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Tight-binding model for exciton-polariton condensates in external potentials
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We propose a mean-field model to describe exciton-polariton condensates in deep periodic external potentials.
We derive a set of coupled discrete equations for both condensed and uncondensed components, with interaction
and tunneling coefficients obtained within the tight-binding approximation. We use the model to explain the
intriguing phenomenon of increasing density modulation in a one-dimensional valley with disorder, reported by
F. Manni et al. [Phys. Rev. Lett. 106, 176401 (2011)].
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I. INTRODUCTION

The experimental observation of Bose-Einstein conden-
sates (BECs) of ultracold atoms [1] was a major breakthrough
in physics, opening a new chapter in the studies of quan-
tum systems. Recently, degenerate bosonic states have been
achieved in semiconductor microcavities, in which photons
are confined and strongly coupled to excitons [2]. The dressed
state of the two, called the exciton-polariton, is a remarkable
quasiparticle, characterized by an effective mass orders of
magnitude smaller than the mass of the electron [3]. This
property made condensation at room temperature possible [4].
At the same time, the coupling to photons allowed for direct
observation of quantum phenomena such as superfluidity and
quantum vortices [5].

Although the first exciton-polariton condensates were
strongly trapped by the disorder present in the samples,
the semiconductor technology makes it possible to fabri-
cate sophisticated structures, such as micropillars, dots, or
nanowires [6], which can provide a well-defined artificial
potential for polaritons. Alternatively, the potential can be
created through the deformation of the sample [7,8]. One of
the simplest and yet nontrivial types of potentials is the
periodic one, which mimics the structure of a crystal. While
polariton condensation in deep periodic potentials has already
been observed [8], appropriate theoretical models are still
not well developed. Although the mean-field description with
the generalized Gross-Pitaevskii equation (GPE) proved to
be adequate to explain many experiments, it is instructive to
consider approximate models, which may give better insight
into the underlying physics. One of the successful theoretical
models used, among others, in the context of nonlinear
optics and BECs of ultracold atoms [9] is the tight-binding
approximation, which leads to the discrete version of the GPE
(or the discrete nonlinear Schrödinger equation, DNLSE). This
equation can be thought of as a bridge between the two-mode
Josephson model [10] and the continuous GPE. Importantly,
it predicts many qualitatively distinct effects, such as discrete
solitons and vortices [11], dispersion management [12], and
soliton steering [13].

In this paper, we derive self-consistently a set of discrete
equations to model the evolution of nonresonantly pumped
condensate in a deep periodic potential. The model is based
on the mean-field GPE description taking into account the
densities of active and inactive reservoirs. We find that to

model this dissipative system accurately, it is necessary to
take into account several nontrivial terms that are absent in
the conservative discrete GPE.

Furthermore, we use the properties of the model to explain
the intriguing phenomenon, reported in [14]. The authors of
that paper were investigating the density profile of a condensate
placed in a one-dimensional potential valley with disorder.
They found that with the increase of the pumping intensity, the
spatial modulation of the density increased. This contradicts
the picture where the nonlinear interactions introduce an
effective screening of the disorder potential [8,15]. We find
that the increase of the modulation could be related to the
buildup of the π -phase difference between adjacent cells of
the potential [16], which can be explained qualitatively within
the tight-binding approximation.

II. MODEL

We start with a model of a nonresonantly pumped polariton
condensate in a one-dimensional (1D) nanowire, consisting of
a set of coupled equations for the complex polariton order
parameter ψ(r,t) and the densities of active and inactive
reservoirs nA(r,t), nI(r,t) [17] (which include free carriers,
excitons, and uncondensed polaritons),

i
∂ψ

∂t
=

{
−h̄∇2

2m∗ + gC|ψ |2 + V (r)

+ gRnA + gRnI − i

2
(γc − RscnA)

}
ψ, (1)

∂nA

dt
= −(γA + Rsc|ψ |2)nA + 1

τR
nI, (2)

∂nI

dt
= P (r,t) − γInI − 1

τR
nI, (3)

where m∗ is the effective mass of lower polaritons, V (r) is
the potential, Rsc is the rate of stimulated scattering, γc, γA,
and γI are the polariton and reservoir loss rates (for active and
inactive reservoirs, respectively), gC and gR are the respective
interaction coefficients, and P (r,t) is the exciton creation rate
related to the pumping profile.

The one-dimensional version of Eqs. (1)–(3) can be derived
by assuming a Gaussian transverse profile for |ψ |2, nA, and nI

in the y direction, i.e., |ψ2D(x,y,t)|2 = |ψ(x,t)|2φ(y), where
φ(y) = exp(−y2/d2)/(πd2)1/4. In the one-dimensional case
the nonlinear coefficients Rsc, gC, and gR are rescaled as
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(Rsc,gi) = (R2D
sc ,g2D

i )/
√

2πd2, where d is the width of the
transverse profile, comparable to the nanowire thickness.

We note that while the discretization method can be applied
to the two-dimensional case, the effects discussed in Sec. III
are related to the one-dimensional geometry of the system.
Therefore, in the following we restrict our considerations to
the one-dimensional case.

A. Derivation of the discrete equations

In the following, we assume that the potential V (r) is
deep enough that the polaritons are mostly localized in
its well-defined minima but the tunneling between adjacent
minima is not negligible. For simplicity, we consider the
one-dimensional geometry with a periodic potential, but
the derivation can be easily extended to the general case.
According to our assumptions, the polariton wave function
and reservoir densities can be written as

ψ(x,t) =
∑

j

ϕ(x − jL)cj (t),

nA(x,t) =
∑

j

ηA(x − jL)nj

A(t), (4)

nI(x,t) =
∑

j

ηI (x − jL)nj

I (t).

The function ϕ(x) is analogous to the atomic orbital function
in the tight-binding approximation, and L is the spatial period
of the potential V (x). We note that the above assumption
effectively restricts our considerations to the lowest-energy
band of the potential [9]. Although the choice of ϕ(x), ηA(x),
and ηI (x) does not change the form of the resulting discrete
equations, it can influence the accuracy of the model through
the value of the coefficients present in the discrete equations.
We have found that the following substitutions provide a good
agreement with the continuous model:

ϕ (x) = N1 sech (ax) ,

ηA (x) =
{

N2[1 − b sech2(ax)], − 1
2L < x < 1

2L,

0, otherwise,
(5)

ηI (x) =
{

1
L
, − 1

2L < x < 1
2L,

0, otherwise,

where parameters were chosen as a = 0.9 + 0.1i and b = 0.1
and N1 and N2 are normalization constants introduced to
satisfy the conditions∫ +∞

−∞
|ϕ|2 dx =

∫ +∞

−∞
|ηA| dx = 1. (6)

After insertion of (4) and (5) into (3) and (2) and performing
integration over the interval Lj = [−L/2 + jL,L/2 + jL],
one gets two sets of equations enumerated by j :

dn
j

I

dt
= Pj − γIn

j

I − 1

τR
n

j

I , (7)

dn
j

A

dt
= −(γA + |cj |2Rscα0)nj

A + 1

τR
n

j

I , (8)

where αi = ∫
ηA|ϕi |2 dx, ϕj (x) = ϕ(x − jL), and Pj =∫

Lj
P dx. To obtain the equation for polaritons, Eqs. (4) are

inserted into (1), and both sides of the equation are multiplied
by φ∗

j and integrated over space. All expressions on the right
side of the equation containing products of ϕmϕ∗

j such that
|j − m| > 1 are omitted, as well as similar terms involving
ηA or ηI and nonlocal polariton-polariton interaction terms.
We checked that in numerical simulations, all these terms give
a negligible contribution. Finally, we obtain the equation for
polaritons in the form

i
dcj

dt
= Acj + B(cj+1 + cj−1) + Ccj |cj |2

+ n
j

A

(
gR + i

Rsc

2

)
(α1cj−1 + α0cj + α1cj+1)

+ n
j

I gR(β1cj−1 + β0cj + β1cj+1), (9)

where βi = ∫
ηI |ϕi |2 dx and

A =
∫ (

h̄

2m∗ |∇ϕ|2 + V |ϕ|2
)

dx − i

2
γc,

B =
∫ [

h̄

2m∗ ∇ϕj−1∇ϕ∗
j +

(
V + i

2
γc

)
ϕ∗

j ϕj−1

]
dx,

C =
∫

gC|ϕ|4 dx.

The first three terms in Eq. (9) have a similar form as in the
standard discrete nonlinear Schrödinger equation. However, it
is important to note that while the coefficient C is real and
positive, both A and B are complex in general. The last two
terms in Eq. (9) represent the influence of reservoirs. We found
that all of the terms in the above equation are important for
a good quantitative agreement between the continuous and
discrete models. Nevertheless, qualitative agreement could
also be obtained when neglecting some of the terms, such as
the secondary terms governing interaction with the reservoir,
namely, n

j

Aα1cj±1 and n
j

I β1cj±1.
The advantage of using discrete models such as (7)–(9)

instead of continuous models is clear from the point of view
of the numerical efficiency. In the latter case, it is necessary to
use many points of a numerical mesh for each spatial period of
V (x) to obtain reliable results. Moreover, in many situations
the discretized models allow us to understand the underlying
physical processes or obtain analytical solutions in a more
straightforward way.

B. Stationary solutions

When looking for stationary states, the set of discrete
equations (7), (8), and (9) can be reduced to one. By setting
dn

j

A/dt = dn
j

I /dt = 0 and cj (x,t) = c
(0)
j (x)e−iμt one gets

n
j

I = Pj

τ−1
R + γI

,

n
j

A = Pj

τRγI + 1

1

α0Rsc|cj |2 + γA
,

cjμ = Acj + B(cj+1 + cj−1) + C|cj |2cj (10)

+ E

|cj |2 + F
Pj (α0cj + α1cj−1 + α1cj+1)

+DPj (β0cj + β1cj−1 + β1cj+1),
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where

D = gR

τ−1
R + γI

,

E = α−1
0

gR

Rsc
+ i

2

τRγI + 1
,

F = γA

α0Rsc
.

While at low pumping the only stationary solution corresponds
to zero polariton density, after crossing a certain critical value
of pumping the zero solution becomes unstable and another
stable solution appears. This solution corresponds to a finite
mean-field polariton density with a well-defined phase, which
indicates symmetry breaking and the formation of a polariton
condensate.

To determine the threshold pumping intensity Pth it is
necessary, in principle, to know the condensate spatial profile.
In the simplest approximation we consider the homogeneous
P (x) = Pth and neglect the kinetic term. For such conditions it
is straightforward to estimate Pth for both models. It turns
out that this value works quite well also for inhomogeneous
pumping profiles. The precise values of threshold pumping
intensities for the parameters considered in the next section
are described by the formula below, where the factor 1.1
comes from numerical adjustments in the case of the Gaussian
pumping profile,

P � Pth = 1.1γcγA
τRγI + 1

Rsc
,

(11)

Pj � P d
th = γcγA

τRγI + 1

α0Rsc
.

The above suggests the scaling P ≈ α0Pj when comparing
results of the two models in the deeply modulated case. This
is a natural choice since it takes into account both the fact that
Pj is P integrated over space and the fact that the creation of
polaritons is mediated by the reservoir.

III. NUMERICAL RESULTS

In [14], peculiar density patterns were observed during
condensation of polaritons in a quasi-one-dimensional valley
potential. Due to the disorder in the sample, the density profile
of the polariton condensate was modulated in the direction of
the valley. Interestingly, above the threshold for condensation,
the density modulation increased with the increase in pumping.
At first sight, this appears to be a counterintuitive result since
the effect of strong polariton-polariton interactions should
lead to the screening of the built-in potential [8,15]. We
argue that the density profile is highly modulated due the
buildup of a phase difference between neighboring potential
wells (see Sec. IV) and the lack of modulation for small
pumping intensity (P ∼ Pth) is an effect of emission from
the noncondensed fraction of polaritons.

Although the experimental potential in [14] was due to
disorder in the CdTe microcavity, we show that qualitatively
similar results can be obtained in the case of a periodic
potential. We assume that the periodic potential along the
nanowire is of the form V (x) = −V0 cos(2πx/L), where the
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FIG. 1. (Color online) (a) Stationary polariton density |ψ |2 as
predicted by the discrete model (dashed line) and the continuous
model (solid line). The open circles show the amplitude of the discrete
function |cj |2. (b) Phase difference between adjacent cells for discrete
(triangles) and continuous (circles) models. For the continuous model
the phase was evaluated in the cell center. Here P = 1.35Pth. All cal-
culations were performed for m∗ = 10−4 me, gC = 8.08 × 10−4 μm
ps−1, gR = 6.73 × 10−5 μm ps−1, Rsc = 6.73 × 10−2 μm ps−1, τR =
6.58 ps, γA = 15.2 ps−1, γI = 1.97 × 10−3 ps−1, γc = 0.99 ps−1.

spatial period is L = 3.7 μm an V0 = 0.65 ps−1 (the potential
amplitude was chosen to be of the same order as the quadratic
term |ψ |2gC). The system is pumped with a Gaussian intensity

profile, P (x) = Pe− x2

2W , where the profile half width W = 5
μm is similar to the experimental value.

The results of simulations within the continuous and
discrete models are shown in Figs. 1 and 2 for two different
values of pumping P . The top panels show profiles of polariton
condensate density in the stationary state, after a sufficiently
long time for the evolution necessary for the stabilization
of profiles. In the bottom panels we plot the difference in
the phase of the condensate wave function between adjacent
cells. Certainly, at these values of pumping, there is no effect
of potential screening induced by the interactions. To the
contrary, the density modulation remains high. This effect
is explained by the phase profile of the condensate (bottom
panels). For pumping intensity up to 1.4Pth the phase between
adjacent cells is approximately equal to π . Indeed, such
configuration must lead to strong modulations of the density
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FIG. 2. (Color online) Same as in Fig. 1, but for P = 1.1Pth.

profile since the wave function ψ(x) passes close to zero when
traversing from one cell to another.

The results of the discrete model are in very good agreement
with the continuous one for pumping intensity from P <

1.4Pth. We found that in the range 1.4Pth < P < 1.5Pth one
cannot find a stationary solution, but instead there is a solution
that develops some oscillations in time. The appearance of
these oscillations results in a poorer agreement between the
continuous and discrete models, although the two continue to
agree qualitatively. At higher pumping 1.5Pth < P < 2.4Pth

we observe a stationary state with the two side peaks being
almost the same height as the central one (while the density
is still strongly modulated) and a phase difference between
the peaks roughly equal to 0.4π . While from experimental
data one cannot judge if there are any oscillatory states, our
simulations reproduce the general behavior of changes in the
average density distribution.

For a more quantitative comparison with the experiment,
we calculated the difference of the density profile with the
reference profile. The formula used for the calculation is
defined as [14]

�η =
√

1

X

∫
X

(
ρ̄(x) − ρ̄0(x)

ρ̄0(x)

)2

, (12)

where X is the interval from −8 to 8 μm, ρ(x) is the
normalized sum of densities of the polariton condensate and
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FIG. 3. (Color online) The contrast of the polariton density profile
ψ calculated from (12). The red line with points is the experimental
result of [14], and the solid blue line is the result of the continuous
model. The dotted green line corresponds to the discrete model, where
we replaced the integral by a sum in (12).

the noncondensed fraction,

ρ(x) = |ψ(x)|2 + ρthermal(x)√∫
X

|ψ |2 + ρthermal(x)dx

, (13)

and ρ̄(x) is the time average of ρ(x). The reference profile
ρ̄0(x) is taken as the normalized profile ρ̄(x) at P = Pth.
We assume that the density of the noncondensed fraction of
polaritons is proportional to the density of the active reservoir
ρthermal = cnA. The value of c was chosen in such a way that the
density of the thermal component is comparable to the density
of condensed polaritons close to the threshold P ≈ Pth.

The addition of ρthermal may seem artificial; however, one
has to remember that the GPE cannot be used to model the
behavior of polaritons before condensation, so to include the
thermal fraction in the model one has to extend it. The addition
of cnA is negligible for any solution obtained for P > Pth, as
it only affects the density profile for P � Pth, making the
modulation less visible.

A similar formula was used in [14] to measure the “contrast”
of the density profile. In Fig. 3 we show �η as a function of
P0, as calculated within the continuous and discrete models,
and compare it with the results of [14]. However, one must be
aware of the fact that the definition of contrast is not flawless
and cannot be used as the only indication of agreement between
theory and experiment.

Close inspection of density profiles in [14] reveals that the
potential could be approximated to some extent by the periodic
one. To support the validity of our calculation based on the
periodic potential, we include a comparison with the results
obtained in the case of a disorder potential (Fig. 4) for the
same model. The disorder potential was obtained by taking a
convolution of a random function and the Gaussian function
to smooth out the disorder and set its spatial correlation
length to be of the same order as in the experiment (several
microns). Note that this procedure is equivalent to filtering out
short-wavelength modes in V (x). The density profiles for the
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FIG. 4. (Color online) Disordered potential used for calculating
polariton densities in Fig. 5.

disorder potential are displayed in Fig. 5. We can see that the
same qualitative features are present in this case.

IV. BUILDUP OF THE π -PHASE DIFFERENCE

The effect of the spontaneous buildup of the approximate
π -phase difference between adjacent cells is related to the
appearance of the π state in recent experiments in shallow
periodic potentials [16]. This effect was attributed to the
creation of a metastable state in an effective “trap” for
polaritons in the second energy band. The polaritons were able
to overcome the effective bottleneck and relax to the ground
state only at sufficiently high pumping intensity. Here we show
that in the case of a deep potential, even in the absence of
energy relaxation within the condensate, this effect may also
be induced by the repulsive interactions between polaritons.

Within the discrete model, the effect can be understood
by considering the transformation which relates solutions of
discrete equations with attractive and repulsive interactions
[18]. In the case of moderate pumping above threshold, when
neglecting higher-order terms in Eq. (10), there is a one-to-one
correspondence between solutions with positive and negative
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FIG. 5. (Color online) Normalized polariton density in the disor-
dered potential at different pumping intensities.

gC due to the transformation:

c′
j = (−1)j cj ,

C ′ = −C, (14)

μ′ = −μ + 2[A + Pj (α0E/F + β0D)].

Let us consider a large system with Pj (x) slowly varying
in space. In the case of attractive interactions, in both the
presence and absence of the periodic potential, the system
would have the tendency to decrease the variations of the phase
in order to increase the magnitude of the negative interaction
energy and decrease the kinetic energy contribution. The small
variations of phase could only be induced by nonconservative
terms, which correspond to the flux of the polariton density.
By using the transformation (14) we can then conclude that in
the case of repulsive interactions (and deep periodic potential),
the preferred state will be the one where adjacent cells have
approximately a π -phase difference. In the opposite case, that
is, when only a single potential well is pumped (Pj = 0 for
j 	= 0), we can again use the discrete model to obtain some
general conclusions from an analytical solution. For all points
except j = 0, Eq. (10) reads

cjμ = Acj + B(cj+1 + cj−1) + C|cj |2cj , j 	= 0. (15)

Away from the pumping spot, where the nonlinear term
C|cj |2cj can be omitted, we have the solution

cj = c0 exp (−κ|j |) , (16)

where Re(κ) > 0. Further on, we assume that Eq. (15) is valid
for all points except j = 0. The relation between μ and κ is

cosh(κ) = μ − A

2B
. (17)

For convenience let us introduce variables r and φ such
that reiφ = e−κ . It is possible to obtain an equation that
connects the phase difference between adjacent cells φ and
the amplitude ratio denoted by r < 1. After multiplying by
2B and taking the imaginary part of both sides of Eq. (17),

0.9π

π

1.1π

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

Δ
φ

P/Pth

FIG. 6. (Color online) Phase difference between adjacent cells vs
the pumping intensity p, from Eq. (16).
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one gets

r (φ) =
− ImA

2|B| ±
√(

ImA
2|B|

)2 + cos(φB)2 − cos(φ)2

sin(φ + φB)
, (18)

where φB = arg(B). It is easy to notice that r is real and
positive for φ ∈ [φB,π + φB]. Further calculations show that
only one solution (with the minus sign) can be realized, as the
positive solution results in r > 1 for every φ.

To determine r and φ as a function of Pj we resort
to numerical solutions. Figure 6 shows the result for the
parameters used in Figs. 1 and 2. Clearly, the phase difference
φ is close to π for all realizable values of pumping.

This conclusion can be obtained in a straightforward way
in the case of strong localization (strong pumping), where the
nonlinear term dominates in the central spot and the amplitude
decays quickly when moving away from the pumping spot.
In this case, Eq. (17) becomes exp(κ) = μ/B. If the losses
γc are modest, Re(B) must be approximately a negative real
number for correspondence with Eq. (1). Hence, we again
obtain φ = arg(μ/B) ≈ π .

V. CONCLUSIONS

In conclusion, we introduced a self-consistent mean-field
model to describe the exciton-polariton condensates in deep
periodic external potentials in the case of nonresonant pump-
ing. We derived a set of coupled discrete equations for both
condensed and uncondensed components, with interaction
and tunneling coefficients obtained within the tight-binding
approximation. Furthermore, by analyzing stationary solutions
of the model, we explained the intriguing phenomenon of
increasing density modulation in a one-dimensional valley
with disorder observed in a CdTe microcavity. We pointed out
that it is related to the spontaneous buildup of the π -phase
difference between adjacent potential wells in the case of
repulsive polariton interaction.

ACKNOWLEDGMENTS
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A. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg,
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