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Bose–Einstein condensation and the closely related phenomena 
of superfluidity and superconductivity are striking manifesta-
tions of macroscale quantum physics. The quest for practical 

applications has stimulated a search for systems in which super-
conductivity or superfluidity could be exploited in realistic devices.  
In the past decade, the development of new materials and hetero-
structures has led to the emergence of quantum fluids of light1,2. 
They are typically realized in semiconductor microcavities, which 
allow for the existence of peculiar states called exciton polaritons 
(hereafter, polaritons)3. In these systems, light–matter interaction 
is larger than dissipation and the elementary excitations cannot be 
described by the bare exciton and photon modes. Instead, polari-
tons are the eigenstates, resulting from the coherent coupling of 
excitons and photons. Polaritons have extremely low effective mass 
(10−5m0, where m0 is the electron mass) and bosonic statistics, pro-
viding a suitable system in which to observe condensation in a sin-
gle state even at room temperature and in a solid-state environment. 
Moreover, their peculiar light–matter composition allows the inves-
tigation of collective density and phase excitations with relatively 
simple optical setups, with the advantage of the possibility of directly 
measuring the velocity field from the phase gradient4. Recently, 
superfluidity has been achieved at room temperature in organic 
semiconductor structures5, and analogues of short Josephson junc-
tions have been demonstrated in inorganic microcavities6,7.

More generally, the behaviour of a complex order parameter in 
proximity to a junction and the associated formation of phase slips 
and vortices have been central to research not only in supercon-
ducting systems, but also in superfluid helium and Bose–Einstein 
condensates of ultracold atoms8–10. In contrast to short (point-like) 
Josephson junctions, so-called long Josephson junctions (LJJs) are 
characterized by an interface that extends beyond the Josephson 
penetration depth in at least one dimension11. One of the most inter-
esting phenomena that occur in LJJs are Josephson vortices, which, 
in contrast to Abrikosov or Pearl vortices, are localized within the 
barrier and characterized by opposite transverse supercurrents in 
the two superconductors12–14. With respect to the charged case, a 

bosonic Josephson vortex is characterized by the absence of a mag-
netic flux and its description necessarily involves both the phase and 
the amplitude of the wavefunction15,16.

Here, we observe an LJJ in a system composed of two regions of 
polariton condensate with macroscale quantum phases controlled 
by additional external lasers. The junction interface extends over 
several tens of micrometres and forms in response to a twist of the 
phase of the condensate. The twist results in the creation of a dark 
soliton-like coherent structure, which plays the role of an insulating 
barrier with a reduced order parameter. By increasing the particle 
density, we drive the system to an instability that results in the cre-
ation of stable Josephson vortices. Finally, we show that increasing 
the pumping further results in the destruction of the solitonic bar-
rier and the appearance of a single extended condensate, which is 
the ground state of the system, indicating the recovery of the super-
fluid behaviour.

Results
The sample used in our experiments is a high-quality-factor 
(Q > 105) semiconductor microcavity with polariton lifetimes of 
around 100 ps (see Methods). Similar microcavities have recently 
been shown to exhibit ballistic propagation in the cavity plane for 
hundreds of micrometres and polariton condensation outside the 
laser spot when confined by ad hoc trapping potentials17–22. Here, 
a two-dimensional polariton condensate, extending across a region 
much larger than the healing length, is excited by a continuous-
wave laser that is tuned well above the polariton resonances and 
uses a two-step relaxation mechanism, as done in ref. 23. In this con-
figuration, the dephasing induced by the high exciton density in the 
reservoir is limited by the ability to spatially separate the condensate 
from the excitation spot24. The exciton reservoir is first populated 
through the relaxation of carriers generated by the non-resonant 
laser, increasing the energy of the polariton dispersion (energy 
blueshift) in the region under the excitation spot by around 4 meV 
(ref. 23). Polaritons at high energy are accelerated radially out-
wards from the excitation spot and, through the joint effect of high  
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velocity propagation and phonon-assisted relaxation, they populate 
the bottom state of the polariton band even at distances of hundreds 
of micrometres from the blueshifted region23,25. Eventually, stimu-
lated scattering leads to the formation of an extended polariton 
condensate all around the injection spot in the ground state of the 
dispersion (k ≈ 0, where k is the component of the polariton wave-
vector parallel to the plane of the cavity)23. In the sketch in Fig. 1a, 
a portion of the polariton condensate is highlighted by a dashed 
white rectangle and represents the region under consideration in 
the subsequent measurements. The phase ϕ(r) of the polariton con-
densate is obtained in two dimensions from the interference fringes 
between the signal emitted by the condensate and a reference with a 
spatially uniform phase (see Methods).

We next show that the phase of the polariton condensate can 
be locked to that of an external laser, acting as a seed in the sym-
metry-breaking process, tuned to resonance with the energy of the 
condensate26,27. This is shown in Fig. 1b, where the phase of the con-
densate is locked to that of an external laser beam, resonant with the 
condensate frequency and focused in the bottom-left corner of the 
image (see Methods and Supplementary Information). Note that the 
phase locking of the condensate is non-local: whereas the external 
laser is focused into a small spot (white circle in Fig. 1b) of radius 
r = 5 μm and is kept at low enough power to induce only a negligible 
contribution to the condensate density, the phase locking extends 

over the whole condensate, creating a domain of uniform phase 
across the entire region of interest (coherence length of 50–100 μm; 
see Methods).

As shown in the sketch in Fig. 1a and in the experimental inter-
ferogram in Fig. 1c, we impose a twisted boundary condition on 
the condensate by focusing a second, resonant external beam with 
the same wavelength but a different phase at a distance of about 
50 μm (top-right corner in the interferogram shown in Fig.  1c). 
Note that the healing length is one order of magnitude smaller, 
ξ ≈ 5 μm (ref. 24). In contrast to the phase imprinting schemes first 
used with atomic condensates, in our configuration the phase is 
imposed at only the top-right and bottom-left corners in Fig. 1c; 
it is unconstrained in the region between the two phase-locking 
points28,29. When two concurrent beams with a phase difference 
act on the condensate, two phase domains are expected as a result 
of the competing phases of the locking lasers30. This arrangement 
is depicted in Fig.  1a, with the red and blue rectangles marking 
the two regions of uniform phase. We next measured the actual 
response of the condensate to the twisted boundary condition for 
different polariton densities.

The polariton density can be increased by increasing the power 
of the non-resonant pump, without changing the intensity of the 
two phase-locking beams. We note that our photoluminescence 
measurements detect the steady state of the system, averaged tem-
porally owing to the time-integrated detection (a few milliseconds). 
Therefore, although the microscale evolution of the system may 
change in different realizations depending on possible slight varia-
tions in the initial conditions, the more stable steady-state solution 
is naturally captured in the experiments. When the polariton den-
sity is below the condensation threshold, dth ≈ 0.5 polaritons μm−2, a 
macroscale phase is not defined in the region between the two reso-
nant beams and the phase fluctuates from point to point (Fig. 2a). 
In Fig. 2e, the unwrapped phase profiles along the vertical direction 
in the black rectangle in Fig. 2a show the random phase oscillations 
in space. In Fig. 2b–d, the polariton density is brought above the 
condensation threshold, allowing the double locking of the conden-
sate. For densities d ≈ 1.5dth, the hierarchy of excitations induced 
by the phase imprinting (phase difference of δϕ ≈ π) results in two 
regions of the condensate being neatly separated by a wavy junction 
for about 30 μm, as shown in Fig. 2b. The phase profile across the 
junction (Fig. 2f) shows a steep phase jump of Δϕ ≈ π, with a cor-
responding depletion in the density profile (green line in Fig. 2i), 
demonstrating the spontaneous appearance of a dark soliton-like 
structure that acts as an insulating barrier.

In analogy to what has been observed in atomic Bose–Einstein 
condensates28, optical nonlinear waves31 and one-dimensional 
polaritonic wires32, the formation of a soliton is an expected con-
sequence of the imposed phase boundary condition30. However, 
even if the topological nature of the junction could partially explain 
the relative robustness of this configuration against noise, in two-
dimensional systems, transversal modulation instabilities (snake 
instabilities) transform dark solitons into vortex–antivortex pairs, 
vortex rings, vortex dipoles or even more complex dynamics33–36. 
The spontaneous formation and stability of such a topological exci-
tation are notable consequences of this phase-imprinting scheme in 
driven dissipative systems.

For increasing densities (d ≈ 2.0dth), the solitonic junction is still 
present but the phase difference is inverted at some points along 
the nodal line (Fig. 2c). The presence of vortices and regions with 
inverted currents is captured by the opposite π shift of the phase 
in Fig. 2g. Eventually, at the highest pumping powers used in our 
experiments, the junction completely disappears, leaving a shallow 
phase gradient across the condensate (Fig.  2d,h). At these densi-
ties (d ≈ 2.5dth), the phase stiffness is enough to avoid phase jumps 
and density depletions, recovering the superfluid behaviour in the 
region under consideration30.
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Fig. 1 | Double phase locking of the condensate via external lasers.  
a, Sketch of the polariton condensate (yellow), with the non-resonant 
pump shown as a dark yellow cylinder. The blue (red) region corresponds 
to the region in which the phase of the condensate is determined by the 
resonant laser beams shown as the blue (red) cylinder. The white dashed 
rectangle indicates the region shown in the measurements in b and c. 
b, Phase of the condensate just above the power threshold for quantum 
degeneracy, locked to that of the external laser in the bottom-left corner of 
the image. The scale bar in c also applies in b. The white circle corresponds 
to the saturated signal of the reflected beam. c, Measured interferogram 
of the extended condensate. The resonant beams, partially reflected at the 
surface, saturate the detector at the positions of the two spots (circles), 
despite the small number of injected polaritons.
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We reproduce numerically these stages of formation and dis-
appearance of coherent structures using the complex Ginzburg–
Landau equation, adapted to the case of a polariton condensate 
separated from the exciton reservoir24 (see Methods). In Fig. 3a–d 
we show the results of simulations carried out with increasing 
pump power, qualitatively reproducing the formation of a solitonic 
barrier, the nucleation of vortices and finally the appearance of a 

homogeneous condensate. The figures show snapshots of the phase 
of the wavefunction after a long time of evolution, when the initial 
transient effects have washed out and the system has approached 
the steady state. Cross-sections of the phase and density profiles are 
shown in Fig.  3e,f. We find that the formation of the barrier and 
vortices observed experimentally is reproduced in simulations. The 
phase jumps imprinted by the pump, together with the noise pres-
ent in the stochastic equation, act as a seed for the appearance of 
solitons and vortices. In the experiment, the noise is not stochastic 
but due to very small local fluctuations of the photonic or exciton 
potential37. In the absence of disorder potential in the simulation, 
the positions of the solitons and vortices fluctuate. However, we find 
numerically that a weak static disorder is able to pin the topological 
excitations in certain fixed positions, without altering their physical 
structure, exactly as happened in the experiment. At the same time, 
the potential disorder required for pinning is very weak and by itself 
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Fig. 2 | Phase and density of the condensate on phase twisting. a–d, Phase 
(mod 2π) of the condensate with a twisted boundary condition (Δϕ = π) 
when the intensity of the non-resonant pump is increased. a, d = 0.5dth.  
b, d = 1.5dth. c, d = 2.0dth. d, d = 2.5dth. The dashed rectangles correspond to 
8 μm × 35 μm regions. e–h, Phase profiles along the vertical direction, with 
colours indicating different horizontal positions spanning the region within 
the dashed black rectangles in a–d with 36 lines corresponding to spatial 
steps of 0.22 μm. i, Density profiles extracted from the interferograms 
corresponding to the phase maps shown in b (green line), c (red line) and 
d (yellow line).
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Fig. 3 | Numerical simulations. a–d, Phase profiles obtained numerically 
with increasing pump power. a, ≪P Pth. b, P = 4.5Pth. c, P = 6Pth. d, P = 8Pth. 
Tick marks in a correspond to 10 µm. e,f, Cross-sections of the phase (e) 
and density (f) along the red dashed lines in b (green lines), c (red lines) 
and d (yellow lines). Note that in b–d the orientation of the cross-section 
with respect to the pumping spots was chosen so that it is approximately 
perpendicular to the barrier.
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does not form an insulating barrier. Phase defects appear only when 
the double locking is applied, otherwise a constant phase across the 
whole region is observed (see Supplementary Information). Since 
we do not assume any particular form of disorder in the simulation, 
the soliton is not pinned to the same point in the sample as in the 
experiment; its position is instead determined by a particular real-
ization of the noise and disorder, which vary from one simulation 
to another.

In Fig.  4, we focus on the region in proximity to the junction 
for the intermediate power regime. The phase shown in Fig. 2b,c 

is magnified in Fig. 4a,b, respectively. The velocity vector field can 
be obtained directly from the measured phase ϕ(r) by v(r) ∝ ∇ϕ(r) 
(refs. 4,38,39). The velocity streamlines corresponding to the data 
in the white dashed rectangles in Fig. 4a,b are shown in Fig. 4c,d, 
respectively. In analogy to the formation of Josephson vortices in 
superconducting Josephson junctions or in atomic Bose–Josephson 
junctions12,13, the nucleation of vortices in the barrier allows a par-
tial dissipation of the energy stored in the twisted-phase configura-
tion. This is markedly different from previous work on solitons and 
vortices in polariton superfluids, in which hydrodynamic effects 

1

0

–1

–2

P
ha

se
 (

ra
d)

0 5 10 15

Distance (μm)

a b

c

e

d

3

P
hase (rad)

P
hase (rad)

P
hase (rad)

−3

0

3

−3

0

3

−3

0

Fig. 4 | Josephson vortices nucleation at the long Josephson junction. a,b, Detail of the regions with the phase jump in Fig. 2b,c, respectively, with the 
appearance of a wavy junction. The areas shown by the white dashed rectangles are 5 μm × 15 μm. c,d, Velocity streamlines directly obtained as the  
two-dimensional gradient of the phase from the experimental data in the dashed white rectangles in a and b, respectively. The arrows indicate the direction 
of the polariton currents, but the length does not indicate the intensity of the velocity field, which decreases away from the junction. The background 
images are the experimental phase data shown in the dashed white rectangles in a and b. The two-dimensional contour plot representation is used to show 
the velocity streamlines orthogonal to the isophase lines. c, The nucleation of a vortex–antivortex pair. d, The velocity streamlines show the proliferation of 
Josephson vortices (2–3 vortex–antivortex pairs are visible). The vortex between the dotted lines is an example with clockwise rotation. e, Phase profiles 
along the dashed lines in d, showing the inverted currents around the Josephson vortex. The whole vertical extension of 15 μm, as in a and b, is given.
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across the condensate prevail over the dynamics of Josephson vor-
tices within the barrier40–42. The appearance of the first couple of 
Josephson vortices is evident in Fig. 4c, where a vortex–antivortex 
pair (formed by vortices with opposite circulation) nucleates within 
the barrier and supports an inverted current going downwards 
(centre of Fig. 4c), as opposed to the upward flux seen across the 
rest of the junction.

At higher densities, the separation between the vortex and the 
antivortex increases and the nodal line breaks at different points 
(as shown in Fig. 4d), developing polariton currents in opposite 
directions across the junction. The solitonic features in the density 
and phase profiles are still visible, but now the nodal line has a 
more complex structure (Fig. 4d). As shown in Fig. 4e, the phase 
slip is inverted along the red and green dashed lines in Fig.  4d, 
going from Δϕ ≈ π to Δϕ ≈ −π in accordance with the inverted 
currents in nearby domains of the junction. Moreover, transversal 
currents induced by the vorticity are visible in the condensate on 
both sides of the junction, which now acquires a more tortuous 
path, with additional phase modulations departing from the vor-
tex cores at finite angles from the main nodal line. At higher den-
sities, all these topological excitations disappear and the system 
is left in a clean superfluid phase with a smooth phase gradient 
between the boundaries.

Discussion
The phenomenology of the transition from a solitonic structure to 
vortex pairs may appear similar to the transverse (snake) instabil-
ity of dark solitons observed in several nonlinear two-dimensional 
systems33,43–45. However, we emphasize that our observations are not 
an example of such an instability, since the observed structures are 
stable at all values of the pumping power tested. Snake instabilities 
in conservative systems develop over time, evolving from an elon-
gated dark soliton state that is prepared intentionally, for example, 
by careful phase imprinting. The fragility of a soliton solution of the 
nonlinear Schrödinger equation results in unavoidable decay into 
vortex–antivortex pairs, even when a phase difference is imposed as 
a boundary condition. The vortices that result from a snaking insta-
bility follow a dynamical evolution, moving away from the initial 
position, which results in a complete decay of the solitonic structure 
after a certain amount of time. By contrast, in our pumped dissipa-
tive system, resonant lasers provide effective phase locking, which 
results in a stable two-dimensional solitonic structure. At higher 
pump power, the soliton splits into vortex pairs that stay close to 
the initial soliton dip, and the insulating character of the barrier is 
partially retained, as can be seen from the phase profiles in Figs. 2g 
and 4e. Moreover, the last stage of the transition shown in Fig. 2d, 
with a smooth phase and flat density, is never observed as a result 
of an instability in a conservative system. This can be understood 
in the following way. The increase in pumping drives our non-
equilibrium condensate to lower energy states as a result of faster 
thermalization46. This leads to the transition from the soliton-like 
state, through the proliferation of vortices, to the flat density state 
that is closest to the ground state of the system (see Methods for a 
detailed calculation of the energy of particular states). Hence, the 
transition from the solitonic state to vortices to a flat state is a result 
of gradual relaxation between stable steady states, rather than an 
instability of an artificially prepared out-of-equilibrium state that 
decays unavoidably. From the point of view of potential applica-
tions, the stability of these steady states is a considerable advantage 
over unstable states.

In conclusion, we have shown the full range of dynamical 
responses of a polariton condensate to a twisted-phase boundary 
condition by changing the polariton density and looking at the 
steady-state evolution of the system. The existence of a stable spatial 
soliton with a wavy nodal line, as in Fig. 2b, is a remarkable topo-
logical feature and constitutes a natural realization of a bosonic LJJ 

in polariton condensates47. The solitonic structure is characterized 
by a strong reduction of the order parameter (condensate wavefunc-
tion amplitude), which acts as an analogue of the normal barrier, or 
weak link, in superconducting Josephson junctions, and separates 
two extended regions of the condensate with well-defined phases. 
The transition from the superfluid behaviour to the formation of 
stable topological excitations can be controlled in the same experi-
ment by optically tuning the polariton density, suggesting the pos-
sibility of testing the scaling laws of interacting quantum fluids48 in 
a solid-state environment.
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Methods
Sample and experimental setup. The sample is a high-quality-factor 3/2λ GaAs/
(Al, Ga) As two-dimensional planar cavity, where λ = 772 nm is the wavelength 
of the longitudinal cavity resonance, with 12 GaAs quantum wells placed at three 
antinode positions of the electric field. The top (bottom) layer of the mirror 
(distributed Bragg reflectors) includes 34 (40) pairs of AlAs/Al0.2Ga0.8As layers. The 
effective Rabi splitting of the sample is 16 meV. The cavity–exciton energy detuning 
depends on the spatial position; consequently, we used a point with a slightly 
negative value, δ = −2 meV. Experiments are performed using a non-resonant 
continuous-wave excitation with a low-noise, narrow-linewidth Ti:sapphire laser 
with stabilized output frequency (M Squared Lasers) and chopped with a 4 kHz 
frequency and duty cycle of around 5% to avoid heating of the sample. In addition 
to the non-resonant pumping, a resonant laser, split into two beams and with 
momentum and energy matching the bottom of the lower polariton branch, is 
used to pin the phase of the condensate. The two resonant beams are produced 
in a compact interferometer and come from the same continuous-wave laser, and 
so have the same phase difference. The stability of the interferometer is optimized 
to minimize the residual uncertainty in the phase difference between the two 
beams, which is adjusted to be approximately π radians and can be controlled by 
tuning the position of the mirror in one of the two arms of the interferometer. The 
formation of the phase slip is robust enough to be observed even in the presence 
of the unavoidable fluctuations of the phase difference between the two resonant 
beams during the time of the experiment, without needing any active feedback 
for further stabilization of the phase difference. However, the stability of the 
topological structures quickly deteriorates when the nominal phase difference is 
shifted from π radians. The wavelength and the angle of incidence of the resonant 
beams are adjusted very carefully to match the resonance, both in energy and 
wavevector, of the polariton condensate. This is done by recreating the Fourier 
plane of the launching objective in a 4f configuration, with f = 500 mm the focal 
length of the lenses, to control the component of the wavevector parallel to the 
sample surface with a precision of 0.1 μm−1.

The sample emission is collected and sent to a Mach–Zehnder interferometer 
and finally focused on the entrance slit of a charge-coupled device (CCD) camera. 
The polariton lifetime is determined by time-resolved photoluminescence 
measurements with a Ti:sapphire laser delivering 3 ps pulses with a repetition rate 
of 82 MHz. Polaritons are resonantly injected by tuning the frequency and angle of 
incidence of the beam to match the polariton resonance close to the bottom energy 
of the dispersion. Resonant excitation is required to prevent the radiative decay rate 
measurements from being affected by the bottleneck effect and the long lifetime 
of the excitonic reservoir. The photoluminescence signal is recorded with a streak 
camera with an overall time resolution of 3 ps and the mono-exponential decay 
allows us to easily extract a lifetime of 100 ps (refs. 18,23).

Phase measurements. Measurements of the phase of the condensate are  
performed with a Mach–Zehnder interferometer, where the signal emitted by 
the microcavity is interfered with a reference beam of spatially uniform phase, 
obtained by expanding a single spatial point of the condensate, which is chosen to 
be far away from the region of interest. The phase difference from the reference 
value is extracted at each position of the condensate from the pattern of the 
interference fringes using the standard fast Fourier transform algorithm24. To 
demonstrate the non-local locking of the phase of the condensate by the external 
laser, we use the Mach–Zehnder interferometer to interfere a region of the 
condensate outside of the laser spot with a reference signal taken from the same 
laser used to pin the phase. In our configuration, the coherence of the condensate 
is not substantially altered by the phase locking with an external laser, leaving 
the coherence length unaffected, which, as shown in ref. 24, depends on only the 
polariton density of the condensed state. In particular, for our measurement of 
LJJs, we have a power-law decay of coherence with an exponent of α = 0.5, which 
corresponds to a coherence length of Lc = 50 μm, whereas for the case of the 
superfluid regime the exponent is α = 0.25, with Lc > 100 μm. The formation of 
quasi-long-range order is a prerequisite to having a polariton condensate large 
enough (>100 μm) to impose the phase locking with two external lasers. More 
details about the measurement of the power-law decay of first-order correlations in 
space and time, in the same sample and under the same experimental conditions, 
are given in ref. 24.

Numerical modelling. We model the polariton system using the stochastic 
complex Ginzburg–Landau equation24
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where ψ(r, t) is the complex wavefunction, m* is the effective mass of lower 
polaritons, g is the interaction coefficient, V is the weak disorder of the sample, 
γ is the effective pumping rate, κ is the polariton loss rate and Γ is the saturation 
coefficient. The spatial functions F1 and F2 describe the Gaussian profiles of the two 
resonant pumping lasers, ωL is the laser frequency and Δϕ is the phase difference. 
The strength of the disorder V(r) required for spatial pinning is chosen to be lower 
than other typical energy scales in the system, and its spatial correlation length is a 
few micrometres. The term dW is scaled Wiener noise with correlations
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where cq is a parameter representing the relative strength of quantum fluctuations 
present in the system. Since our condensate is spatially separated from the hot 
reservoir created by the pumping laser, we do not include a separate equation for 
the dynamics of the reservoir density.

The above form of the stochastic equation has been derived using perturbative 
Keldysh field theory49 or the truncated Wigner approximation1. As we are not 
investigating the region close to the phase transition, we neglect the correction 
to the wavefunction due to the ordering of operators24. The values of parameters 
extracted from the experimentally measured dispersion are m* = 3.85 × 10−5me 
(me is the electron mass) and κ = (100 ps)−1. The interaction coefficient is 
ħg = 4 × 10−3 meV μm2, the saturable nonlinearity is ħΓ = 14 × 10−3 meV μm2, and 
the noise coefficient is cq = 0.1. The blueshift of the condensate at threshold is 
ħgdth = 0.05 meV, ωL is set to the lower polariton energy at threshold, and their 
spatial full-width at half-maximum is 10 μm.

Energy of the condensate. Consider the energy of the condensate in the state that 
appears at the highest pump power, as in Fig. 2d, which is composed of kinetic and 
potential parts. The kinetic part is associated with the phase gradient between the 
pinning laser spots and the potential part is due to the repulsive polariton interaction
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where S is the approximate surface of the condensate, d is the distance between the 
phase-pinning beams, and A and B are constants.

The energy of the dark soliton-like state (Fig. 2b) is
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where we integrate separately over the extent of the soliton and the rest, L is 
the length of the soliton, w is its transverse width, and A′ and B′ are constants 
corresponding to the kinetic and interaction energy in the soliton region. In the 
limit of a thin and long dark soliton, with ≪x d L,  and ≪wL S, the dominant 
contribution to the difference between Eds and E0 is Eds − E0 ≈ A′L/w, which is 
positive. Consequently, the dark soliton state is an excited state of the system, and 
the state with a small constant phase gradient has lower energy.

Data availability
The raw experimental and numerical data used in this study are available from the 
corresponding author on reasonable request.
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