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Engineering spin-orbit synthetic Hamiltonians in
liquid-crystal optical cavities
Katarzyna Rechcińska1*, Mateusz Król1*, Rafał Mazur2, Przemysław Morawiak2, Rafał Mirek1,
Karolina Łempicka1, Witold Bardyszewski3, Michał Matuszewski4, Przemysław Kula5, Wiktor Piecek2,
Pavlos G. Lagoudakis6,7†, Barbara Piętka 1, Jacek Szczytko1†

Spin-orbit interactions lead to distinctive functionalities in photonic systems. They exploit the
analogy between the quantum mechanical description of a complex electronic spin-orbit system
and synthetic Hamiltonians derived for the propagation of electromagnetic waves in dedicated
spatial structures. We realize an artificial Rashba-Dresselhaus spin-orbit interaction in a liquid
crystal–filled optical cavity. Three-dimensional tomography in energy-momentum space enabled us to
directly evidence the spin-split photon mode in the presence of an artificial spin-orbit coupling. The
effect is observed when two orthogonal linear polarized modes of opposite parity are brought near
resonance. Engineering of spin-orbit synthetic Hamiltonians in optical cavities opens the door to
photonic emulators of quantum Hamiltonians with internal degrees of freedom.

S
pin-orbit interaction (SOI) in atomic
and solid-state physics is a relativistic
effect transforming static electric fields
in the laboratory frame into magnetic
fields in the frame of a moving electron.

These magnetic fields interact with the spin
of the electron and result in a rich variety of
quantum phenomena, including the realiza-
tion of topological states (1). SOI in solid-state
systemswith broken inversion symmetries leads
to the so-called Dresselhaus (2) and Bychkov-
Rashba (3, 4) Hamiltonians that underpin device
concepts in spintronics, topological insulators,
and superconductors (5). SOI effects of light
stem directly from the solutions of Maxwell
equations in wavelength-scale micro- and nano-
structures, including metamaterials, optical
waveguides, and interfaces (6–14), where the
role of spin is taken by the polarization of the
photons. In the case of a homogeneous me-
dium enclosed in amicrocavity, the presence
of an energy splitting between transverse elec-
tric and transverse magnetic modes of light
leads to the optical analog of the spin Hall
effect (15, 16) and the realization of artificial
gauge fields (17, 18).

The Hamiltonian of a charged particle in a
magnetic field is known to be simulated by
certain photonic systems with induced gauge
fields (19–22). In these devices, the vector po-
tentials describing the gauge fields are spin-
independent, and so the particle’s internal
degree of freedom remains unaffected. The
coupling between potential and spin has
been realized, for example, in metamate-
rials (23, 24). However, the study of artifi-
cial Rashba-Dresselhaus spin-orbit gauge
fields has been so far predominantly restricted
to nanokelvin temperatures in atomic systems
(25, 26).
Here, we simulate spin-orbit interactions

in a tunable, liquid crystal (LC)–filled, optical
cavity. By controlling the refractive index ani-
sotropy of the intracavity layer, we adiabatically
engineer the coupling between optical modes
and show that the system is described by a
Hamiltonian with Dresselhaus (2) and Bychkov-
Rashba (3, 4) terms, originally used to describe
fermions.We fabricated a two-dimensional (2D)
capacitive planar multimode optical cavity and
filled it with a birefringent LC medium in the
nematic state, as shown in Fig. 1A (27). By
applying an external voltage, we controlled the
spatial orientation of the longmolecular axis
of the LC medium that induces refractive in-
dex anisotropy. The refractive index anisotropy
in the xy plane can be described using ordinary
no and extraordinary ne refractive indices. At
normal incidence, for a cavity mode with l
antinodes, this leads to an energy splitting be-
tween the two orthogonal linearly polarized
cavity modes, with energies denoted by EX,l

and EY,l. By rotating the optical axis of the LC
medium around the y axis, shown in Fig. 1A,
we control the effective refractive index rele-
vant to the electric field oscillating in the xz

plane, and thus the energy of the X-polarized
modes (28). This configuration enables us to
utilize the giant optical anisotropy of the LC
medium [Dn = ne − no = 0.41 (29)] and bring
successive modes into resonance.
When two orthogonally polarized cavity

modes of opposite parity of the number of
antinodes l and l′ are tuned near resonance, a
coupling between them arises, which depends
on the in-plane wave vector of incident light,
denoted as k‖ = (kx, ky). The coupling term is
analogous to the Rashba-Dresselhaus Hamil-
tonian with equal strength of Rashba and
Dresselhaus couplings (30), ĤRD ¼ �2aŝzky ,
where ŝz is the third Pauli matrix (defined
in the basis of circular polarizations of out-
coupled light s± at the LC, Bragg mirror
interface, as shown in Fig. 1B) and a is the
Rashba-Dresselhaus coupling coefficient. This
form of the Rashba-Dresselhaus coupling
term can be deduced from the symmetry of
the system (27).
The quasi-degenerate system of the orthog-

onally polarized modes of opposite parity can
be approximately described by the effective
Hamiltonian

Ĥ ¼ ℏ2k2x
2mx

þ ℏ2k2y
2my

þ ĤRD þ 1

2
ðEX ;l � EY ;l0 Þŝx

ð1Þ
wheremx andmy are the effective masses of
the cavity photon in the xy plane (compare
to Figure 1A), and ħ is Planck’s constant h
divided by 2p. The first two terms correspond
to the kinetic energy of cavity photons, that
is, photon confinement in the z direction re-
sults in a parabolic dispersion relation with
respect to k‖, or the photon in-plane momen-
tum. The third term corresponds to the Rashba-
Dresselhaus coupling with a gauge field defined
asÂ ¼ 2myŝz=ħ(0,1,0). The Rashba-Dresselhaus
coupling gives rise to two cross-circular polar-
ized eigenstates separated in momentum space
shown in Fig. 1C. Constant energy cross-sections
of the 3D paraboloid are shown in Fig. 1D. The
last term in the Hamiltonian (Eq. 1) corre-
sponds to the splitting between the cavity eigen-
modes EX,l and EY,l′ that acts as an artificial
magnetic field in the x direction, resulting in
a synthetic Zeeman term for the spin but not
the orbital degree of freedom (31).
Under oblique incidence, the eigenmodes

are neither X nor Y polarized because k‖ ≠ 0.
At resonance, the phase difference between the
X- and Y-polarization modes across the intra-
cavity LC layer changes by p. The intracavity
LC layer acts, then, as a half-wave plate, and the
eigenmode polarization at the mirror inter-
faces becomes circular; thus, out-coupled light
is circularly s± polarized, with the same polari-
zation on both sides of the cavity, as shown in
Fig. 1B.
The lifted degeneracy of s± polarizations

(Fig. 1C) and the asymmetric cross section
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in reciprocal space (Fig. 1D) of the Rashba-
Dresselhaus coupled photons appear to break
time-reversal (TR) symmetry in a purely photonic
system. Paradoxically, the possibility to realize
synthetic Rashba-Dresselhaus spin-orbit cou-
pling for photons in such a simple system can
be precisely justified by considering the effect
of TR symmetry on confined photon modes.
As shown in Fig. 1E, TR of a (k, s±) circularly
polarized electromagnetic wave in free space
results in an electromagnetic wave with oppo-
site momentum −k and the same polarization.
Consequently, in a TR symmetric system, a
plane wave spectrum is always symmetric with
respect to inversion of momentum k. However,
such a symmetry argument does not hold for
cavity modes parameterized with momentum
in the plane of the cavity because (k‖, s

±) and
(−k‖, s±) are not TR symmetric partners. In-
deed, reflection of circularly polarized light flips
both the sign of the component of the wave
vector perpendicular to themirror, k⊥, and the
polarization,s∓, as shown schematically in Fig. 1,
F and G. Therefore, modes (k‖, k⊥, s

±) and

(k‖, −k⊥, s∓) couple in the cavity and form a
standingwave. Thus, TR in the cavity transforms
(k‖, k⊥, s

±) into (−k‖, k⊥,s∓), that is, k‖→ −k‖

andsT→s∓. This permits asymmetric spectra
in both s± polarizations that result in the ap-
parent symmetry “breaking” with respect to
k = 0, reminiscent to that of fermionic spin-12
particles (27).
To experimentally realize the manifestation

of the Rashba-Dresselhaus coupling, we per-
formpolarization-resolved reflectivitymeasure-
ments in reciprocal space. We use a broadband
incoherent source to eliminate coherent artifacts.
In the absence of an external voltage (first
row of Fig. 2), the director of the LC me-
dium is parallel to the cavity plane, point-
ing in the x direction. In this configuration,
we expect a large energy splitting between
the X- and Y-polarization modes. The 2D
polarization-resolved dispersion of the cav-
ity photons consists of coaxial paraboloids
shown in Fig. 2A, where we can clearly ob-
serve two successive cavity modes. Figure 2B
shows the corresponding reflectivity disper-

sion at the kx = 0 cross section. Polarization-
resolved reflectivity of the dispersion along
the X- and Y-polarization modes allows us
to distinguish the relevant modes. Figure 2C
shows the dispersion of the degree of linear
polarization (DLP) at the kx = 0 cross sec-
tion of the 2D dispersion. The two orthogonal
modes correspond to the main axes of the LC
indicatrix.
Application of an external voltage on the

electrodes of the cavity allows for a smooth
tuning of the energy of theX-polarized parab-
oloid. At 1.38 V, two orthogonally polarized
modes of the same parity are brought into a
resonance at normal incidence (second row of
Fig. 2). Figure 2D shows the 2D polarization-
resolved dispersion, and Fig. 2E shows the
corresponding reflectivity dispersion at the
kx = 0 cross section. The two modes have
slightly different curvature (effective masses)
in the ky direction owing to the residual align-
ment of the LC director; naturally, the cross
section at the kx direction (left projection of
Fig. 2D) does not exhibit any difference. The

Rechcińska et al., Science 366, 727–730 (2019) 8 November 2019 2 of 4

Fig. 1. Rashba-Dresselhaus spin-orbit coupling in a liquid crystal–filled
optical cavity. (A) Scheme of the LC-filled optical cavity made of two distributed
Bragg reflectors (DBRs) with ac source (V) connected to indium tin oxide
(ITO) electrodes. (B) Resonant X- and Y-polarization modes of opposite parities
l and l′; the LC medium acts as a half-wave plate, and the eigenmode polarization
at the mirror interfaces becomes circular. Out-coupled light is circularly polarized
with the same (s±) polarization on either side of the cavity. (C) Dispersion
relation with spin-polarized bands resulting from Rashba-Dresselhaus coupling.
(D) Constant energy cross sections in kxy reciprocal space. (E) Circularly

polarized beam under TR switches its propagation direction, but the chirality
remains the same. In a TR symmetric system, this results in k-symmetric spectra
for all polarizations. (F) Mirror reflection switches both the perpendicular part
of the momentum and the chirality of the incident beam, as the sum of the
incident (F1) and reflected (F2) electric fileds at interface is equal to zero. (G) In
the cavity, both (k‖, k⊥, s

±) and (k‖, −k⊥, s∓) modes couple with each other to
form a standing wave. Under TR, both the wave vector parallel to the cavity plane
and circular polarization change sign, k‖ → −k‖ and sT → s∓, resulting in
symmetry breaking of the intracavity circularly polarized modes.
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dispersion of the degree of linear polarization
at the kx = 0 cross section of the 2D dispersion,
shown in Fig. 2F, reveals that the two modes
maintain their polarization.
For an even higher external bias of 2.48 V,

webring into resonance twoorthogonally polar-
ized modes of opposite parity (third row of
Fig. 2). Figure 2G shows the 2D polarization-
resolved dispersion, analyzed in the circular
polarization basis. Here, we observe a clear
splitting of the paraboloids in the ky direction.
Figure 2H shows the corresponding reflec-
tivity dispersion at the kx = 0 cross section.

The dispersion of the degree of circular polar-
ization (DCP) at the kx = 0 cross section of the
2D dispersion, shown in Fig. 2I, reveals the
Rashba-Dresselhaus Hamiltonian solution of
Fig. 1C.
The emergence of the coupling between the

modes can be precisely traced on the reflec-
tivity dispersion as a function of the applied
voltage. In Fig. 3A, we plot the reflectivity
spectrum versus applied voltage at normal
incidence (ky = 0) for the range of voltages,
whereinwe observe crossing of the resonances
of two orthogonal polarization modes with

opposite parity. At normal incidence, we ob-
serve a clear crossing of the two modes, in
agreement with the Rashba-Dresselhaus cou-
pling term. In Fig. 3B, we plot the reflectivity
spectrumversus applied voltage at ky= 1.4 mm−1.
In this case, we observe a clear anticrossing at
the resonance conditions for the twomodes. This
is in agreement with the Rashba-Dresselhaus
coupling term that is linear on in-plane wave
vector (ky). Tuning the applied voltage, we
determined the splitting as a function of the
wave vectors (Fig. 3C). From the slope of the
linear dependence of the energy splitting on
ky, we obtained a giant Rashba-Dresselhaus
parameter of a = 31.9 eV·Å.
We demonstrate a photonic device that re-

alizes a tunable synthetic Hamiltonian consist-
ing of the Rashba-Dresselhaus and Zeeman
terms. SyntheticHamiltonians enable the study
of physical systems, wherein tunable gauge
fields and forces play an important role. Utilizing
pure bosons to engineer the Rashba-Dresselhaus
Hamiltonian allows for the emulation of phys-
ical systems with SOI and microscale control
over spin states, for example, persistent spin
helix (30), suppression of spin relaxation (32),
and creation of topologically protected states
of light (33). Such artificial gauge fields can be
further applied to light-matter dressed states,
bringing about an exotic Hamiltonian with
intrinsic nonlinearities.
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Fig. 2. Dispersion engineering in a tunable liquid crystal–filled optical cavity. (A, D, and G) Exper-
imental 2D polarization-resolved reciprocal space tomography of reflectance at 0.0 (A), 1.38 (D),
and 2.48 V (G). (B, E, and H) Reflectance dispersion at the kx = 0 cross section. (C and F) The
dispersion of the DLP at the kx = 0 cross section of the respective 2D dispersions for modes of
the same parity. The two orthogonal modes correspond to the main axes of the LC indicatrix. (I) The
dispersion of the DCP at the kx = 0 cross section of the 2D dispersion, realizing the solution of the
Rashba-Dresselhaus Hamiltonian of Fig. 1C.

E
ne

rg
y 

(e
V

)

1.60

1.62

1.64

1.66

Voltage (V)

E
ne

rg
y 

(e
V

)

 

 

2.0 2.5 3.0

1.60

1.62

1.64

1.66

0.6

0.7

0.8

0.9

1.0

−1Wave vector k  (µm )y

S
pl

itt
in

g 
(m

eV
)

0 1 2 3
0

20

40

−1k  = 0 µmy

−1k  = 1.4 µmy

A

 B

 C

Fig. 3. Giant Rashba coupling in an optical
cavity. (A and B) Reflectance (color scale) at ky = 0
(A) and ky = 1.4 mm−1 (B) versus applied voltage.
(C) Energy-mode splitting between the cavity
eigenmodes EX,l and EY,l′ versus in-plane wave vector
ky at 2.48 V. From the slope of a linear fit to the
data, we obtain a giant Rashba-Dresselhaus
parameter of a = 31.9 eV·Å.
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with photons for the simulation of nontrivial condensed matter and quantum phenomena.
control of an artificial Zeeman splitting. The results illustrate a powerful approach of engineering synthetic Hamiltonians 
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fixed. By contrast, optical systems have recently been shown to mimic complex solid-state systems, with flexibility in d
transport effects. But solid-state systems tend to be somewhat limited in their flexibility because the spin-orbit coupling is
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