucleate;
otherwise the choice of the order parameter in the broken
symmetry phase is done homogeneously across the system.
Causality introduces a characteristic length scale of the region
in which domains can nucleate, and sets values of the scaling
exponents. We show that the outcome of the quantum phase
transition in our system cannot be explained by the causality
alone. In addition to the causality effect, a process of transport
of local magnetization from the trap center to its remote
parts occurs, leading to a different characteristic length scale,
namely the size of the low-magnetization region in the trap cen-
ter in which domains can nucleate. The different length scale
depends on the quench rate, introducing further modifications
of the two scaling exponents. We explain the corresponding
scaling laws by considering a slow diffusive-drift relaxation
process, obtaining excellent agreement in a wide range of
quench times. The scenario of domains formation as well as the
resulting scaling exponent can be verified experimentally since
the system of interest is intensively investigated nowadays.

II. ANTIFERROMAGNETIC SPINOR CONDENSATES
IN ONE DIMENSION

We consider a spin-1 Bose gas in one spatial dimension
confined by a harmonic trapping potential, and in a homoge-
neous magnetic field B. The model Hamiltonian of the system
consists of two terms. The first (spin-independent) part is

H0 =
∑

mf =−1,0,1

∫
dx ψ†

mf

(
− �

2

2m
∇2 + V (x) + c0

2
ρ

)
ψmf

,

(1)
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where the subscripts mf = −1,0,1 denote sublevels with the
corresponding magnetic quantum numbers along the magnetic
field axis, m is the atomic mass, ρ = ∑

ρmf
= ∑

ψ
†
mf

ψmf

is the total atom density, V (x) = mω2x2/2 is the external
potential, and ω is a trap frequency. The second (spin-
dependent) part can be written as

HA =
∫

dx

⎛
⎝∑

mf

Emf
ρmf

+ c2

2
: F2 :

⎞
⎠ , (2)

where Emf
are the Zeeman energy levels, the spin density

is F = (ψ†fxψ,ψ†fyψ,ψ†fzψ), where fx,y,z are the spin-1
matrices, ψT = (ψ1,ψ0,ψ−1), and dots in the last term denote
normal ordering. The spin-independent and spin-dependent
interaction coefficients are given by c0 = 2�ω⊥(2a2 + a0)/3
and c2 = 2�ω⊥(a2 − a0)/3, where aS is the s-wave scattering
length for colliding atoms with total spin S, and ω⊥ is
the frequency of a transverse potential. Both c0 and c2 are
positive, ensuring the antiferromagnetic ground state [20].
In the following analytic calculations we often assume the
incompressible regime where c0 � c2, which is satisfied
by, e.g., a 23Na spin-1 condensate. The total atom number
N = ∫

ρdx and the magnetization M = ∫
(ρ+ − ρ−)dx are

conserved quantities.
The linear part of the Zeeman shifts Ej induces homo-

geneous rotation of the spin vector around the direction of
the magnetic field. Since the Hamiltonian is invariant with
respect to such spin rotations, we consider only the effects of
the quadratic Zeeman shift [21,22]. For a sufficiently weak
magnetic field we can approximate it by a positive energy
shift of the mf = ±1 sublevels δ = (E+ + E− − 2E0)/2 ≈
B2A, where B is the magnetic field strength and A = (gI +
gJ )2μ2

B/16EHFS, where gI and gJ are the gyromagnetic ratios
of the electron and nucleus, μB is the Bohr magneton, and
EHFS is the hyperfine energy splitting at zero magnetic field
[21,22]. Finally, the spin-dependent Hamiltonian (2) becomes

HA =
∫

dx

[
AB2(ρ+ + ρ−) + c2

2
: F2 :

]
. (3)

A. Ground states of the uniform system

The determination of ground states under the constraint of
fixed magnetization is an interesting problem by itself and
has been investigated by several authors, e.g., in [20]. In the
following we briefly recall the results focusing on the system
size much larger than the spin healing length ξs = �/

√
2mc2ρ.

In the case of a homogeneous system V (x) = 0, one has to take
into account the possibility of phase separation which occurs
due to the relation between the self- and cross-scattering terms
in the Hamiltonian, as it has been observed experimentally
[23]. Let us define b = B/B0 with B0 = √

c2ρ/A. Except for
the special cases M = 0,±N ,1 three types of ground states can
exist divided by the two critical points at b1 = M/(

√
2N ) and

1The ground state is the polar state ρ0 with all atoms in the mf =
0 component for M = 0. Obviously, when M = ±N , the system
ground state is the ferromagnetic state ρ± with all atoms in the mf =
±1 component.

b2 = 1/
√

2. The ground state can be (i) antiferromagnetic (2C)
for b < b1, (ii) phase separated into two domains of the 2C
and ρ0 states for b ∈ (b1,b2), or (iii) phase separated into two
domains of the ρ0 and ρ+ states for b > b2 [22]. Moreover,
the antiferromagnetic 2C state remains dynamically stable,
up to a critical field bc > b1 [12]. Consequently, the system
driven adiabatically across the phase boundary b1, from the 2C
phase into the separated phase, remains in the initial 2C state
up to b2

c = 1 −
√

1 − (M/N)2, when the 2C state becomes
dynamically unstable towards the phase separation.

B. Ground states of the trapped system

A more complicated situation occurs when the trap V (x) =
mω2x2/2 is present. The structure of ground states can be
found analytically in the Thomas-Fermi approximation (TF)
[24,25], or numerically according to [26,27]. We recall it in
a regime of parameters such that the spin healing length ξs =
�/

√
2mc2ρ is much smaller than the size of an atomic cloud

determined by the TF radius. In the TF approximation, and
under the assumption c0 � c2, the profile of the total density
is independent of the magnetic field,

ρ(x) = ρ(0)

(
1 − x2

x2
TF

)
for |x| � xTF, (4)

where ρ(0) = mω2x2
TF/(2c0) and x3

TF = 3c0N/(2mω2) is the
Thomas-Fermi radius. However, density profiles of particular
spin components depend both on the magnetization and the
magnetic field; see Appendix A for explicit formulas.

The ground state can be (i) the 2C + ρ+ state for b < b1,
shown in Fig. 1(a), (ii) separated into the 2C + ρ+ and ρ0

phases for b1 < b < b2, as shown in Fig. 1(b), and (iii)
separated into the ρ+ and ρ0 phases for b > b2, presented
in Fig. 1(c), where we kept the notation introduced in [24].
The presence of these states results from the interplay between
phase separation and potential separation as shown in [28], and
are absent for ξs larger than the TF radius. Spatial dependence
of the two critical points can be derived in the local density
approximation (LDA), as explained in Appendix B, and are

b1(x)2 = 1

2

⎧⎪⎪⎨
⎪⎪⎩

(
1− x2

1
x2

TF

)2

1− x2

x2
TF

, 0 � |x| � x1

1 − x2

x2
TF

, x1 � |x| � xTF,

(5)

where x3
1 = (1 − M/N)x3

TF, and

b2(x)2 =
{

0, 0 � |x| � x2

1 − x2

x2
TF

, x2 � |x| � xTF,
(6)

with x2 = xTFr2 and r2 being a real, positive, and smaller than
one solution of the equation r3

2 − 3r2 + 2(1 − M/N) = 0. In
addition, the antiferromagnetic phase remains dynamically
stable up to the critical field bc(x). Stability analysis of
the initial 2C+ρ+ state, which is based on the Bogoliubov
transformation for the uniform system [12] treated with the
LDA, gives

bc(x)2 = ρ(x)

ρ(0)

⎛
⎝1 −

√
1 − m2C+ρ+ (x)2

ρ(x)2

⎞
⎠. (7)
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FIG. 1. Density profiles of the mF = 1 (solid blue line), mF = 0 (dot-dashed red line), and mF = −1 (dashed green line) components, and
the total density (dotted black line). In the (a) 2C + ρ+ state for b = 0, (b) ρ+ + 2C + ρ0 state for b = 0.2, and (c) ρ+ + ρ0 state for b = 0.5,
all for N = 2 × 106, ω = 2π × 40, ω⊥ = 2π × 1000 Hz, and the magnetization M = N/2.

The local magnetization of the 2C+ρ+ state is

m2C+ρ+ (x) = ρ(0)

{
1 − x2

0 , 0 � |x| � x1

1 − x2

x2
TF

, x1 � |x| � xTF.
(8)

It can be shown that bc(x) > b1(x) for any x. Similarly as in the
homogeneous system, there exists bistability of the 2C + ρ+
and ρ+ + 2C + ρ0 states in the range b ∈ [b1,bc].

III. NUMERICAL EXPERIMENT

In order to investigate the effect of an external trapping
potential on an outcome of the quantum phase transition in
our system we performed numerical simulations by using
the truncated Wigner method [29]. The initial state for the
evolution is prepared using the numerical method proposed
by Bao et al. [26,27] with additional stochastic noise added
to mimic quantum fluctuations. In this way an ensemble of
initial stochastic fields ψT = (ψ+,ψ0,ψ−) is prepared. The
dynamics of every representative is governed by the coupled
Gross-Pitaevskii (GP) equations

i�
∂ψ0

∂t
=

(
− �

2∇2

2m
+ 1

2
mω2x2 + c0ρ

)
ψ0

+ c2[(ρ1 + ρ−1)ψ0 + 2ψ∗
0 ψ1ψ−1],

i�
∂ψ1

∂t
=

(
− �

2∇2

2m
+ 1

2
mω2x2 + c0ρ + AB2

)
ψ1

+ c2
[
(ρ1 − ρ−1)ψ1 + ρ0ψ1 + ψ∗

−1ψ
2
0

]
,

i�
∂ψ−1

∂t
=

(
− �

2∇2

2m
+ 1

2
mω2x2 + c0ρ + AB2

)
ψ−1

+ c2
[
(ρ−1 − ρ1)ψ−1 + ρ0ψ−1 + ψ∗

1 ψ2
0

]
, (9)

which follow from the spinor Hamiltonian. The initial state for
the evolution is the antiferromagnetic ground state 2C+ρ+ for
b = 0. Next, the magnetic field is increased linearly in time

b(t) = t

τQ

, (10)

where the final magnetic field b(τQ) is larger than bc(x1).
Above bc the system is expected to undergo the spatial
symmetry breaking phase transition. The example of time
evolution is given in Fig. 2 for τQ = 80 ms, where the modulus

squared and the phase of ψ0(x,t) are plotted in addition to the
first order correlation function

g(1)(x,t) = 〈ψ∗
0 (x,t)ψ0(0,t)〉√

〈|ψ0(x,t)|2〉〈|ψ0(0,t)|2〉
, (11)

where averages are taken over stochastic realizations of the
Wigner noise.

Closer investigation of the results allows us to make several
interesting observations about the outcome of the nonadiabatic
and inhomogeneous phase transition. Spin domains appear,
and further postselection of them is clearly visible, as illus-
trated by the density of the mf = 0 component in Fig. 2(a). At
the same time, the phase of ψ0 experiences sudden jumps at
positions of the domain walls, and phase domains that appear
are of a size comparable to the separation between neighboring
walls; see Fig. 2(b). This demonstrates weak coherence
between created spin domains, and the final configuration
of spin domains can be seen as a set of quasicondensates.
In addition, spin domains nucleate and remain in the region
limited by the ρ0 phase size, from −x1 to x1. The presence
of the bound is an advantage in the domain number counting,
since it allows one to avoid counting at the boundary of the
system where the domain may be comparable to noise. In
parallel to the domain formation, the process of transport
of local magnetization from the center to boundaries of the
system is pronounced; see Fig. 4. The origin of the effect
lies in the sign of c2 in the interaction energy (2) which
favors locations of domains having zero local magnetization
in the trap center where the density is largest [24]. The
opposite direction of the local magnetization transport may
be expected for ferromagnetic spinor condensates for which
the sign of c2 is negative. Another characteristic feature is
the emergence of spin domains from spin waves which can
be observed in the density plot of the mf = 0 component
in Fig. 2(a). The presence of spin waves results from the
coherent spin mixing dynamics [30], so it is specific for spinor
condensates. Initially, a very tiny order parameter appears in
the mf = 0 component above bc through the coherent process
ρ+ + ρ− → ρ0. During this very short period of time the phase
of ψ1ψ−1 is imprinted on ψ2

0 . The sudden increase of the
phase coherence of the mf = 0 component can be observed
just above tc and before domains nucleation, as illustrated
by the phase of the mf = 0 component in Fig. 2(b) and the
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FIG. 2. The time evolution of (a) the modulus square and (b) the phase of ψ0(x,t) for a single realization of Wigner noise, as well as (c)
the correlation function of the first kind g(1)(x,t) given by Eq. (11) and averaged over 103 realizations of Wigner noise. Lines show trajectories
of the front tf (x) = τQbf (x) with f = 1 (solid red line), and f = c (dashed white line). The other parameters are the same as in Fig. 1.

correlation function in Fig. 2(c). When domains are formed,
the range of the correlation function changes and corresponds
to the final average size of domains.

According to the KZ mechanism, the system ends up
in a state with multiple spin domains. The concept of the
mechanism relies on the fact that during the nonadiabatic
quench the system does not follow the ground state exactly
in a vicinity of the critical point. This is due to the divergence
of the relaxation time. In the uniform system the quantum
phase transition from an antiferromagnetic to phase separated
state exhibits two scaling laws [11]. The KZ theory results
in scaling law Nd ∼ τ

−1/3
Q , coming from critical exponents

ν = 1/2 and z = 1, for the density of spin domains seeds
that are formed just after crossing the critical point. Further
on, the postselection process forced by the conservation of
magnetization takes place, leading to the second scaling law
with a different exponent Nd ∼ τ

−2/3
Q .

The inhomogeneity, arising as a result of the external
trapping potential, brings different ingredients. Due to the
spatial dependence of bc(x), different parts of the system
undergo phase transition at different times as the magnetic
field grows up from zero. As the result, the relaxation
time and correlation length acquire local dependence. It is
widely understood that the domain formation is governed by
causality. When the front of the transition moves faster than the
characteristic velocity of the perturbation, domains nucleate.
Otherwise the choice of the order parameter in the broken
symmetry phase is done homogeneously along the system.
The effect of the moving front changes the qualitative result
of the KZ theory and scaling exponents as well [14–19].

Numerical results for scaling of the domains number2

are presented in Fig. 3. The result shows scaling of the
domain seeds number just after crossing the critical point
bc to be Ns ∝ τ

−2/3
Q , and scaling of the domains number in

final stable configurations to be Nd ∝ τ−1
Q . We emphasize that

these scaling laws cannot be explained by the causality effect
alone. The transport of local magnetization enhanced by the

2To determine the number of domains Nd or domain seeds Ns we
count the number of zero crossings of the function f (x) = ρ0(x) −
αρ(x), where the best choice is α = 0.5 for domains and α = 0.06
for domain seeds, at the time instant when Ns or Nd is the largest.
We checked that this method is accurate and weakly dependent on
the choice of α.

presence of an external trapping potential dominates, and the
KZ dynamics cannot be separated from the transport dynamics.
The similar effect of inhomogeneity occurs in the ion Coulomb
crystal system [31], which was confirmed experimentally [32].
In the next section we present an analytical treatment for the
two scaling laws derivation based on a slow diffusive-drift
relaxation process of the local magnetization transport.

IV. TWO SCALING LAWS

We consider the phase transition from an antiferromagnetic
ground state; it is the 2C phase for the uniform system, to a
phase separated state by linearly increasing the magnetic field
b = t/τQ. The distance from the critical point is measured by
a dimensionless parameter

ε(t) = b − bc, (12)

and is a linear function of time ε ∼ t/τQ (here we choose t = 0
at the first critical point).
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FIG. 3. Scaling of the number of domain seeds Ns (boxes) just
after crossing the critical point b1, and of the number of domains Nd −
2 (points) in final stable configurations; scaling Ns ∝ τ

−2/3
Q is denoted

by the red dashed line while Nd ∝ τ−1
Q by the green dashed line. The

inset shows the number of domain seeds obtained for different values
of the counting threshold, α = 0.03, 0.04, 0.05, 0.06, 0.07, 0.25 from
top to bottom, demonstrating quite a wide range of the scaling validity.
Here the average is taken over 102 realizations of the Wigner noise;
the other parameters are the same as in Fig. 1.
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Before we proceed into details, let us briefly recall our
results for the uniform system [12].

We analyzed the initial antiferromagnetic ground state in
the Bogoliubov approximation. The Bogoliubov spectrum is
composed of three branches wherein one gapped is

ω2
k

[c2ρ(0)]2
= (

ξ 2
s k2 + ρ̃ − b2

)2 − (
ρ̃ − b2

c

)2
, (13)

where ρ̃ = ρ/ρ(0). The critical magnetic field bc is obtained
from ω2

0 = 0. Here we have written the gapped spectrum in
the form convenient for our further LDA analysis. Notice that
ρ(0) = N/L, ρ̃ = 1 for the homogeneous system of size L.
While increasing the magnetic field from zero, the 2C phase
remains dynamically stable up to bc.

The reaction time of the system τr ∼ ω−1
0 is the shortest

time scale on which the ground state of the system can
adjust adiabatically to varying b. The energy gap vanishes
as ω0 ∼ |ε|zν , so the evolution across the critical point cannot
be adiabatic. The KZ theory [10] is based on an approximation
in which time evolution near the critical point is divided into
three stages. The border between particular stages is the time
instant t̂ at which the reaction time of the system is comparable
to the transition time τt = |ε/ε̇|. The equality τ̂r = τ̂t defines
t̂ , which for our system is t̂ ∼ τ

1/3
Q . So, at t = −t̂ the state

of the system is assumed to be an adiabatic ground state with
a correlation length ξ̂ . This state freezes-out at −t̂ , and does
not change till t̂ .3 At t = t̂ the frozen state is no longer the
ground state but an excited state with the correlation length
ξ̂ , becoming the initial state for further adiabatic evolution.
The average number of domain seeds is determined by the
correlation length at the freeze-out time Ns = L/ξ̂ which is
set by the maximal unstable momentum mode at t̂ , ξ̂ = 1/k̂,
and from ωk̂(b = b̂) = 0 one has

ξs k̂ �
√

bcε̂. (14)

The number of spin domain seeds scales as Ns ∼ τ
−1/3
Q for our

system.
The standard KZ scenario is strongly modified by the

postselection process forced by the conserved magnetization
in our system, leading to the second scaling law (see [12]
for a detailed explanation of the process). The derivation of
the second scaling exponent required an observation that the
number of domains in a stable configuration is determined by
the fraction x0 of the system occupied by the ρ0 phase divided
by the healing length at the freeze-out time, Nd = x̂0/ξ2C+ρ0

with ξ2C+ρ0 = ξs/b
2. This healing length is finite near the

phase transition. In [11] we have shown that x0 = 1 − b1/b,
which indicates that x̂0 ∼ ε̂ for weak magnetization as bc � b1.
The second scaling law is then Nd ∼ τ

−2/3
Q .

A standard treatment of the analysis of scaling laws in a
trapped system is based on the local density approximation.
From now on we consider the spatially dependent critical
magnetic field bc(x), magnetization m(x) = ρ+(x) − ρ−(x),
and distance from the critical point ε(x,t) = b(t) − bc(x), for
x � x1. The number of spin domain seeds as well as domains

3This point is violated a bit in our case, since Bogoliubov modes
become unstable for t > tc and corresponding fluctuations blow up.

in a stable configuration can be estimated as follows (up to
some numerical factors fi):

Ns ≡
∫ x̂max

−x̂max

dx

fs ξ̂
, Nd ≡

∫ x̂max

−x̂max

x̂0(x)dx

fdξs

, (15)

where the integration runs over the reduced length x̂max which
we will explain below. If one neglects the x dependence
of ξ̂ and x̂0, then the expression for the number of defects
simplifies even more, Ns � 2x̂max/(fs ξ̂ ) ∝ x̂maxτ

−1/3
Q and

Nd � 2x̂0/(fdξs) ∝ x̂maxτ
−2/3
Q . The τQ dependence of x̂max

remains to be established in order to determine the KZ scaling
of the defects density. It is easy to notice that x̂max ∼ τ

−1/3
Q

matches results of our numerical experiment, as shown in
Fig. 3.

In the case of our system there are two processes which lead
into limited by x̂max range of the defect formation, namely,
causality and transfer of the local magnetization from the trap
center to the system boundaries. We emphasize that the latter
effect establishes the desired scaling of x̂max.

A. The causality effect

The causality effect sets x̂max at the freeze-out time to
the space region where the front of the transition vF moves
faster than any perturbation v. The characteristic velocity
of perturbation can be upper bounded by the ratio of the
correlation length over the relaxation time, and at the freeze-
out time it is v̂ = ξ̂ /τ̂r [33]. It does not depend on τQ, whereas
it still has some space dependence which we treated within
the LDA. The speed of the front is vF = |dtc/dx|−1, where
tc = τQbc. The scaling of x̂max is set by the equality v̂ = v̂F

which we write symbolically as τ−1
Q = f (x̂max), where f (x̂max)

is a known function independent of τQ. The expansion of
f (x̂max) in the Taylor series up to the leading term in x̂max

gives the scaling x̂max ∝ τ−1
Q which is not the observed one.

B. Transport of the local magnetization

Transport of the local magnetization during the formation
of domains is a quite complicated process, but we can estimate
the modification of scaling laws if we make a few assumptions.
We focus on the area close to the center of the trap where most
of domains are created; then x/xTF is a small parameter of
our theory; and on weak magnetization, then the two critical
fronts are indistinguishable tc(x) ≈ t1(x) and also t̂(x) ≈ t1(x).
The critical point is first crossed in the center of the trap,
where the 2C phase is initially present; see Fig. 1(a). This
results in the production of ρ0 atoms from the 2C phase via the
process ρ− + ρ+ → 2ρ0 through contact interactions. The ρ0

and 2C phases are repelled apart when the system undergoes
phase separation. Energetic considerations point out that the
preferred state is the one where the ρ0 phase is situated in
the center of the trap, while the magnetized 2C phase resides
away from the trap center [24]. This will lead to the transport
of local magnetization across the system. However, the process
of local domain seeds formation is, for realistic quench times,
faster than the transport of local magnetization. For this reason
we will consider the transport of local magnetization as a
slow process, which nevertheless can lead to a modification
of the scaling exponents. To illustrate the effect of the local
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FIG. 4. Density of the local magnetization divided by the local density 〈m(x,t)〉/ρ(x) averaged over 3 × 103 realizations of the Wigner
noise for (a) τQ = 80, (b) τQ = 200, and (c) τQ = 700 ms; other parameters are the same as in Fig. 1. Pushing the local magnetization out of
the trap center after domain seeds formation is clearly visible.

magnetization transport, in Fig. 4 we show examples of the
time evolution of the averaged local magnetization.

Now, we make the central assumption that the transport of
local magnetization is a slow diffusive-drift relaxation process.
The local magnetization at the point x, which we denote
by mx(t), changes in time due to its transport from the trap
center to x. We estimated its evolution from the drift-diffusion
equation

∂mx(t)

∂t
∼ −∇ · (mx(t)u), (16)

where u is the average velocity that the local magnetization
moves with. Note that the magnetization is x independent
for b < b1 and x < x1; see (8). In the equation we neglected
diffusion, sources, or sinks and kept only the leading drift term.
An approximate solution for very short times 
t is

mx(
t) − mx(0) ∼ −(∇ · u)
t. (17)

To describe the velocity of local magnetization we adopt and
generalize the method of [34] devised for the description
of quantum tunneling across domains. The velocity of local
magnetization is, in general, u = νu
μ, where νu is the
mobility which we will assume to be a constant in the
lowest order approximation. The transfer of magnetization is
enforced by a difference in chemical potentials of the growing
neighboring phases ρ0 and 2C. In the pure ρ0 phase, we
denote the local chemical potential of the mf = 0 atoms (the
cost of adding another mf = 0 particle to the ρ0 phase) by
μ0, and in the 2C phase by μ2C . At the critical point the
chemical potential difference 
μ = μ2C − μ0 is exactly zero
and becomes positive in the phase-separated regime increasing
to the first order in the small parameter 
μ(x,t) ∼ ε(x,t), so
linearly with magnetic field according to (12). Therefore, we
approximate the velocity gradient as

∇ · u ∼ 
u


x
∼ 
μ(x,t) − 
μ(0,t)

|x| . (18)

The dynamics cease to be adiabatic at the freeze-out time
t̂(x). The maximum distance at which domains are formed,
x̂max, at the freeze-out time, is approximately the x at which
the change of local magnetization becomes comparable to
the local density. No more domains can form beyond this
point. Therefore, mx̂(
t̂) − mx̂(0) ∼ 1 at x̂ = x̂max defines
the scaling of x̂max with the quench time τQ. We approxi-
mate 
t̂ � t1(x̂) − t1(0) ∼ x̂2τQ and 
μ(x̂,t̂) − 
μ(0,t̂) �

b1(0) − b1(x̂) ∼ x̂2 according to our assumption of the two
transition fronts to be comparable, b1 ∼ bc. Expanding the
right hand side of (17) at the freeze-out time up to the leading
terms in x̂/xTF gives

mx̂(
t̂) − mx̂(0) � |x̂|3τQ (19)

and the desired scaling with quench rate, x̂max ∼ τ
−1/3
Q .

V. SUMMARY

The KZ theory is a powerful tool that allows predicting the
average size of domains forming topological defects resulting
from a nonadiabatic phase transition without solving the full
dynamical equations. However, the theory should be more
developed in some specific cases when processes changing
scaling exponents occur in the system.

The antiferromagnetic spinor condensate turns out to be
a very interesting case. Double universality in the dynamics
takes place, and two scaling laws appear, not one as usually. It
is the effect of the postselection process forced by conserved
magnetization which determines the density of the new phase
and the density of spin domains in final stable configurations.
The trapped system reveals additional modifications due
to causality and transport of magnetization processes. The
latter effect, characteristic for spinor condensates, imposes a
stronger limit on the area in which spin domains can form.
We consider both mechanisms, the postselection process and
the magnetization transfer across the system, to be general
and effective whenever the standard KZ mechanism is not
compatible with an additional conservation law.

It would be very instructive to examine experimentally
modification of the KZ mechanism by conserved magne-
tization, while an experimental verification of the scaling
exponents for the number of defects is still a challenge.
However, the recent experiment [9] confirms the KZ theory
for the scaling of the time instant t̂ , showing some minor
modification of the scaling exponent resulting from atomic
losses in the system. The KZ theory of spin-1 systems is quite
well developed; however the change of scaling of the number
of domains due to additional effects like particle losses, phase
ordering kinetics, or reduced dimensionality need to be further
investigated, providing an interesting direction for future work.
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APPENDIX A: DENSITY PROFILES OF PARTICULAR
PHASES IN THE TF APPROXIMATION

Here and below we summarize simple expressions for
ground state density profiles of particular components which
result from the TF analysis. All of them were checked against
numerical results by applying a method proposed by Bao et al.
[26,27].

(i) In the 2C+ρ+ state, one has

ρ1(r)

ρ(0)
=

{
1 − 1

2

(
r2

1 + r2
)
, |r| ∈ (0,r1)

1 − r2, |r| ∈ (r1,1),
(A1)

ρ−1(r)

ρ(0)
=

{
1
2

(
x2

1 − r2
)
, |r| ∈ (0,r1)

0, |r| ∈ (r1,1),
(A2)

and ρ0(r) = 0 for any r . Here ρ(0) = mω2x2
T F /(2c0), r =

x/xT F , x3
T F = 3c0N/(2mω3), and r2

1 = 1 − M/N (it was
derived from the difference N − M).

(ii) In the ρ+ + 2C + ρ0 state, one has the following
densities in particular components:

ρ1(r)

ρ(0)
=

⎧⎪⎨
⎪⎩

0, |r| ∈ (0,u1)

1 − 1
2

(
u2

0 + r2
)
, |r| ∈ (u1,u0)

1 − r2, |r| ∈ (u0,1),

(A3)

ρ0(r)

ρ(0)
=

{
1 − r2, |r| ∈ (0,u0)

0, |r| ∈ (u0,1),
(A4)

and

ρ−1(r)

ρ(0)
=

⎧⎪⎨
⎪⎩

0, |r| ∈ (0,u1)
1
2

(
u2

0 − r2
)
, |r| ∈ (u1,u0)

0, |r| ∈ (u0,1).

(A5)

Compact formulas for the radii u0 and u1 are unknown; surely
they are B and M dependent.

(iii) In the ρ+ + ρ0 state, one has the following:

ρ1(r)

ρ(0)
=

{
0, |r| ∈ (0,r2)

1 − r2, |r| ∈ (r2,1),
(A6)

and

ρ0(r)

ρ(0)
=

{
1 − r2, |r| ∈ (0,r2)

0, |r| ∈ (r2,1).
(A7)

The radius r2 of the ρ0 domain is a solution of the equation

r3
2 − 3r2 + 2(1 + M/N) = 0 (A8)

and is derived from the difference N = M . There is only one
real solution such that r2 ∈ [0,1].

APPENDIX B: DERIVATION OF CRITICAL
MAGNETIC FIELDS

In the ρ+ + 2C + ρ0 state there is the phase separation
into three stationary domains of the ρ+, 2C, and ρ0 phases
[see Fig. 1(a)], and similarly for the ρ+ + ρ0 state, but this
time stationary domains are of the ρ+ and ρ0 phases [see
Fig. 1(c)]. Based on stability conditions for the coexistence
of two phases, it is possible to reach r dependence of
critical magnetic fields. Here we follow our previous analysis
[12] keeping the harmonic trap potential in all steps. One
starts with stationary Gross-Pitaevskii equations in the TF
limit:

0 = [V (x) + c0ρ + AB2 + γ − μ]ψ1

+ c2
[
(ρ1 − ρ−1)ψ1 + ρ0ψ1 + ψ∗

−1ψ
2
0

]
,

0 = [V (x) + c0ρ − μ]ψ0 + c2[(ρ1 + ρ−1)ψ0 + 2ψ∗
0 ψ1ψ−1],

0 = [V (x) + c0ρ + AB2 − γ − μ]ψ−1

+ c2
[
(ρ−1 − ρ1)ψ−1 + ρ0ψ−1 + ψ∗

1 ψ2
0

]
, (B1)

where μ is the chemical potential and γ is a Zeeman-like
Lagrange multiplier used to enforce the desired magneti-
zation M . Sufficiently deeply inside each domain ψj still
follow (B1).

(i) The first critical magnetic field. In the ρ+ + 2C + ρ0

state occurs: inside the ρ+ phase we have ψ0 = ψ− = 0, in
the 2C phase ψ0 = 0, and in the ρ0 phase ψ+ = ψ− = 0.
The chemical equilibrium between coexisting phases requires
equalization of chemical potentials of two phases, whereas
the lack of pressure between different phases is accomplished
by equalization of its energy densities. The only nontrivial
conditions are determined by equilibrium requirements for the
coexisting 2C and ρ0 phases, and they are c2ρ

2
0 = c2m2C +

c0ρ2C and c2
0ρ

2
0 = (c0ρ0 + AB2)2, where ρ2C = ρ+ + ρ− and

m2C = (ρ+ − ρ−). Their solution with respect to densities
in the limit c0 → ∞ gives equal densities in both phases
and ρ2C = c2m

2
2C/(2AB2) [or AB2 = c2m

2
2C/(2ρ2C) equiv-

alently]. The last implies that the magnetization m2C in the
2C phase, which coexists with the ρ0 phase, is proportional
to the magnetic field. Since the magnetization is zero in the
ρ0 phase, m2C must be greater than the initial magnetization4

m2C+ρ+ which is

m2C+ρ+ (r) = ρ(0)

{
1 − r2

1 , |r| ∈ (0,r1)

1 − r2, |r| ∈ (r1,1).
(B2)

So for any B > B1 with

(
B1(r)

B0

)2

= m2C+ρ+ (r)2

2ρ(r)
, (B3)

the coexistent phases ρ+, 2C, and ρ0 form the ground state of
the system.

4Initially the system is in the ground 2C+ρ+ state.
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(ii) The second critical magnetic field. This time we look
at stability of the ρ+ + ρ0 state. Inside the ρ+ phase we have
ψ−,ψ0 = 0, and in the ρ0 phase ψ+,ψ− = 0. The chemical
equilibrium and the lack of pressure between phases imply
c0ρ0 = c0ρ+ + AB2 and c0ρ

2
0 = (c2 + c0)ρ2

+, respectively.
In the limit c0 → ∞, one gets the following Equilibrium

condition: (
B2(r)

B0

)2

= ρ+(r)

2ρ(0)
. (B4)

Notice, the same results (B3) and (B4) can be obtained in
the local density approximation by treating the solutions of the
homogeneous system [12].
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[11] T. Świsłocki, E. Witkowska, J. Dziarmaga, and M. Matuszewski,
Phys. Rev. Lett. 110, 045303 (2013).

[12] E. Witkowska, J. Dziarmaga, T. Świsłocki, and M. Matuszewski,
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