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Modification of the Kibble-Żurek Mechanism by a Conservation Law
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2Instytut Fizyki Uniwersytetu Jagiellońskiego, ul. Reymonta 4, 30-059 Kraków, Poland

(Received 24 August 2012; published 24 January 2013)

We consider a phase transition from an antiferromagnetic to a phase separated ground state in a spin-1

Bose-Einstein condensate of ultracold atoms. We demonstrate the occurrence of two scaling laws, for the

number of spin domain seeds just after the phase transition, and for the number of spin domains in the

final, stable configuration. Only the first scaling can be explained by the standard Kibble-Żurek

mechanism. We explain the occurrence of two scaling laws by a model including postselection of spin

domains due to the conservation of condensate magnetization.
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The idea of a nonequilibrium phase transition has been
attracting a great deal of attention in many branches of
physics. The number of physical models where it has been
considered or observed is steadily growing, now including
not only the dynamics of the early Universe [1] and super-
fluid helium [2,3], but also superconductors [4], cold
atomic gases [5], and other systems [6]. The most notable
outcome of such a phase transition is the possible creation
of defects, such as monopoles, strings, vortices or solitons
[1,2,7] after crossing the critical point at a finite rate. The
Kibble-Żurek mechanism (KZM) is a theory that allows us
to predict the density of created defects from the knowl-

edge of the correlation length �̂ at the instant when the
system goes out of equilibrium [2]. The resulting scaling
displays universal behavior and is dependent only on the
critical exponents of the system � and z.

Quantum phase transition, in contrast to a classical
(thermodynamic) one, occurs when varying a physical
parameter leads to a change of the nature of the ground
state [8]. Recently, a few theoretical works demonstrated
that the KZM can be successfully applied to describe
quantum phase transitions in several models [9–13], see
Ref. [14] for reviews. Among these, Bose-Einstein con-
densates of ultracold atoms offer realistic models of highly
controllable and tunable systems [12,13]. In Ref. [13], the
miscibility-immiscibility phase transition leading to the
formation of stable, stationary domains was proposed as
an ideal candidate to observe KZM scaling in a quantum
phase transition.

In this Letter, we investigate the critical scaling of the
number of defects created during the transition to the phase
separated state of an antiferromagnetic spin-1 condensate
[15–17]. The introduction of a weak magnetic field can
lead in these systems to the transition from an antiferro-
magnetic ground state to a state where domains of atoms
with different spin projections separate [16]. In contrast to
the transition considered in Ref. [13], our scheme does not
require the use of microwave coupling field or Feshbach

resonances, which makes the experiment simpler and more
stable against inelastic losses.
By employing numerical simulations within the truncated

Wigner approximation, we make a quite unexpected obser-
vation. While the number of spin domain seeds just after the
phase transition closely follows the predictions of the KZM,
the number of spin domains in the final, stabilized state is
given by a scaling law with a different exponent. We explain
this double universality and predict the value of the second
exponent using a model of system dynamics including later
stages of evolution, no longer described by the standard
KZM. We show that when the nonlinear processes set in,
an effective postselection of spin domains takes place, after
which only a part of them can survive due to the conserva-
tion of the condensate magnetization.
We consider a dilute antiferromagnetic spin-1 BEC in a

homogeneous magnetic field pointing along the z axis. We
start with the Hamiltonian H ¼ H0 þHA, where the sym-
metric (spin independent) part is

H0 ¼
X

j¼�;0;þ

Z
dxc y

j

�
� @

2

2m
r2 þ c0

2
nþ VðxÞ

�
c j;

where the subscripts j ¼ �, 0, þ denote sublevels with
magnetic quantum numbers along the magnetic field axis

mf ¼ �1, 0, þ1, m is the atomic mass, n ¼ P
nj ¼P

c y
j c j is the total atom density, and VðxÞ is the external

potential. Here we restricted the model to one dimension,
with the other degrees of freedom confined by a strong
transverse potential with frequency !?. The spin-
dependent part can be written as

HA ¼
Z

dx

�X

j

Ejnj þ c2
2
:F2:

�
;

where Ej are the Zeeman energy levels and the spin

density is F ¼ ðc yFxc ; c yFyc ; c yFzc Þ where Fx;y;z

are the spin-1 matrices and c ¼ ðcþ; c 0; c�Þ. The
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spin-independent and spin-dependent interaction coeffi-
cients are given by c0 ¼ 2@!?ð2a2 þ a0Þ=3> 0 and c2 ¼
2@!?ða2 � a0Þ=3> 0, where aS is the s-wave scattering
length for colliding atoms with total spin S. The total
number of atoms N ¼ R

ndx and magnetization M ¼Rðnþ � n�Þdx are conserved. In reality, there are pro-

cesses that can lead to a change of both N and M, but
they are relatively weak in 23Na condensates, and we can
neglect them on the length scales considered below.

The linear part of the Zeeman effect induces a homoge-
neous rotation of the spin vector around the direction of the
magnetic field. Since the Hamiltonian is invariant with
respect to such spin rotations, we consider only the effects
of the quadratic Zeeman shift [16]. For a sufficiently weak
magnetic field we can approximate it by a positive energy
shift of the mf ¼ �1 sublevels �¼ðEþþE��2E0Þ=2�
B2A, where B is the magnetic field strength and A ¼ ðgI þ
gJÞ2�2

B=16EHFS, gI and gJ are the gyromagnetic ratios of

electron and nucleus,�B is the Bohr magneton, andEHFS is
the hyperfine energy splitting at zero magnetic field [16].

The ground state phase diagram, shown in Fig. 1(a),

contains three phases divided by two critical points at B1 ¼
B0M=

ffiffiffi
2

p
N and B2 ¼ B0=

ffiffiffi
2

p
, where B0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2n=A

p
and n

is the total density. The ground state can be
(i) antiferromagnetic (2C) with c ¼ ðcþ; 0; c�Þ for
B< B1, (ii) phase separated into two domains of the 2C
and c ¼ ð0; c 0; 0Þ-type (�0) for B 2 ðB1; B2Þ, or
(iii) phase separated into two domains of the �0 and c ¼
ðcþ; 0; 0Þ-type (�þ) for B> B2 [16]. Note that the phase
diagram is different in the special casesM ¼ 0,�N, which
we disregard in the current Letter.

For simplicity, we consider a system in the ring-shaped
quasi-1D geometry with periodic boundary conditions at
�L=2 and VðxÞ ¼ 0. The magnetic field is initially
switched off, and the atoms are prepared in the antiferro-
magnetic (2C) ground state with magnetization fixed to
M ¼ N=2 (without loss of generality). To investigate the
KZMwe increase B linearly during the time �Q to drive the

system through one or two phase transitions into a phase
separated state. Due to the finite quench time, the system
ends up in a state with multiple spin domains.

The Kibble-Żurek theory is a powerful tool that allows
us to predict the density of topological defects resulting
from a nonequilibrium phase transition without solving the
full dynamical equations. The concept relies on the fact

that the system does not follow the ground state exactly in
the vicinity of the critical point due to the divergence of the
relaxation time. The dynamics of the system cease to be
adiabatic at t ’ �t̂ (here we choose t ¼ 0 in the first
critical point), when the relaxation time becomes compa-
rable to the inverse quench rate

�̂ rel � j"̂= _̂"j; (1)

where "ðtÞ ¼ B� B1 � t=�Q is the distance of the system

from the critical point. At this moment, the fluctuations
approximately freeze, until the relaxation time becomes
short enough again. After crossing the critical point,
distant parts of the system choose to break the symmetry
in different ways, which leads to the appearance of mul-
tiple defects in the form of domain walls between domains
of 2C and �0 phases. The average number of domains

is related to the correlation length �̂ at the freeze-out

time t̂� �z�=ð1þz�Þ
Q [2,14]

Nd ¼ L=�̂� ���=ð1þz�Þ
Q ; (2)

where z and � are the critical exponents determined by the
scaling of the relaxation time �rel � j"j�z� and excitation
spectrum !� jkjz, with z ¼ 1 in the superfluid.
We test the above prediction in numerical simulations

within the truncated Wigner approximation, with N ¼ 106

and parameters close to that of previous experiments in
23Na [15]. Additionally, we consider a ‘‘cleaner’’ case with
transition through the first critical point only and N ¼
20� 106 in order to minimize merging of domains.
Typical results of a single run, which can be interpreted
as a single realization, are shown in Fig. 2. We can clearly
see the process of domain formation after the first phase
transition at t1. However, there is always some number of
domain seeds that disappear instead of evolving into full
domains, see Fig. 2(f).
The above dynamics have a striking effect on the

number of defects that are created in the system. In
Fig. 3 we show the average number of defects in the
function of the quench time �Q for the ‘‘cleaner’’ case

of a large number of atoms, as in Fig. 2(e). The critical
exponents, calculated from the Bogoliubov excitation

spectrum of the relevant gapped mode with �B ¼
c2n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�=c2n� 1Þ2 � ð1�M2=N2Þp
are identical as in the

case of a ferromagnetic [12] or two-component [13] con-
densate, z ¼ 1 and � ¼ 1=2. According to Eq. (2), we

could expect the scaling Nd � ��1=3
Q . However, the number

of domains in the final, stabilized state scales approxi-

mately as Nd � ��2=3
Q in a wide range of �Q, as depicted

with the dashed line. Nevertheless, if we count the number
of domain seeds [18] just after the first phase transition, we

do recover the Ns � ��1=3
Q dependence (inset).

We explain this puzzling appearance of two different
scaling exponents with a model that includes several

B

2C 2C + ρ0 ρ+ + ρ0

START

0 B1
B2

FIG. 1 (color online). Ground state phase diagram of an anti-
ferromagnetic condensate for magnetization M ¼ N=2. We in-
crease B linearly during the time �Q to drive the system through

one or two phase transitions into a phase separated state.
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phases of the domain formation process, see Fig. 4. The 2C
state becomes unstable shortly after crossing the first criti-
cal point at B ¼ B1. Initially, the system follows the stan-
dard Kibble-Żurek scenario, as the spin fluctuations start to

grow exponentially at the freeze-out time t̂� �1=3Q , see

Fig. 4(a). We now count the number of small spin domain

seeds [18], which scales in the same way as
the number of defects in the Kibble-Żurek theory,

Ns � ��1=3
Q . At this point the KZM is completed, but it

turns out to be just a prelude to the ultimate postselection
mechanism that sets the final density of domains Nd.
As the fluctuations grow, they leave the linearized

Bogoliubov regime and approach the instantaneous ground
state, which is the phase separated 2Cþ �0 state [16]. The
equilibrium between the 2C and �0 phases requires equal
energy density (pressure) in both phases. In the limit
c2 � c0, the atom density n is the same in both phases,

and one obtains the simple condition B
B0

¼ M2Cffiffi
2

p
N2C

, where

M2C ¼ M is the total magnetization of the 2C phase, and
N2C the number of atoms in this phase. Since the total
magnetization in the system M ¼ Rðnþ � n�Þdx is a con-
served quantity, the above impose the condition on the
fraction of total volume occupied by the �0 phase, x0 ¼
1� N2C=N,

x0 ¼ 1� Mffiffiffi
2

p
N

B0

B
¼ 1� B1

B
: (3)

Note that soon after the phase transition, when B � B1, it is
small and so is the volume occupied by the �0 phase.
The volume occupied by the fluctuations that choose to

approach the �0 phase is limited by the constraint of
Eq. (3). Therefore, as the fluctuations grow in magnitude
they are forced to concentrate into small ‘‘bubbles,’’ see
Fig. 4(b). In the process some of the bubbles must disap-
pear because the minimal width of a �0 domain is set by
several spin healing lengths �s ¼ ðB0=BÞ2@=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mc2n

p
, see
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FIG. 3 (color online). Averaged number of spin domains after
the quench as a function of the quench time for N ¼ 20� 106.
The scale is logarithmic on both axes and Nd is decreased by two
to account for the ground state phase separation into two
domains. The points are results of truncated Wigner simulations
averaged over 100 runs. The dashed line is the fit to the power
law with scaling exponent nd ¼ �0:67� 0:01. The inset shows
the number of spin domain seeds counted just after the phase
transition. The scaling exponent here is found to be ns ¼
�0:32� 0:01.

FIG. 2 (color online). Spin domain formation dynamics in a ring-shaped 1D geometry with ring length L ¼ 200 �m and !? ¼
2�� 1000 Hz. The top row shows densities (lighter is higher) of cþ (a), c 0 (b), and c� (c) for N ¼ 106 atoms, quench time
�Q ¼ 1 s, and final magnetic field strength B=B0 ¼ 1. The vertical lines at t1 and t2 correspond to the two phase transitions from

Fig. 1(a). In (d) and (e), c 0 densities for faster quenches with �Q ¼ 20 ms are shown. The number of atoms in (e) is increased to

N ¼ 20� 106 and final magnetic field is ðB=B0Þ2 ¼ 0:49 to show a cleaner process with a single phase transition and without
interaction of fully formed domains. Frame (f) shows the function ZðtÞ, defined by Ref. [18], which allows us to determine the number
of domain seeds Ns and the final number of spin domains Nd. The light line corresponds to (d), while the dark line corresponds to (e).

PRL 110, 045303 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

25 JANUARY 2013

045303-3



Fig. 4(c). This healing length is finite near the phase
transition and we have confirmed numerically that the
minimal bubble size is independent of �Q.

For slow quenches t̂� �1=3Q is the longest relevant time

scale near the phase transition and, therefore, for the sake
of the scaling argument it is safe to say that the bubbles

form near t̂. This time corresponds to B̂, such that B̂�
B1 � t̂=�Q � ��2=3

Q , which is close to the critical point.

Consequently, the fraction x̂0 ¼ 1� B1=B̂ of the volume

occupied by the bubbles at B̂ is small and scales as x̂0 �
��2=3
Q . The number of �0 bubbles is thus Nd � x̂0=�s �

��2=3
Q . This is also the final postselected density of domain

walls compatible with the conserved magnetization.
Once the domains are stabilized they gradually grow in

size with x0 ¼ 1� B1=B as the magnetic field is further
increased, see Fig. 4(d). In this last long stage of the
evolution the domains are stable except for possible phase
ordering kinetics [19]. This is a slow process where fluc-
tuations eventually merge some domains slowly reducing
the domain number Nd. The fluctuations are stronger for a
lower number of atoms. In Fig. 5, we plot the number of
created defects for a lower (realistic) number of atoms

N ¼ 106 [15]. The interactions are weaker in this case,
which results in a longer spin healing length �s, which sets
the smallest possible domain size and is responsible for the
saturation of the number of domains for small �Q.
Nevertheless, we can still clearly see the two different
scaling laws for Ns and Nd in a wide range of quench
times �Q. Here, the scaling exponents appear to be slightly
smaller than in the previous, ‘‘cleaner’’ case. Since the final
state with multiple domains is not a true ground state, but a
metastable state [15], we attribute this difference to the
phase ordering kinetics, which effectively decrease the
scaling exponents [19]. However, the slow phase ordering
taking place on a time scale much longer than t̂ should be
distinguished from the postselection that happens near the
same t̂ as the KZM.
In conclusion, we investigated a nonequilibrium phase

transition in a relatively simple and stable experiment in
an antiferromagnetic Bose-Einstein condensate. We
demonstrated the occurrence of two scaling laws
describing the number of spin domain seeds and the
final number of spin domains. The occurrence of two
scaling laws was explained in a model of system dy-
namics including an effective postselection of spin
domains due to the conservation of magnetization. The
postselection transforming the scaling law is a general
mechanism that should be effective whenever the stan-
dard Kibble-Żurek mechanism is not compatible with an
additional conservation law.
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FIG. 5 (color online). Similar as in Fig. 3, but for a realistic
case of N ¼ 106. Here, the horizontal dashed line shows the
saturation of the number of domains due to the finite spin healing
length. The scaling exponents in this case are nd ¼ �0:71�
0:03 and ns ¼ �0:35� 0:01.
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FIG. 4 (color online). Profiles of the density jc 0j2 for �Q ¼
100 ms, showing four consecutive phases of the domain forma-
tion process after crossing the first critical point. (a) At
t ¼ 53:5 ms the small spin fluctuations begin to grow exponen-
tially, forming spin domain seeds. (b) At t ¼ 56 ms the seeds
transform into narrow (several �s) bubbles of c 0. (c) At
t ¼ 65 ms, as the bubbles mature, the postselection eliminates
some of them to keep the magnetization conserved. (d) At
t ¼ 100 ms, the domains have gradually increased in size and
occupy half of the available area at B ¼ 2B1. The dashed
horizontal line corresponds to � used to calculate ZðtÞ [18].
The formation of the stable �0 bubbles in the stages (a),(b), and
(c) takes place in the narrow time interval t ¼ 53:5; . . . ; 65
around t̂. The magnetic field B̂ within this relatively short time

span satisfies B̂� B1 � t̂=�Q � ��2=3
Q .
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