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Dynamic hysteresis from bistability in an antiferromagnetic spinor condensate
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We study the emergence of hysteresis during the process of quantum phase transition from an antiferromagnetic
to a phase-separated state in a spin-1 Bose-Einstein condensate of ultracold atoms. We explicitly demonstrate
the appearance of a hysteresis loop with various quench times, showing that it is rate independent for large
magnetizations only. In other cases, scaling of the hysteresis loop area is observed, which we explain by using the
Kibble-Zurek theory in the limit of small magnetization. The effect of an external harmonic trapping potential is
also discussed.
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The classic example of hysteresis is the relation of the
applied magnetic field to the magnetization in solid-state
ferromagnetic materials. Hysteresis can also occur in different
situations as a product of a fundamental physical mechanism,
such as a phase transition, or a result of imperfections or
degradations. Hysteresis occurs in two forms: rate-dependent
and rate-independent hysteresis. In the rate-independent case,
two or more metastable energy states are separated by an
energy barrier. When an external driving force moves the
system from one metastable state to another, the system
exhibits the history-dependent behavior. The rate-independent
hysteresis of supercurrent in a rotating, superfluid Bose-
Einstein condensate was observed and has been proclaimed
as a milestone in the advancement of atomtronic circuitry
[1–3]. A recent experiment [4] has also demonstrated the
rate-independent hysteresis when a Bose-Einstein condensate
is placed in a double-well potential. On the other hand, the
observation of rate-dependent hysteresis could provide insight
into the out-of-equilibrium dynamics of the system.

Spinor condensates are composed of N atoms in several
Zeeman components with a given hyperfine spin F and mag-
netic numbersmF . The global ground state of theF = 1 system
is classified as ferromagnetic or antiferromagnetic, depending
on the sign of spin-dependent interactions. The magnetization
longitudinal with respect to magnetic field M is approximately
conserved in the system and acts as an independent external
parameter. This conservation law comes from the spin rota-
tional symmetry of contact interactions when dipole-dipole
interactions are neglected. Consequently, in contrast to solid-
state magnetic materials, classical hysteresis is impossible in
spinor F = 1 condensates. However, a weak magnetic field
drives the system to the transition from an antiferromagnetic
ground state to a state where domains of atoms with different
spin projections separate [5]. The phase transition is specific
due to the region of bistability in which the antiferromagnetic
and phase separated states are both metastable [6].

In this paper we investigate the emergence of hysteresis
from bistability during the phase transition in an antiferromag-
netic spin-1 condensate. The system is already recognized as
useful for quantum technology tasks. By employing numerical

simulations within the truncated Wigner approximation, we
demonstrate the appearance of rate-independent hysteresis for
large magnetizations only, when the bistability region is widest.
In the limit of small magnetizations the bistability region
disappears; however, competition between the characteristic
timescale of driving and the relaxation time of the system leads
to the emergence of rate-dependent hysteresis. We show that
in this case, the hysteresis loop area is subject to a universal
scaling law. We estimate the scaling of the hysteresis loop
area based on the Kibble-Zurek (KZ) theory [7–9], similarly
to [10]. The situation changes when the system is enclosed in
an external trapping potential, as it eliminates the separation
of the two metastable energy states and the rate-independent
hysteresis loop becomes impossible to observe. The scaling
of the rate-dependent hysteresis area in this case is influenced
by the trap inhomogeneity [11–17]. In addition, in the low-
density regime a process of phase ordering kinetics [18–23]
additionally modifies the scaling laws. Finally, we propose
an experimental setup and parameters reachable by current
technologies [24–26] which will enable us to observe the clear
rate-independent hysteresis loop of nonzero width.

The system we focus on is an antiferromagnetic condensate
of sodium atoms in a homogeneous magnetic field B, having
positive magnetization such that 0 < M < N . We restrict the
model to one dimension, with the other degrees of freedom
confined by a strong transverse potential with frequency ω⊥.
The model Hamiltonian of the system is composed of two
terms: the energy of the spin-1 system Hs and the energy shift
HQZE due to a homogeneous magnetic field. The first term is
given by

Hs =
∫

dx
∑
mF

ψ†
mF

(
− h̄2

2μ
∇2 + 1

2
μω2x2

)
ψmF

+
∫

dx

(
c0

2
n2 + c2

2
F2

)
, (1)

where μ is the atomic mass, ω is a trap frequency,
n = ∑

nmF
= ∑

ψ
†
mF

ψmF
is the local atom density, and

F = (ψ†fxψ,ψ†fyψ,ψ†fzψ) is the spin density, with
fx,y,z the spin-1 matrices and ψT = (ψ1,ψ0,ψ−1). The
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FIG. 1. Schematic structure of the mean-field ground state of the
system versus q for positive magnetization M > 0. Dashed arrows
indicate the stability regions of (a) the antiferromagnetic 2C state with
atoms in the mF = ±1 components, (b) the 2C + ρ0 state composed
of two domains of the 2C and ρ0 phases, the latter composed of atoms
in the mF = 0 component, and (c) the ρ+ + ρ0 state composed of two
domains of ρ0 and ρ+, the latter composed of atoms in the mF = 1
component [5]. The vertical thick lines in (b) and (c) illustrate domain
walls.

spin-independent and spin-dependent interaction coeffi-
cients are c0 = 2h̄ω⊥(2a2 + a0)/3 and c2 = 2h̄ω⊥(a2 −
a0)/3, where aS is the s-wave scattering length for colliding
atoms with total spin S. The coefficients c0 and c2 are both
positive for sodium atoms. The linear Zeeman effect becomes
irrelevant, since it is proportional to the conserved magneti-
zation, while the quadratic Zeeman energy becomes essential,

HQZE = −qc2ρN0, (2)

where we dropped a constant term. Here N0 is the number
of atoms in the mF = 0 Zeeman component, ρ = N/L is
the total density, L is the system size, and q = AB2/c2ρ

with A = (gI + gJ )2μ2
B/16EHFS, in which gI and gJ are the

gyromagnetic ratios of the electron and nucleus, μB is the
Bohr magneton, and EHFS is the hyperfine energy splitting.
The value and sign of the quadratic Zeeman energy, through q,
can be controlled using the magnetic field B or the microwave
dressing [27].

We first concentrate on the case of a homogeneous system
(ω = 0). The ground-state structure of the uniform system can
be found on the mean-field level by minimization of the mean-
field energy functional in the subspace of fixed magnetization
[5,6,28]. When the spin healing length ξs = h̄/

√
2μc2ρ is

much smaller than the system size L, the structure of the
system ground state is composed of three states divided by two
critical points at q1 = m2/2, where m = M/N is the fractional
magnetization, and q2 = 1/2,1 as illustrated in Fig. 1. The
system is in the antiferromagnetic ground state when q < q1

and in the phase separated state otherwise. Moreover, the
analysis of the Bogoliubov spectrum [6] shows that the an-
tiferromagnetic state is dynamically stable and it remains a
local energy minimum up to the value qc = 1 − √

1 − m2. It
is easy to see that q1 � qc for any m. A simultaneous stability
of the two states may lead to the hysteresis phenomenon when
dynamically changing q. We assume that the parameter q is

1The width of the domain wall is of the order of the spin healing
length and the condition ξs � L allows one to neglect the energy of
the domain walls during derivation of q1 and q2 [5,6].

FIG. 2. Hysteresis in the system while crossing the critical points
in the case of (a) a large and (b) a small width of the bistability region.
The hysteresis loop in the small quench time limit is illustrated by
dashed red lines and in the adiabatic limit by solid black lines.

tuned in the following way:

q(t) =
{

α t
τQ

, t ∈ (0,τQ)

α
(
2 − t

τQ

)
, t ∈ (τQ,tmax),

(3)

where α sets the maximal value of q, τQ is the quench time,
and tmax is the evolution time. The nucleation and growth of
the ρ0 phase can be characterized by the fraction of atoms in
the mF = 0 component. The relation of N0/N versus q can
take the form of the hysteresis loop of width qc − q1 set by
the size of the bistability region. The width of the bistability
region depends on the fractional magnetization m making the
hysteresis phenomena qualitatively different in the two limits,
m → 0 and m → 1, as illustrated in Fig. 2.

In the limit of macroscopic magnetization m → 1, the
region of bistability is large qc − q1 → 1/2 and the hysteresis
may become rate independent. The hysteresis area

S(τQ) =
∫ q(tmax)

q(τQ)

N0(q)

N
dq −

∫ q(τQ)

q(0)

N0(q)

N
dq (4)

is

S(τQ) ≈ (1 − m)(qc − q1) (5)

while approximating the shape of the hysteresis loop by a
rectangle of height N0/N → 1 − m and width qc − q1, as
represented in Fig. 2(a).

In the limit of small magnetization m → 0 one can expect
rate-dependent hysteresis as qc − q1 → 0. The scaling of the
hysteresis area (4) with the quench time τQ may exhibit a
scaling law due to a nonadiabatic phase transition caused by
finite quench times considered (3). In order to predict the
corresponding scaling law we use the KZ theory [7–9] for the
description of the nonadiabatic phase transition, which we have
developed for the case of antiferromagnetic spinor condensates
[29,30]. The KZ theory is a powerful tool which allows one
to predict the scaling law for density of topological defects
versus the quench rate based on the relation of characteristic
timescales in terms of critical exponents, which are z = 1
and ν = 1/2 for our system [6]. The theory is based on the
adiabatic-impulse-adiabatic approximation, which implies that
the scaling law is determined at the freeze-out time t̂ when
the dynamics of the system ceases to be adiabatic. The small
parameter of the KZ theory is the distance from the critical
point ε, which in the case of our system is ε = q − qc. The
KZ theory predicts ε(t̂) ∝ τ

1/(1+zν)
Q for the linear ramp we

are considering. The scaling law of the hysteresis area (4)
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FIG. 3. (a) Evolution of density of the mF = 0 component for
τQ = 1.36 s and m = 0.5. Also shown is the evolution of N0/N as
a function of q averaged over 50 realizations for a boxlike potential
(ω = 0) and (b) m = 0.1, (c) m = 0.5, and (d) m = 0.95. The thin
red dashed line corresponds to τQ = 11 ms and the blue solid one
to τQ = 1.36 s. The parameters q1 and qc are denoted by dotted and
dot-dashed black lines, respectively. The gray arrows indicate the
direction of evolution. The parameters are as follows: N = 2×107,
ω⊥ = 2π×1000 Hz, L = 200 μm, α = 3, and tmax = 3τQ.

is determined by the scaling of q at t̂ or consistently by the
distance from the critical point ε(t̂) = q(t̂) − qc. By using our
previous results for critical exponents [6], one can show that
the scaling law for the hysteresis area (4) at t̂ is

Ŝ(τQ) ∝ q(t̂) − qc ∝ τ
−2/3
Q . (6)

We test the above prediction in numerical simulations within
the truncated Wigner approximation [31,32]. The dynamics
of the system is then described by the set of time-dependent
Gross-Pitaevskii equations

ih̄
∂ψ0

∂t
=

(
− h̄2∇2

2μ
+ 1

2
μω2x2 + c0n − q(t)c2ρ

)
ψ0

+ c2[(n1 + n−1)ψ0 + 2ψ∗
0 ψ1ψ−1],

ih̄
∂ψ±1

∂t
=

(
− h̄2∇2

2μ
+ 1

2
μω2x2 + c0n

)
ψ±1

+ c2
[
(n±1 − n∓1 + n0)ψ±1 + ψ∗

∓1ψ
2
0

]
. (7)

The initial state is the 2C state for q = 0 such that
in momentum space ψmF

(k,t = 0) = φmF
+ δφmF

, with
|φmF =±1|2 = (N ± M)/2, |φmF =0|2 = 0, and stochastic noise
〈δφ∗

mF
(k)δφm′

F
(k′)〉 = 1

2δmF ,m′
F
δk,k′ , in amount of half a particle

per momentum mode in all three mF components is added.
In Fig. 3 we show examples of numerical simulation results

for different fractional magnetizations in the large total atom
limit N = 2×107. Nucleation and growth of the ρ0 phase and
spin domains are clearly visible when the value of q exceeds the
critical value [see density profiles in Fig. 3(a)]. Several domains
are created, not just two as predicted for the ground state, due
to nonideal adiabaticity of the quench. The number of domains
decreases to 2 when increasing the quench rate τQ. Initial
oscillations in N0/N visible for shorter times in Figs. 3(b)–3(d)
result from spin-mixing dynamics [33–35]. Indeed, for the
smallest magnetization the hysteresis loop disappears as the

FIG. 4. (a) Evolution of density of the mF = 0 component for
τQ = 1 s. Also shown is the evolution of N0/N as a function of q

averaged over 50 realizations for a harmonic trapping potential and
(b) m = 0.1, (c) m = 0.5, and (d) m = 0.95. The thick red dashed
line corresponds to τQ = 0.2 s and the blue solid one to τQ = 8 s. The
parameters q1(0) and qc(0) are denoted by dotted and dot-dashed black
lines, respectively. The gray arrows indicate the direction of evolution.
The parameters are as follows: N = 2×106, ω⊥ = 2π×1000 Hz,
ω = 2π×40 Hz, α = 3, and tmax = 3τQ.

quench time increases. On the other hand, the hysteresis loop
of finite width is clearly visible and stable when the fractional
magnetization tends to 1, demonstrating the rate-independent
hysteresis.

We also study the system enclosed in an external har-
monic trapping potential (ω �= 0). One can show, based on
the Thomas-Fermi and local-density approximations, that the
values of both q1 and qc are space dependent [11]. By
introducing the Thomas-Fermi unit r = x/xTF, where xTF =
(3c0N/2μω2)1/3 is the Thomas-Fermi radius, the parameters
q of interest are

q1(r) = 1

2
×

{
(1−r2

1 )2

1−r2 , |r| ∈ [0,r1]

1 − r2, |r| ∈ [r1,1]
(8)

and

qc(r) = (1 − r2)[1 −
√

1 − m̃(r)2], (9)

where r1 = (1 − m)1/3 and the density of local magnetization
is m̃(r) = (1 − r2

1 )/(1 − r2) for r ∈ [0,r1] and m̃(r) = 1 oth-
erwise. The inhomogeneity, arising as a result of the external
trapping potential, introduces new physics. The width of the
bistability region is not fixed but is space dependent. Moreover,
particular parts of the system undergo a phase transition at
different times, which additionally eliminates the bistability
region. The growth of the ρ0 phase not only depends on the
reminiscence of the state history but is influenced much by the
neighboring local phase due to tunneling of the local magneti-
zation [11]. As a consequence, the width of the hysteresis loop
is not strictly connected to the width of the bistability area.
In Fig. 4 we show an example of the numerical simulation
result for the evolution of density of the mF = 0 component
and N0/N demonstrating the emergence of hysteresis.

In Fig. 5(a) we show scaling of the hysteresis area S versus
ramp times τQ for the boxlike potential (ω = 0). The two
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FIG. 5. Scaling of the hysteresis loop area S(τQ) with τQ for
m = 0.1 (closed squares), m = 0.3 (open squares), m = 0.5 (closed
triangles), m = 0.7 (open circles), m = 0.9 (open triangles), and m =
0.95 (closed circles) for the (a) box and (c) harmonic trap potentials.
The dashed line shows S(τQ) ∝ τ

−2/3
Q , while the solid line shows the

value (1 − m)(qc − q1) for m = 0.95. (b) and (d) Scaling exponent
of the hysteresis area versus fractional magnetization m obtained
numerically by fitting a linear function to logarithms of numerical
data presented in (a) and (c), respectively. The total numbers of atoms
in (b) are N = 2×107 (squares), N = 6×105 (circles), and N = 104

(triangles). The total number of atoms in (d) is N = 2×106 and the
circles (squares) mark the scaling exponent of the hysteresis area
for τQ < 1 s (τQ > 1 s). In (b) and (d) open symbols correspond to
α = 1.5 and closed ones to α = 3. Notice that error bars are shown
for (b) N = 2×107 and (d) N = 2×106, but they are of the order of
the symbol size.

limiting cases m → 0 and m → 1 are clearly visible. Inter-
estingly, even for intermediate fractional magnetizations, the
hysteresis areaS is subject to the scaling law but with a different
exponent. We gather the resulting scaling exponents versus
fractional magnetization in Fig. 3(b). While the results for the
largest and moderate atom numbers follow our predictions,
the results for the smallest atom number (N = 104 marked
by triangles) are different. This is because the widths of
domain walls increase when N decreases and the energy of
the domain wall cannot be neglected in the derivation of q1.
In other words, the effect of the finite size of the system
increases the value of q1 up to qc (see Fig. 1). Consequently,
the width of the bistability region tends to 0 and the hysteresis
phenomenon becomes rate dependent even for large fractional

magnetizations, as demonstrated in Fig. 5(b). The resulting
scaling exponent in the low-density regime follows the KZ
theory [6] slightly modified by the phase ordering kinetics
process [18].

The case of a trapped system (ω �= 0) is qualitatively
different because the scaling of the hysteresis loop area
exhibits a double law for macroscopic magnetizations m → 1,
as illustrated in Fig. 5(c) for N = 2×106. The KZ theory
for the trapped case in the local-density approximation [11]
gives Ŝ ∝ τ

−2/3
Q , which is confirmed by numerical calculations

presented in Fig. 5(d) for small τQ only. The numerical
results deviate from the KZ theory predictions for macroscopic
magnetizations in the adiabatic quench times limit.

While performing the experiment with the largest number of
atoms (N = 2×107) appears to be unrealistic, in part because
of strong two- and three-body losses, we find a regime of
parameters in which the hysteresis and scaling laws may be
observed, as shown by green dots in Fig. 5(b). We propose
the use of a moderate number of atoms N = 6×105 and a
tight transverse confinement of ω⊥ = 2π×2800 Hz, which
allows one to avoid transverse excitations. The latter tight con-
finement requirement may be reduced to ω⊥ = 2π×100 Hz
in the nonpolynomial Gross-Pitaevskii regime [36], as long
as the ratio c2n/h̄ω⊥ is small, which ensures the absence of
transverse spin excitations. The spatial extent of the condensate
in the longitudinal direction must be large enough so that
sufficiently many domains are observed (L > 600 μm), which
appears to be within the reach of state-of-the-art experiments
[37]. With these parameters and typical linear densities of
1014 atoms/cm3, the lifetime of the condensate due to
one-, two-, and three-body losses may be estimated at around
20 s [38], which should allow for the observation of rate-
independent hysteresis predicted here.

In summary, an antiferromagnetic spinor condensate ex-
hibits hysteresis controlled by the magnetic field, which may be
practical in its further applications. We investigated hysteresis
during the phase transition, showing that it is rate independent
for a homogeneous system in the limit of large magnetizations
only. In all other cases, the hysteresis is rate dependent and the
area of its loop is subject to the universal scaling law, which
we explained based on the KZ theory.
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